帳號:guest(18.217.254.118)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):駱敬謙
作者(外文):Lun, Jing-Chian
論文名稱(中文):開發次微米磁棒攪拌系統捕捉類澱粉蛋白寡聚體以發展新型阿茲海默氏症治療策略
論文名稱(外文):Capture of Amyloid-β Oligomers by Magnetic Stirring as a New Therapeutic Strategy for Alzheimer's Disease
指導教授(中文):邱信程
指導教授(外文):Chiu, Hsin-Cheng
口試委員(中文):王麗芳
駱俊良
口試委員(外文):Wang, Li-Fang
Lo, Chun-Liang
學位類別:碩士
校院名稱:國立清華大學
系所名稱:生醫工程與環境科學系
學號:104012542
出版年(民國):107
畢業學年度:106
語文別:中文
論文頁數:94
中文關鍵詞:阿茲海默氏症類澱粉蛋白寡聚體斑塊磁棒神經保護作用微膠細胞
外文關鍵詞:Alzheimer’s diseaseAβ oligomersplaquemagnetic stir barneuroprotectionmicroglia
相關次數:
  • 推薦推薦:0
  • 點閱點閱:76
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
本研究發展一新穎次微米磁棒治療系統,針對腦內瀰漫性類澱粉蛋白的寡聚體(Amyloid-β oligomers)聚集區域進行治療。透過旋轉磁場調控次微米磁棒對Aβ oligomers聚集處進行磁力攪拌後,能有效地將Aβ聚集區的寡聚體(Aβ oligomers)捕捉形成無毒性的磁性斑塊(magnetic plaques),進一步抑制Aβ寡聚體進入神經元細胞並避免進入細胞後產生毒性導致其死亡,。本研究開發之次微米磁棒以油酸包覆超順磁奈米氧化鐵粒子(oleic acid-coated superparamagnetic iron oxide nanoparticles, OA-SPIONs)為主要材料,利用月桂酸鈉(lauric acid sodium salt, LA)改善油酸覆蓋的奈米氧化鐵粒子於水相中的分散性。次微米磁棒(TEOS modified magnetic stir bars, T-MSBs)的製備則是利用釹鐵硼磁鐵(neodymium magnet)施予磁力線使奈米氧化鐵粒子排列成線狀後,再加入tetraethyl orthosilicate(TEOS)固定其線性結構。本研究製備出的次微米磁棒長度約為2.9 μm,寬度約為100 nm,由於矽殼層(silica shell)表面具大量的矽醇基(silanol groups),使其具備良好的生理穩定性(pH 7.4, I = 0.15 M)。體外實驗結果顯示,能透過次微米磁棒產生的磁力攪拌作用可以捕捉0.3-160 μM游離的Aβ oligomers,同時集結形成平均面積7-65 μm2的magnetic plaques。於體外細胞實驗結果證實,藉由次微米磁棒產生的磁力攪拌作用捕捉游離的Aβ oligomers,可有效減少Aβ oligomers對類神經元細胞N2a cells造成的毒性。進一步利用共軛焦顯微鏡、西方墨點法評估次微米磁棒產生的磁力攪拌作用,可有效抑制游離的Aβ oligomers造成類神經元細胞N2a cells神經元突觸退化。另一方面,磁性斑塊可有效減少BV-2微膠細胞釋放對神經細胞有害的發炎因子(TNF-α、IL-1β),同時改善BV-2微膠細胞對Aβ清除的效率。這些結果顯示,T-MSBs的磁力攪拌作用可有效保護腦部細胞,減少Aβ oligomers進入細胞造成神經細胞的凋亡與免疫細胞發炎的不良現象,並可作為阿茲海默氏症治療的次微米裝置。
Aβ oligomers induced neuronal death and microglial inflammation are the major causes of Alzheimer’s disease. In this regard, a smart magnetic stir bar (MSB)-based therapy system which can congregate the neurotoxic Aβ oligomers into nontoxic magnet-induced plaques and impede the penetration of oligomeric species into neurons for novel therapeutic strategies on Alzheimer’s disease was developed in this work. The functionalized MSB was acquired by a neodymium magnet assisted alignment of lauric acid modified superparamagnetic iron oxide nanoparticles into submicron bars while the surfaces will be concomitantly decorated with tetraethyl orthosilicate (T-MSBs) to maintain the bar-shaped structure and improve the colloidal stability. In vitro data demonstrated the MSB-induced mechanical forces actuated the aggregation of Aβ oligomers and significantly reduced the cytotoxicity by means of restricted penetration of Aβ oligomers into neuronal cells (N2a). In consistence with the well development of axon and dendrite through the inhibition of Aβ oligomers into neuron by immunohistochemical examination, the neurite has also shown sound functionality by Western blotting. The confocal laser scanning microscope images confirmed enhanced uptake of magnet-induced plaques on microglia as compared to free Aβ oligomers, leading to an appreciable clearance of the Aβ oligomers. The impaired release of proinflammatory cytokines from microglia considerably promoted the protection effect of targeted neuronal cells. These results demonstrate the greate potential of the T-MSBs as an advanced Alzheimer’s disease therapeutic submicrondevice.
目錄
Abstract p11
中文摘要 p2
前言 p13
一、研究動機 p13
二、文獻回顧 p16
2-1 阿茲海默氏症(Alzheimer’s disease)介紹 p16
2-2 類澱粉蛋白Aβ p16
2-3 神經性發炎反應(Neuroinflammation) p19
2-4 濤蛋白(Tau protein) p20
2-5 阿茲海默氏症體外模型 p21
2-5-1 類神經元細胞體外模型建立 p21
2-5-2 類澱粉蛋白體外模型建立 p21
2-6 類澱粉蛋白學說治療策略發展 p22
三、實驗方法與步驟 p31
3-1次微米磁棒製備與鑑定 p31
3-1-1油酸氧化鐵奈米粒子(OA-SPIONs)製備 p31
3-1-2月桂酸鈉氧化鐵奈米粒子(LA-SPIONs)製備 p31
3-1-3次微米磁棒製備 p32
3-1-4氧化鐵奈米粒子與次微米磁棒鑑定 p33
3-2次微米磁棒穩定度評估 p34
3-3次微米磁棒磁力攪拌作用評估 p34
3-4類澱粉蛋白Aβ42模型建立與鑑定 p34
3-4-1 類澱粉蛋白模型製備前處理 p34
3-4-2 澱粉蛋白寡聚體模型製備與鑑定 p34
3-4-3 類澱粉蛋白斑塊模型製備與鑑定 p35
3-5次微米磁棒攪拌聚集Aβ42能力評估 p35
3-6 磁性斑塊鑑定 p36
3-7體外細胞實驗 p36
3-7-1細胞來源及適合之培養環境 p36
3-7-2配置細胞培養液 p37
3-7-3細胞繼代 p37
3-7-4 細胞存活率分析 p38
3-7-4-1評估不同濃度次微米磁棒對類神經元細胞(N2a cells)細胞存活率影響p38
3-7-4-2 評估(0,500,1500,2500 rpm)狀態的次微米磁棒對類神經元細胞(N2a cells) 細胞存活率與細胞型態影響 p39
3-7-5 評估類澱粉蛋白寡聚體與類神經元細胞(N2a cells)共培養之細胞存活率p39
3-7-6 評估次微米磁棒、類澱粉蛋白寡聚體、磁性斑塊與類神經元細胞(N2a cells)共培養之細胞存活率 p39
3-7-7 細胞膜破損分析 (LDH assay) p40
3-7-8 N2a cells類神經元細胞突觸長度評估 p42
3-7-9 神經元蛋白(Neuronal Protein)-螢光影像評估 p42
3-7-10神經元蛋白-西方墨點法評估 p43
3-7-10-1西方墨點法樣品製備 p43
3-7-10-2 西方墨點法實驗原理 p44
3-7-10-3膠體電泳製備 p44
3-7-10-4 Bradford法蛋白濃度測定 p45
3-7-10-5 西方墨點法實驗步驟 p45
3-7-11微膠細胞(BV-2 cells)吞噬Aβ42螢光影像評估 p45
3-7-12 評估微膠細胞(BV-2 cells)吞噬Aβ42釋放M1型發炎因子 p46
3-7-13 評估M1型發炎因子對類神經元細胞(N2a cells)存活率影響 p47
3-7-14 數據統計 p47
四、結果與討論 p48
4-1 奈米粒子、次微米磁棒特性分析 p48
4-2 次微米磁棒穩定性評估 p50
4-3 次微米磁棒磁力攪拌能力評估 p51
4-4 次微米磁棒之生物相容性評估 p52
4-5類澱粉蛋白模型建立 p54
4-6 評估磁力攪拌作用捕捉類澱粉蛋白 p55
4-6-1 針對npAβ42進行磁力攪拌 p55
4-6-2 針對oAβ42進行磁力攪拌 p58
4-7 磁性斑塊鑑定 p60
4-7-1 面積最大磁性斑塊螢光影像分析 p60
4-7-2 利用ThT assay評估磁性斑塊beta-sheet結構 p63
4-7-3 磁性斑塊結構分析 p64
4-8 磁力攪拌作用捕捉不同濃度之oAβ42 的效果 p66
4-9評估T-MSBs之磁力攪拌作用捕捉oAβ42對類神經元細胞(N2a cells)的治療
情形 p69
4-9-1 細胞存活率評估 p69
4-9-2 細胞膜完整性評估 p72
4-9-3細胞突觸長度評估 p73
4-9-4 神經元蛋白表現-影像評估 p75
4-9-5 神經元蛋白表現-西方墨點法評估 p77
4-9-5-1 mAβ42與oAβ42比較 p77
4-9-5-2 mAβ42與npAβ42比較 p80
4-10 評估oAβ42、mpAβ42、npAβ42對微膠細胞(BV-2 cells)的影響 p81
4-10-1 吞噬作用評估 p81
4-10-2 評估微膠細胞(BV-2 cells)對oAβ42、mpAβ42、npAβ42 p86
4-11 mpAβ42可有效減少微膠細胞(BV-2 ells)釋放M1型發炎因子導致類神經元細胞(N2a cells)凋亡現象 p87
五、結論 p89
六、參考文獻 p90
[1]Sawikr Y, Yarla NS, Peluso I, Kamal MA, Aliev G, Bishayee A. Neuroinflammation in Alzheimer's disease: the preventive and therapeutic potential of polyphenolic nutraceuticals. Adv Protein Chem Struct Biol. 2017;108:33-57.
[2]Awasthi M, Singh S, Pandey VP, Dwivedi UN. Modulation in the conformational and stability attributes of the Alzheimer's disease associated amyloid-beta mutants and their favorable stabilization by curcumin: molecular dynamics simulation analysis. J Biomol Struct Dyn. 2017;24:01-16.
[3]Sang Z, Qiang X, Li Y, Xu R, Cao Z, Song Q, Wang T, Zhang X, Liu H, Tan Z, Deng Y. Design, synthesis and evaluation of scutellarein-O-
acetamidoalkylbenzylamines as potential multifunctional agents for the treatment of Alzheimer's disease. Eur J Med Chem. 2017;135:307-323.
[4]Yamamoto N, Matsubara E, Maeda S, Minagawa H, Takashima A, Maruyama W, Michikawa M, Yanagisawa K. A ganglioside-induced toxic soluble Abeta assembly. Its enhanced formation from Abeta bearing the Arctic mutation. J Biol Chem. 2017;282:2646-2655.
[5]Coulson E, Does the p75 neurotrophin receptor mediate Aβ-induced toxicity in Alzheimer's disease? J Neurochem. 2006;3:654-660.
[6]Sakono M, Zako T. Amyloid oligomers: formation and toxicity of Aβ oligomers. FEBS J. 2010;277: 1348-1358.
[7]Monsonego A, Imitola J, Petrovic S, Zota V, Nemirovsky A, Baron R, Fisher Y, Owens T, Weiner. Abeta-induced meningoencephalitis is IFN-gamma-dependent and is associated with T cell-dependent clearance of Abeta in a mouse model of Alzheimer's disease. Proc Natl Acad Sci USA. 2006;103:5048-5053.
[8]Zhang J, Peng M, Jia J. Plasma amyloid-β oligomers and soluble tumor necrosis factor receptors as potential biomarkers of AD. Curr Alzheimer Res. 2014; 11:325-331.
[9]Wang WY, Tan MS, Yu JT, Tan L. Role of pro-inflammatory cytokines released from microglia in Alzheimer's disease. Ann Transl Med. 2015;3:136.
[10]Mandrekar-Colucci S, Landreth GE. Microglia and inflammation in Alzheimer's disease. CNS Neurol Disord Drug Targets. 2010;9:156-167.
[11]Combs CK. Inflammation and microglia actions in Alzheimer's disease. J Neuroimmune Pharmacol. 2009;4:380-388.
[12]Bieschke J, Herbst M, Wiglenda T, Friedrich RP, Boeddrich A , Schiele F, Kleckers D, del Amo JML, Gruning B, Wang Q, Michael ,Wanker EE. Small-molecule conversion of toxic oligomers to nontoxic β-sheet–rich amyloid fibrils. Nat Chem Biol.
[13]Thapa A, Jett SD, Chi EY. Curcumin attenuates amyloid-β aggregate toxicity and modulates amyloid-β aggregation. ACS Chem Neurosci. 2016;7:56-68.
2011;11:93-101.
[14]Jana MK, Cappai R, Ciccotosto GD. Oligomeric amyloid-β toxicity can be inhibited by blocking its cellular binding in cortical neuronal cultures with addition of the triphenylmethane dye Brilliant Blue G. ACS Chem Neurosci. 2016;7:1141-1147.
[15]Sulindac Sulfide Induces the Formation of Large Oligomeric Aggregates of the Alzheimer’s Disease Amyloid‑β Peptide Which Exhibit Reduced Neurotoxicity. Prade, E, Barucker C, Sarkar R, Althoff-Ospelt G, del Amo JML, Hossain S, Zhong Y, Multhaup G, Reif B. Biochemistry 2016;55:1839−1849
[16]Microglial phagocytosis induced by fibrillar β-amyloid is attenuated by oligomeric β-amyloid:implications for Alzheimer’s disease. Pan XD, Zhu YG, Lin N, Zhang J, Ye1 QY, Huang HP and Chen XC. Molecular Neurodegeneration 2011;6:45
[17]Chong WH, Chin LK, Tan RL, Wang H, Liu AQ, Chen H. Stirring in suspension: nanometer-sized magnetic stir bars. Angew Chem Int Ed Engl. 2013;52:8570-8573.
[18]Kumar A, Singh A,Ekavali A review on Alzheimer’s disease pathophysiology and its management: an update. Pharmacological Reports. 2015;67:195–203.
[19]Ross CA, Poirier MA, Protein aggregation and neurodegenerative disease. Nature Medicine. 2004;10:S10–S17.
[20]Soluble protein oligomers in neurodegeneration: lessons from the Alzheimer’s amyloid β-peptide. Nature Reviews Molecular Cell Biology. 2007;8:101–112.
[21]R.Resende,E.Ferreiro,C.Pereira. Neurotoxic effect of oligomeric and fibrillar species of amyloid-beta peptide 1-42: Involvement of endoplasmic reticulum calcium release in oligomer-induced cell death. Neuroscience. 2008;155:725–737.
[22]Ahmed M, Davis J,Aucoin D, Sato T, Ahuja S, Aimoto S, Elliott JI, Nostrand WEV, Smith SO. Structural conversion of neurotoxic amyloid-β1–42 oligomers to fibrils. Nat Struct Mol Biol. 2010 May;17(5):561-7.
[23]Dahlgren KN, Manelli AM, Stine WB Jr, Baker LK, Krafft GA, LaDu MJ. Oligomeric and fibrillar species of amyloid-beta peptides differentially affect neuronal viability. J Biol Chem. 2002 Aug 30;277(35):32046-53.
[24]Sakono M, and Zako T. Amyloid oligomers: formation and toxicity of Aβ oligomers. FEBS Journal. 2010;277:1348–1358.
[25]Cai Z, Hussain MD, Yan LJ. Microglia, neuroinflammation, and Aβ in Alzheimer’s disease. Neuroscience. 2014;124:5.
[26]Solito E, Sastre M. Microglia function in Alzheimer’s disease. Front Pharmacol. 2012 Feb 10;3:14
[27]Sengupta U, Nilson AN, Kayed R. The Role of Amyloid β Oligomers in Toxicity,
Propagation, and Immunotherapy. EBioMedicine. 2016 Apr;6:42-49.
[28]LaFerla FM. Amyloid-β and tau in Alzheimer's disease. Nature reviews neuroscience . 2008 May.
[29]Zhang J, Dong XP. Dysfunction of microtubule-associated proteins of MAP2/tau family in Prion disease. Prion. 2012 Sep-Oct;6(4):334-8.
[30]Jin M, Shepardson N, Yang T, Chen G, Walsh D, Selkoe DJ. Soluble amyloid beta protein dimers isolated from Alzheimer cortex directly induce Tau hyperphosphoryla-tion and neuritic degeneration. Proc Natl Acad Sci U S A. 2011 Apr 5;108(14):5819-24.
[31]Carolindah MN, Rosli R, Adam A and Nordin N. An Overview of in Vitro Research Models for Alzheimer’s Disease (AD). Regenerative Research.2013;2(2):8-13.
[32]Evangelopoulos ME, Weis J, Krüttgen A. Signalling pathways leading to neurobla-
Stoma differentiation after serum withdrawal: HDL blocks neuroblastoma differentiation by inhibition of EGFR. Oncogene. 2005 May 5;24(20):3309-18.
[33]Park J, An K, Hwang Y, Park JG, Noh HJ, Kim JY, Park JH, Hwang NM, Hyeon T. Ultra-large-scale syntheses of monodisperse nanocrystals. Nat Mater. 2004;3:891-895.
[34]Zhao Z, Zhou Z, Bao J, Wang Z, Hu J, Chi X, Ni K, Wang R, Chen X, Chen Z, Gao J. Octapod iron oxide nanoparticles as high-performance T¬¬2 contrast agents for magnetic resonance imaging. Nat Commun. 2013;4:2266.
[35]Jan A, Hartley DM, Lashuel HA. Preparation and characterization of toxic Ab-
eta aggregates for structural and functional studiesin Alzheimer's disease resear-
ch. Nat Protoc. 2010 Jun;5(6):1186-209.
[36]K.N. Dahlgren, A.M. Manelli, W.B. Stine Jr., L.K. Baker, G.A. Krafft, M.J. LaDu.
Oligomeric and fibrillar species of amyloid-β peptides differentially affectneuronal viability, J. Biol. Chem. 2002;277:32046–32053.
[37]M.P. Lambert, K.L. Viola, B.A. Chromy, L. Chang, T.E. Morgan. Vaccination with soluble Aβ oligomers generates toxicity-neutralizing antibodies, J.Neurochem. 2001;79:595–605.
[38]Loynachan CN, Romero G, Christiansen MG, Chen R, Ellison R, O'Malley TT, Froriep UP, Walsh DM, Anikeeva P.Targeted Magnetic Nanoparticles for Remo-
te Magnetothermal Disruption of Amyloid-β Aggregates. Adv Healthc Mater. 2015 Aug 19.
[39]Pan XD, Zhu YG, Lin N, Zhang J, Ye QY, Huang HP, Chen XC.Microglial phagocytosis induced by fibrillar β-amyloid is attenuated by oligomeric β-amyloid: implications for Alzheimer's disease. Mol Neurodegener. 2011 Jun 30;6:45.
doi: 10.1016/j.neulet.2015.10.024. Epub 2015 Oct 17.
[40]El-Shimy IA, Heikal OA, Hamdi N. Minocycline attenuates Aβ oligomers-induced proinflammatory phenotype in primary microglia while enhancing Aβ fibrils
phagocytosis. Neurosci Lett. 2015 Nov 16;609:36-41.
[41]Solito E, Sastre M.Microglia function in Alzheimer's disease. Front Pharmacol. 2012 Feb 10;3:14.
[42]Cherry JD, Olschowka JA, O'Banion MK. Neuroinflammation and M2 microglia: the good, the bad, and the inflamed. J Neuroinflammation. 2014 Jun 3;11:98.
[43]Brambilla D, Verpillot R, Le Droumaguet B, Nicolas J, Taverna M, Kóňa J, Lettiero B, Hashemi SH, De Kimpe L, Canovi M, Gobbi M, Nicolas V, Scheper W, Moghimi SM, Tvaroška I, Couvreur P, Andrieux K. PEGylated nanoparticles bind
to and alter amyloid-beta peptide conformation: toward engineering of functional nano medicines for Alzheimer's disease. ACS Nano. 2012 Jul 24;6(7):5897-908.
[44]Ojha J, Masilamoni G, Dunlap D, Udoff RA, Cashikar AG. Sequestration of toxi-
c oligomers by HspB1 as a cytoprotective mechanism. 2011 Aug;31(15):3146-57.
(此全文未開放授權)
電子全文
中英文摘要
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top

相關論文

1. 多功能之酸鹼應答型高分子複合液胞於藥物傳遞與核磁共振應用之探討
2. 酸鹼應答型聚麩胺酸/二硬酯酸甘油脂共聚合高分子複合液胞於藥物傳遞系統之應用
3. 開發具抗癌藥物傳輸與核磁共振顯影之多功能環境應答接枝共聚合高分子自組裝系統
4. 開發具磁性與酸鹼應答性複合高分子液胞作為腫瘤標的藥物傳遞及MR影像顯影之診斷治療奈米平台
5. 酸鹼/溫度應答型交聯式高分子/藥物複合微胞於細胞內藥物傳遞之應用
6. 裝載高分子氣胞/載藥液胞的單核白血球於超音波操控藥物傳遞之評估
7. 利用腫瘤趨向性單核球傳輸功能性高分子奈米粒子以增進腫瘤缺氧區之治療效果
8. 利用腫瘤趨向性單核球對腫瘤缺氧區域傳遞裝載超順磁奈米氧化鐵/Chlorin e6的高分子含氧氣胞用以改善磁熱及光動力治療的療效
9. 開發智慧型‟中途接駁”藥物傳遞系統 對深層腫瘤區域進行化療
10. 利用腫瘤趨向性脂肪幹細胞攜帶智慧型奈米微粒對膠質母細胞瘤進行靶向傳遞及化學治療
11. 具增強腫瘤組織滲透與細胞吞噬之智慧型表面電荷轉換奈米給藥傳輸系統應用於影像導引之光熱及化學複合式腫瘤治療
12. 開發具氧化應答性奈米給藥傳輸系統於放射/化學複合療法應用
13. 開發雙重標靶口服多醣體/脂質複合奈米化療傳輸系統進行大腸癌治療
14. 以雙靶向性奈米載藥粒子強化大腸直腸癌腹腔轉移腫瘤之化學治療
15. 開發智慧靶向型藥物傳遞系統對癌症骨轉移腫瘤進行化療
 
* *