|
[1] 行政院衛生福利部, "104年死因統計結果分析," 2015. [2] T. L. Whiteside, "The tumor microenvironment and its role in promoting tumor growth," Oncogene, vol. 27, pp. 5904-5912, Oct 6 2008. [3] A. K. Iyer, G. Khaled, J. Fang, and H. Maeda, "Exploiting the enhanced permeability and retention effect for tumor targeting," Drug Discovery Today, vol. 11, pp. 812-818, Sep 2006. [4] Y. J. Ho and C. K. Yeh, "Concurrent anti-vascular therapy and chemotherapy in solid tumors using drug-loaded acoustic nanodroplet vaporization," Acta Biomater, vol. 49, pp. 472-485, Feb 2017. [5] H. Maeda, J. Wu, T. Sawa, Y. Matsumura, and K. Hori, "Tumor vascular permeability and the EPR effect in macromolecular therapeutics: a review," J Control Release, vol. 65, pp. 271-84, Mar 01 2000. [6] C. H. Heldin, K. Rubin, K. Pietras, and A. Ostman, "High interstitial fluid pressure - an obstacle in cancer therapy," Nat Rev Cancer, vol. 4, pp. 806-13, Oct 2004. [7] J. Ehling, B. Theek, F. Gremse, S. Baetke, D. Mockel, J. Maynard, et al., "Micro-CT imaging of tumor angiogenesis: quantitative measures describing micromorphology and vascularization," Am J Pathol, vol. 184, pp. 431-41, Feb 2014. [8] A. Raza, M. J. Franklin, and A. Z. Dudek, "Pericytes and vessel maturation during tumor angiogenesis and metastasis," American Journal of Hematology, vol. 85, pp. 593-598, Aug 2010. [9] J. Holash, S. J. Wiegand, and G. D. Yancopoulos, "New model of tumor angiogenesis: dynamic balance between vessel regression and growth mediated by angiopoietins and VEGF," Oncogene, vol. 18, pp. 5356-5362, Sep 20 1999. [10] A. Abramsson, P. Lindblom, and C. Betsholtz, "Endothelial and nonendothelial sources of PDGF-B regulate pericyte recruitment and influence vascular pattern formation in tumors," Journal of Clinical Investigation, vol. 112, pp. 1142-1151, Oct 2003. [11] P. Lai, C. Tarapacki, W. T. Tran, A. El Kaffas, J. Lee, C. Hupple, et al., "Breast tumor response to ultrasound mediated excitation of microbubbles and radiation therapy in vivo," Oncoscience, vol. 3, pp. 98-108, 2016. [12] Y. J. Ho, T. C. Wang, C. H. Fan, and C. K. Yeh, "Current progress in antivascular tumor therapy," Drug Discov Today, Jun 16 2017. [13] M. S. Gee, W. N. Procopio, S. Makonnen, M. D. Feldman, N. M. Yeilding, and W. M. Lee, "Tumor vessel development and maturation impose limits on the effectiveness of anti-vascular therapy," Am J Pathol, vol. 162, pp. 183-93, Jan 2003. [14] E. El-Emir, G. M. Boxer, I. A. Petrie, R. W. Boden, J. L. Dearling, R. H. Begent, et al., "Tumour parameters affected by combretastatin A-4 phosphate therapy in a human colorectal xenograft model in nude mice," Eur J Cancer, vol. 41, pp. 799-806, Mar 2005. [15] D. W. Siemann and W. Shi, "Dual targeting of tumor vasculature: combining Avastin and vascular disrupting agents (CA4P or OXi4503)," Anticancer Res, vol. 28, pp. 2027-31, Jul-Aug 2008. [16] P. Nathan, M. Zweifel, A. R. Padhani, D. M. Koh, M. Ng, D. J. Collins, et al., "Phase I trial of combretastatin A4 phosphate (CA4P) in combination with bevacizumab in patients with advanced cancer," Clin Cancer Res, vol. 18, pp. 3428-39, Jun 15 2012. [17] B. G. Siim, A. E. Lee, S. Shalal-Zwain, F. B. Pruijn, M. J. McKeage, and W. R. Wilson, "Marked potentiation of the antitumour activity of chemotherapeutic drugs by the antivascular agent 5,6-dimethylxanthenone-4-acetic acid (DMXAA)," Cancer Chemother Pharmacol, vol. 51, pp. 43-52, Jan 2003. [18] P. R. Wachsberger, R. Burd, N. Marero, C. Daskalakis, A. Ryan, P. McCue, et al., "Effect of the tumor vascular-damaging agent, ZD6126, on the radioresponse of U87 glioblastoma," Clin Cancer Res, vol. 11, pp. 835-42, Jan 15 2005. [19] P. Hinnen and F. A. Eskens, "Vascular disrupting agents in clinical development," Br J Cancer, vol. 96, pp. 1159-65, Apr 23 2007. [20] Y. Shaked and R. S. Kerbel, "Antiangiogenic strategies on defense: On the possibility of blocking rebounds by the tumor vasculature after chemotheraphy," Cancer Research, vol. 67, pp. 7055-7058, Aug 1 2007. [21] I. M. Subbiah, D. J. Lenihan, and A. M. Tsimberidou, "Cardiovascular toxicity profiles of vascular-disrupting agents," Oncologist, vol. 16, pp. 1120-30, 2011. [22] S. Vaezy, V. Y. Fujimoto, C. Walker, R. W. Martin, E. Y. Chi, and L. A. Crum, "Treatment of uterine fibroid tumors in a nude mouse model using high-intensity focused ultrasound," American Journal of Obstetrics and Gynecology, vol. 183, pp. 6-11, Jul 2000. [23] F. Wu, Z. B. Wang, W. Z. Chen, W. Wang, Y. Gui, M. Zhang, et al., "Extracorporeal high intensity focused ultrasound ablation in the treatment of 1038 patients with solid carcinomas in China: an overview," Ultrason Sonochem, vol. 11, pp. 149-54, May 2004. [24] N. C. Nanda, R. Gramiak, and P. M. Shah, "Diagnosis of Aortic Root Dissection by Echocardiography," Circulation, vol. 48, pp. 506-513, 1973. [25] P. A. Dijkmans, L. J. Juffermans, R. J. Musters, A. van Wamel, F. J. ten Cate, W. van Gilst, et al., "Microbubbles and ultrasound: from diagnosis to therapy," Eur J Echocardiogr, vol. 5, pp. 245-56, Aug 2004. [26] P. J. Frinking, A. Bouakaz, J. Kirkhorn, F. J. Ten Cate, and N. de Jong, "Ultrasound contrast imaging: current and new potential methods," Ultrasound Med Biol, vol. 26, pp. 965-75, Jul 2000. [27] A. L. Klibanov, T. I. Shevchenko, B. I. Raju, R. Seip, and C. T. Chin, "Ultrasound-triggered release of materials entrapped in microbubble-liposome constructs: a tool for targeted drug delivery," J Control Release, vol. 148, pp. 13-7, Nov 20 2010. [28] D. L. Miller and R. A. Gies, "Gas-body-based contrast agent enhances vascular bioeffects of 1.09 MHz ultrasound on mouse intestine," Ultrasound Med Biol, vol. 24, pp. 1201-8, Oct 1998. [29] D. L. Miller and J. Quddus, "Diagnostic ultrasound activation of contrast agent gas bodies induces capillary rupture in mice," Proc Natl Acad Sci U S A, vol. 97, pp. 10179-84, Aug 29 2000. [30] C. F. Caskey, S. M. Stieger, S. Qin, P. A. Dayton, and K. W. Ferrara, "Direct observations of ultrasound microbubble contrast agent interaction with the microvessel wall," J Acoust Soc Am, vol. 122, pp. 1191-200, Aug 2007. [31] S. Mitragotri, "Healing sound: the use of ultrasound in drug delivery and other therapeutic applications," Nat Rev Drug Discov, vol. 4, pp. 255-60, Mar 2005. [32] National Council on Radiation Protection and Measurements., National Council on Radiation Protection and Measurements. Scientific Committee 66 on Biological Effects of Ultrasound., and National Council on Radiation Protection and Measurements., Exposure criteria for medical diagnostic ultrasound : I, Criteria based on thermal mechanisms : recommendations of the National Council on Radiation Protection and Measurements. Bethesda, MD: The Council, 1992. [33] P. M. Corry, W. J. Spanos, E. J. Tilchen, B. Barlogie, H. T. Barkley, and E. P. Armour, "Combined ultrasound and radiation therapy treatment of human superficial tumors," Radiology, vol. 145, pp. 165-9, Oct 1982. [34] D. L. Miller and R. M. Thomas, "Ultrasound Contrast Agents Nucleate Inertial Cavitation in-Vitro," Ultrasound in Medicine and Biology, vol. 21, pp. 1059-1065, 1995. [35] L. A. Crum and G. T. Reynolds, "Sonoluminescence Produced by Stable Cavitation," Journal of the Acoustical Society of America, vol. 78, pp. 137-139, 1985. [36] J. H. Hwang, J. Tu, A. A. Brayman, T. J. Matula, and L. A. Crum, "Correlation between inertial cavitation dose and endothelial cell damage in vivo," Ultrasound Med Biol, vol. 32, pp. 1611-9, Oct 2006. [37] J. Tu, T. J. Matula, A. A. Brayman, and L. A. Crum, "Inertial cavitation dose produced in ex vivo rabbit ear arteries with Optison (R) by 1-MHz pulsed ultrasound," Ultrasound in Medicine and Biology, vol. 32, pp. 281-288, Feb 2006. [38] S. M. Graham, R. Carlisle, J. J. Choi, M. Stevenson, A. R. Shah, R. S. Myers, et al., "Inertial cavitation to non-invasively trigger and monitor intratumoral release of drug from intravenously delivered liposomes," J Control Release, vol. 178, pp. 101-7, Mar 28 2014. [39] D. L. Miller, "Overview of experimental studies of biological effects of medical ultrasound caused by gas body activation and inertial cavitation," Prog Biophys Mol Biol, vol. 93, pp. 314-30, Jan-Apr 2007. [40] D. M. Skyba, R. J. Price, A. Z. Linka, T. C. Skalak, and S. Kaul, "Direct in vivo visualization of intravascular destruction of microbubbles by ultrasound and its local effects on tissue," Circulation, vol. 98, pp. 290-3, Jul 28 1998. [41] J. H. Hwang, J. Tu, A. A. Brayman, T. J. Matula, and L. A. Crum, "Correlation between inertial cavitation dose and endothelial cell damage in vivo," Ultrasound in Medicine and Biology, vol. 32, pp. 1611-1619, Oct 2006. [42] Z. Liu, S. Gao, Y. Zhao, P. Li, J. Liu, P. Li, et al., "Disruption of tumor neovasculature by microbubble enhanced ultrasound: a potential new physical therapy of anti-angiogenesis," Ultrasound Med Biol, vol. 38, pp. 253-61, Feb 2012. [43] D. E. Goertz, M. Todorova, O. Mortazavi, V. Agache, B. Chen, R. Karshafian, et al., "Antitumor effects of combining docetaxel (taxotere) with the antivascular action of ultrasound stimulated microbubbles," PLoS One, vol. 7, p. e52307, 2012. [44] J. F. Wang, Z. L. Zhao, S. X. Shen, C. X. Zhang, S. C. Guo, Y. K. Lu, et al., "Selective depletion of tumor neovasculature by microbubble destruction with appropriate ultrasound pressure," International Journal of Cancer, vol. 137, pp. 2478-2491, Nov 15 2015. [45] M. S. Lesniak, U. Upadhyay, R. Goodwin, B. Tyler, and H. Brem, "Local delivery of doxorubicin for the treatment of malignant brain tumors in rats," Anticancer Research, vol. 25, pp. 3825-3831, Nov-Dec 2005. [46] K. J. Chen, H. F. Liang, H. L. Chen, Y. C. Wang, P. Y. Cheng, H. L. Liu, et al., "A Thermoresponsive Bubble-Generating Liposomal System for Triggering Localized Extracellular Drug Delivery," Acs Nano, vol. 7, pp. 438-446, Jan 2013. [47] R. Duncan, "Polymer conjugates for tumour targeting and intracytoplasmic delivery. The EPR effect as a common gateway?," Pharm Sci Technolo Today, vol. 2, pp. 441-449, Nov 1999. [48] K. J. Chen, H. F. Liang, H. L. Chen, Y. Wang, P. Y. Cheng, H. L. Liu, et al., "A thermoresponsive bubble-generating liposomal system for triggering localized extracellular drug delivery," ACS Nano, vol. 7, pp. 438-46, Jan 22 2013. [49] J. J. Chen, S. Y. Fu, C. S. Chiang, J. H. Hong, and C. K. Yeh, "A preclinical study to explore vasculature differences between primary and recurrent tumors using ultrasound Doppler imaging," Ultrasound Med Biol, vol. 39, pp. 860-9, May 2013. [50] M. Todorova, V. Agache, O. Mortazavi, B. Chen, R. Karshafian, K. Hynynen, et al., "Antitumor effects of combining metronomic chemotherapy with the antivascular action of ultrasound stimulated microbubbles," Int J Cancer, vol. 132, pp. 2956-66, Jun 15 2013. [51] G. Bergers and S. Song, "The role of pericytes in blood-vessel formation and maintenance," Neuro Oncol, vol. 7, pp. 452-64, Oct 2005. [52] C. K. Yeh and S. Y. Su, "Effects of acoustic insonation parameters on ultrasound contrast agent destruction," Ultrasound Med Biol, vol. 34, pp. 1281-91, Aug 2008. [53] A. Yildirim, R. Chattaraj, N. T. Blum, and A. P. Goodwin, "Understanding Acoustic Cavitation Initiation by Porous Nanoparticles: Toward Nanoscale Agents for Ultrasound Imaging and Therapy," Chem Mater, vol. 28, pp. 5962-5972, Aug 23 2016. [54] D. K. Chang, C. Y. Chiu, S. Y. Kuo, W. C. Lin, A. Lo, Y. P. Wang, et al., "Antiangiogenic targeting liposomes increase therapeutic efficacy for solid tumors," J Biol Chem, vol. 284, pp. 12905-16, May 08 2009. [55] Y. J. Chang, C. H. Chang, C. Y. Yu, T. J. Chang, L. C. Chen, M. H. Chen, et al., "Therapeutic efficacy and microSPECT/CT imaging of 188Re-DXR-liposome in a C26 murine colon carcinoma solid tumor model," Nucl Med Biol, vol. 37, pp. 95-104, Jan 2010. [56] H. Chen, A. A. Brayman, M. R. Bailey, and T. J. Matula, "Blood vessel rupture by cavitation," Urol Res, vol. 38, pp. 321-6, Aug 2010. [57] B. Helfield, X. C. Chen, S. C. Watkins, and F. S. Villanueva, "Biophysical insight into mechanisms of sonoporation," Proceedings of the National Academy of Sciences of the United States of America, vol. 113, pp. 9983-9988, Sep 6 2016. [58] Z. Z. Fan, H. Y. Liu, M. Mayer, and C. X. Deng, "Spatiotemporally controlled single cell sonoporation," Proceedings of the National Academy of Sciences of the United States of America, vol. 109, pp. 16486-16491, Oct 9 2012.
|