帳號:guest(3.143.218.15)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):吳瑋琪
作者(外文):Wu, Wei-Chi.
論文名稱(中文):微接觸壓印技術於奈米毒性細胞感測平台之應用
論文名稱(外文):Applications of patterned-cell via microcontact printing for developing a new cell-based nano-toxicity biosensor
指導教授(中文):陳之碩
指導教授(外文):Chen, Chi-Shuo
口試委員(中文):江啟勳
李皇德
口試委員(外文):Chiang, Chi-Shiun
學位類別:碩士
校院名稱:國立清華大學
系所名稱:生醫工程與環境科學系
學號:104012532
出版年(民國):106
畢業學年度:106
語文別:中文
論文頁數:60
中文關鍵詞:肌動蛋白微接觸壓印細胞型生物感測平台活性氧物質
外文關鍵詞:actinmicrocontact printingPDMScell-based biosensorROS
相關次數:
  • 推薦推薦:0
  • 點閱點閱:254
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
由於奈米技術迅速的發展,我們生活中充斥著大量的奈米產品,像是奈米保養品、防曬用品、奈米銀抗菌產品等,而奈米粒子多會經由呼吸道吸入與皮膚殘留兩種途徑進入體內,進入體內後再通過細胞膜上孔洞進入細胞內,影響細胞的生理功能,產生毒性。研究指出奈米粒子的累積不僅會造成細胞傷害,累積在肝臟腎臟等器官中,更會進一步造成多種退化性疾病、老化、突變以及癌症的形成。
  為評估奈米粒子對生物造成的傷害,我們發展一套能提高偵測極限的生物感測方法,利用微接觸壓印技術製作出微米等級的圖案化細胞,藉由細胞型態的改變,測試不同藥物於不同品系及形狀差異間的細胞產生毒性的情形。結果發現被限制於特定形狀的細胞能提升偵測極限,比對照組更為敏銳。在二氧化鈦上,低於文獻指出產生毒性濃度的1/10便可被偵測到藥物的存在,成功地達到本實驗設計的目的。
  我們利用螢光漂白恢復技術,探討偵測極限提高的可能細胞機制。利用微接觸壓印的膠原蛋白圖案作為細胞外基質成分,觀察細胞內肌動蛋白細胞骨架動態會隨細胞外基質間的交互作用而改變。考量細胞骨架動態與胞內能量代謝相關,推測肌動蛋白的調節會與前一項實驗中ROS表達量有關。
綜合上述陳述,透過微接觸壓印技術產生的微米級圖案化細胞,不僅讓我們發展出高通量的毒性測試生物方法,並且提升偵測極限與靈敏度,可大幅度節省醫學檢測上珍貴的檢體。其中透過觀察不同型態的細胞之細胞骨架的排列情形與動態調節功能,可作為研究細胞生理功能及與細胞外基質間交互作用的模型。
With the rapid growth of nanotechnology development, numerous products contained nanoparticles are widely used in our daily life. However, the nanoparticle can accumulate in our bodies via exposure of nanoparticle in environment . The accumulation of nanoparticles can cause cell damage, degenerative diseases, and even cancer progression. Thus, there is an increasing concern about the nanoparticle utilization recently, and an emerging need for nanotoxicity detection.
In this study, we aimed to develop a cell-based nanotoxicity biosensor with high detection sensitivity. Micro contact printing (mCP) was applied to pattern liver cells into specific shape, and the nanotoxicity of nanoparticle was quantified with fluorescent ROS indicator using fluorescent microscopy. Our results demonstrated, comparing to control group, the patterned cells have higher sensitivity to nanoparticles. Under the pressure of TiO2, our designed cell can detect (0.625 mg/L) TiO2 presented in the medium.
We further investigated the underlying mechanism of sensitivity enhancement. With FRAP microscopy, decreasing actin turnover of pattern cells was observed, and the slower actin dynamics is associated with ROS expression. In addition, considering the spatial organization of mitochondria within patterned cells, the mitochondrial RIRR model may contribute to the ROS generation.
In summary, we demostrated that the micron-scale patterned cells fabricated by mCP, can be ultilized as a more effective nano-toxicity biosensor, and observed the rearrangement of cytoskeleton and actin dynamic in cells are highly associated with cell physiological functions.
摘要 ii
Abstract iii
目錄 iv
圖表目錄 vi
Chapter 1 文獻回顧 1
1.1 奈米毒性 (Nanotoxicity) 1
1.2 奈米毒性的作用機制 2
1.3 細胞型態生物感測器 3
1.4 細胞模型 6
1.5 微接觸壓印(Microcontact Printing, μCP) 6
1.6 光漂白螢光恢復系統( Fluorescence recovery after photobleaching,FRAP) 10
1.7 細胞代謝與肌動蛋白的關係 11
Chapter 2 材料與方法 13
2.1 細胞培養 13
2.2 圖案化細胞的實驗流程 13
2.3 製作印章 14
2.4 聚苯乙烯玻片的製備 18
2.5微接觸壓印 ( Microcontact printing,μCP) 19
2.6圖案化細胞 20
2.7免疫螢光染色法 20
2.8 細胞層級的生物傳感器-活性氧物質試驗 21
2.9光漂白螢光恢復顯微系統的建立 22
2.10 資料統計整理方法 23
2.11 實驗材料與儀器 23
Chapter 3 結果與討論 25
3.1於聚苯乙烯玻片上壓印的微小圖案 25
3.2 於基材上培養出微米級圖案化細胞 27
3.2.1 由免疫螢光染色觀察細胞之細胞骨架排列 27
3.2.2 量化免疫螢光染色之分析 31
3.3 將圖案化細胞應用於奈米毒性藥物檢測 37
3.3.1 使用標準品t-BHP對肝細胞產生毒性 37
3.3.2 使用奈米微粒二氧化鈦(TiO2)對肝細胞產生奈米毒性 44
3.4 由光漂白螢光恢復 (FRAP)顯微系統量測肌動蛋白動力學,並揭示其與活性氧物質產生之關係 50
Chapter 4 結論 55
參考文獻 57

1. Gonzalez, L., D. Lison, and M. Kirsch-Volders, Genotoxicity of engineered nanomaterials: A critical review (vol 2, 252, 2008). Nanotoxicology, 2009. 3(1): p. 61-71.
2. Fu, P.P., et al., Mechanisms of nanotoxicity: Generation of reactive oxygen species. Journal of Food and Drug Analysis, 2014. 22(1): p. 64-75.
3. Al-Awady, M.J., G.M. Greenway, and V.N. Paunov, Nanotoxicity of polyelectrolyte-functionalized titania nanoparticles towards microalgae and yeast: role of the particle concentration, size and surface charge. Rsc Advances, 2015. 5(46): p. 37044-37059.
4. Wang, Y., et al., An overview of nanotoxicity and nanomedicine research: principles, progress and implications for cancer therapy. Journal of Materials Chemistry B, 2015. 3(36): p. 7153-7172.
5. Ray, P.C., H.T. Yu, and P.P. Fu, Toxicity and Environmental Risks of Nanomaterials: Challenges and Future Needs. Journal of Environmental Science and Health Part C-Environmental Carcinogenesis & Ecotoxicology Reviews, 2009. 27(1): p. 1-35.
6. Chen, D.H., et al., Mesoporous Anatase TiO2 Beads with High Surface Areas and Controllable Pore Sizes: A Superior Candidate for High-Performance Dye-Sensitized Solar Cells. Advanced Materials, 2009. 21(21): p. 2206-+.
7. Primo, A., A. Corma, and H. Garcia, Titania supported gold nanoparticles as photocatalyst. Physical Chemistry Chemical Physics, 2011. 13(3): p. 886-910.
8. Khanna, P., et al., Nanotoxicity: An Interplay of Oxidative Stress, Inflammation and Cell Death. Nanomaterials, 2015. 5(3): p. 1163-1180.
9. Sahu, S.C. and D.A. Casciano, Nanotoxicity: from in vivo and in vitro models to health risks. 2009: John Wiley & Sons.
10. Woods, J.R., M.A. Plessinger, and A. Fantel, An introduction to reactive oxygen species and their possible roles in substance abuse. Obstetrics and Gynecology Clinics of North America, 1998. 25(1): p. 219-+.
11. Murphy, M.P., How mitochondria produce reactive oxygen species. Biochemical Journal, 2009. 417: p. 1-13.
12. Jiang, X. and H. Gao, Neurotoxicity of Nanomaterials and Nanomedicine. 2016: Academic Press.
13. Li, X.Y., et al., Targeting mitochondrial reactive oxygen species as novel therapy for inflammatory diseases and cancers. Journal of Hematology & Oncology, 2013. 6.
14. Rizzo, L.Y., et al., In vivo nanotoxicity testing using the zebrafish embryo assay. Journal of Materials Chemistry B, 2013. 1(32): p. 3918-3925.
15. Jiang, P.J. and Z.J. Guo, Fluorescent detection of zinc in biological systems: recent development on the design of chemosensors and biosensors. Coordination Chemistry Reviews, 2004. 248(1-2): p. 205-229.
16. Hojo, H., et al., Development of high-throughput screening system for osteogenic drugs using a cell-based sensor. Biochemical and Biophysical Research Communications, 2008. 376(2): p. 375-379.
17. Reshetilov, A., P. Iliasov, and T. Reshetilova, The microbial cell based biosensors, in Intelligent and Biosensors. 2010, InTech.
18. Charras, G.T. and M.A. Horton, Single cell mechanotransduction and its modulation analyzed by atomic force microscope indentation. Biophysical journal, 2002. 82(6): p. 2970-2981.
19. Banerjee, P. and A.K. Bhunia, Mammalian cell-based biosensors for pathogens and toxins. Trends in Biotechnology, 2009. 27(3): p. 179-188.
20. Banerjee, P., B. Franz, and A.K. Bhunia, Mammalian Cell-Based Sensor System. Whole Cell Sensing Systems I: Reporter Cells and Devices, 2010. 117: p. 21-55.
21. Liu, Q.J., et al., Cell-Based Biosensors and Their Application in Biomedicine. Chemical Reviews, 2014. 114(12): p. 6423-6461.
22. Lopez-Munoz, G.A., et al., A label-free nanostructured plasmonic biosensor based on Blu-ray discs with integrated microfluidics for sensitive biodetection. Biosensors & Bioelectronics, 2017. 96: p. 260-267.
23. Apostolou, T., et al., Assessment of in vitro dopamine-neuroblastoma cell interactions with a bioelectric biosensor: perspective for a novel in vitro functional assay for dopamine agonist/antagonist activity. Talanta, 2017. 170: p. 69-73.
24. Devillers, M., et al., Carbohydrate-based electrochemical biosensor for detection of a cancer biomarker in human plasma. Biosensors & Bioelectronics, 2017. 96: p. 178-185.
25. Luby-Phelps, K., Cytoarchitecture and physical properties of cytoplasm: Volume, viscosity. diffusion, intracellular surface area. International Review of Cytology - a Survey of Cell Biology, Vol 192, 2000. 192: p. 189-221.
26. Gasch, A.P., et al., Genomic expression programs in the response of yeast cells to environmental changes. Molecular biology of the cell, 2000. 11(12): p. 4241-4257.
27. Reece, J.B., et al., Campbell biology. 2014: Pearson Boston.
28. Thery, M., Micropatterning as a tool to decipher cell morphogenesis and functions. Journal of Cell Science, 2010. 123(24): p. 4201-4213.
29. Jia, F., B. Narasimhan, and S. Mallapragada, Materials-Based Strategies for Multi-Enzyme Immobilization and Co-Localization: A Review. Biotechnology and Bioengineering, 2014. 111(2): p. 209-222.
30. Folch, A. and M. Toner, Microengineering of cellular interactions. Annual Review of Biomedical Engineering, 2000. 2: p. 227-+.
31. Mrksich, M. and G.M. Whitesides, Using self-assembled monolayers to understand the interactions of man-made surfaces with proteins and cells. Annual Review of Biophysics and Biomolecular Structure, 1996. 25: p. 55-78.
32. Kane, R.S., et al., Patterning proteins and cells using soft lithography. Biomaterials, 1999. 20(23-24): p. 2363-2376.
33. Wang, Y., J.Y.-J. Shyy, and S. Chien, Fluorescence proteins, live-cell imaging, and mechanobiology: seeing is believing. Annu. Rev. Biomed. Eng., 2008. 10: p. 1-38.
34. Bozhanova, N.G., et al., Protein labeling for live cell fluorescence microscopy with a highly photostable renewable signal. Chemical Science, 2017. 8(10): p. 7138-7142.
35. McGrath, J.L., et al., Simultaneous measurements of actin filament turnover, filament fraction, and monomer diffusion in endothelial cells. Biophysical Journal, 1998. 75(4): p. 2070-2078.
36. Chien, S., Mechanotransduction and endothelial cell homeostasis: the wisdom of the cell. American Journal of Physiology-Heart and Circulatory Physiology, 2007. 292(3): p. H1209-H1224.
37. Dare, A.J., et al., A systematic review of experimental treatments for mitochondrial dysfunction in sepsis and multiple organ dysfunction syndrome. Free Radical Biology and Medicine, 2009. 47(11): p. 1517-1525.
38. Gomez-Mendikute, A. and M. Cajaraville, Comparative effects of cadmium, copper, paraquat and benzo [a] pyrene on the actin cytoskeleton and production of reactive oxygen species (ROS) in mussel haemocytes. Toxicology in vitro, 2003. 17(5): p. 539-546.
39. Cai, J.Y., J. Yang, and D.P. Jones, Mitochondrial control of apoptosis: the role of cytochrome c. Biochimica Et Biophysica Acta-Bioenergetics, 1998. 1366(1-2): p. 139-149.
40. Gourlay, C.W. and K.R. Ayscough, The actin cytoskeleton: a key regulator of apoptosis and ageing? Nature Reviews Molecular Cell Biology, 2005. 6(7): p. 583-U5.
41. Qin, D., Y.N. Xia, and G.M. Whitesides, Soft lithography for micro- and nanoscale patterning. Nature Protocols, 2010. 5(3): p. 491-502.
42. Guo, Z.B., et al., Fabrication of Hydrogel with Cell Adhesive Micropatterns for Mimicking the Oriented Tumor-Associated Extracellular Matrix. Acs Applied Materials & Interfaces, 2014. 6(14): p. 10963-10968.
43. Lin, L.Y., et al., Microfluidic cell trap array for controlled positioning of single cells on adhesive micropatterns. Lab on a Chip, 2013. 13(4): p. 714-721.
44. Axelrod, D., et al., Mobility Measurement by Analysis of Fluorescence Photobleaching Recovery Kinetics. Biophysical Journal, 1976. 16(9): p. 1055-1069.
45. Sprague, B.L., et al., Analysis of binding reactions by fluorescence recovery after photobleaching. Biophysical Journal, 2004. 86(6): p. 3473-3495.
46. Gadhari, N., et al., Cell shape-dependent early responses of fibroblasts to cyclic strain. Biochimica Et Biophysica Acta-Molecular Cell Research, 2013. 1833(12): p. 3415-3425.
47. Versaevel, M., et al., Super-resolution microscopy reveals LINC complex recruitment at nuclear indentation sites. Scientific Reports, 2014. 4.
48. Leadsham, J.E., et al., Whi2p links nutritional sensing to actin-dependent Ras-cAMP-PKA regulation and apoptosis in yeast. Journal of Cell Science, 2009. 122(5): p. 706-715.
49. Zorov, D.B., M. Juhaszova, and S.J. Sollott, Mitochondrial ROS-induced ROS release: An update and review. Biochimica Et Biophysica Acta-Bioenergetics, 2006. 1757(5-6): p. 509-517.
50. Yen, W.L. and D.J. Klionsky, How to Live Long and Prosper: Autophagy, Mitochondria, and Aging. Physiology, 2008. 23(5): p. 248-262.
51. Rizvi, F., et al., Suppression in PHLPP2 induction by morin promotes Nrf2-regulated cellular defenses against oxidative injury to primary rat hepatocytes. Redox Biology, 2015. 6: p. 587-598.
52. Rizvi, F., S. Shukla, and P. Kakkar, Essential role of PH domain and leucine-rich repeat protein phosphatase 2 in Nrf2 suppression via modulation of Akt/GSK3 beta/Fyn kinase axis during oxidative hepatocellular toxicity. Cell Death & Disease, 2014. 5.
53. Wilson, C.L., et al., Mitochondrial dysfunction and loss of glutamate uptake in primary astrocytes exposed to titanium dioxide nanoparticles. Nanoscale, 2015. 7(44): p. 18477-18488.
54. Ashdown, G.W., et al., Live-Cell Super-resolution Reveals F-Actin and Plasma Membrane Dynamics at the T Cell Synapse. Biophysical Journal, 2017. 112(8): p. 1703-1713.
55. Kruger, K., K. Schrader, and M. Klempt, Cellular Response to Titanium Dioxide Nanoparticles in Intestinal Epithelial Caco-2 Cells is Dependent on Endocytosis-Associated Structures and Mediated by EGFR. Nanomaterials, 2017. 7(4).
56. Gourlay, C.W. and K.R. Ayscough, A role for actin in aging and apoptosis. Biochemical Society Transactions, 2005. 33: p. 1260-1264.
57. Gourlay, C.W. and K.R. Ayscough, Actin-induced hyperactivation of the Ras signaling pathway leads to apoptosis in Saccharomyces cerevisiae. Molecular and Cellular Biology, 2006. 26(17): p. 6487-6501.

(此全文限內部瀏覽)
電子全文
中英文摘要
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *