|
1. Labandeira-Garcia, J.L., et al., Brain Renin-Angiotensin System and Microglial Polarization: Implications for Aging and Neurodegeneration. Front Aging Neurosci, 2017. 9: p. 129. 2. Takamori, S., et al., Combination Therapy of Radiotherapy and Anti-PD-1/PD-L1 Treatment in Non-Small-cell Lung Cancer: A Mini-review. Clin Lung Cancer, 2017. 3. Mostofa, A.G., et al., The Process and Regulatory Components of Inflammation in Brain Oncogenesis. Biomolecules, 2017. 7(2). 4. Wang, S.C., et al., Tumor-secreted SDF-1 promotes glioma invasiveness and TAM tropism toward hypoxia in a murine astrocytoma model. Lab Invest, 2012. 92(1): p. 151-62. 5. Song, J., et al., Resveratrol induces the expression of interleukin-10 and brain-derived neurotrophic factor in BV2 microglia under hypoxia. Int J Mol Sci, 2014. 15(9): p. 15512-29. 6. Liu, Y., et al., CX3CL1/CX3CR1-mediated microglia activation plays a detrimental role in ischemic mice brain via p38MAPK/PKC pathway. J Cereb Blood Flow Metab, 2015. 35(10): p. 1623-31. 7. Song, G.J. and K. Suk, Pharmacological Modulation of Functional Phenotypes of Microglia in Neurodegenerative Diseases. Front Aging Neurosci, 2017. 9: p. 139. 8. Quatromoni, J.G. and E. Eruslanov, Tumor-associated macrophages: function, phenotype, and link to prognosis in human lung cancer. Am J Transl Res, 2012. 4(4): p. 376-89. 9. Subramaniam, S.R. and H.J. Federoff, Targeting Microglial Activation States as a Therapeutic Avenue in Parkinson's Disease. Front Aging Neurosci, 2017. 9: p. 176. 10. Hambardzumyan, D., D.H. Gutmann, and H. Kettenmann, The role of microglia and macrophages in glioma maintenance and progression. Nat Neurosci, 2016. 19(1): p. 20-7. 11. Parisi, C., et al., M1 and M2 Functional Imprinting of Primary Microglia: Role of P2X7 Activation and miR-125b. Mediators Inflamm, 2016. 2016: p. 2989548. 12. Chavez-Galan, L., et al., Much More than M1 and M2 Macrophages, There are also CD169(+) and TCR(+) Macrophages. Front Immunol, 2015. 6: p. 263. 13. Green, C.E., et al., Chemoattractant Signaling between Tumor Cells and Macrophages Regulates Cancer Cell Migration, Metastasis and Neovascularization. Plos One, 2009. 4(8). 14. Tsai, J.H., et al., Ionizing radiation inhibits tumor neovascularization by inducing ineffective angiogenesis. Cancer Biol Ther, 2005. 4(12): p. 1395-1400. 15. Chen, F.H., et al., Radiotherapy decreases vascular density and causes hypoxia with macrophage aggregation in TRAMP-C1 prostate tumors. Clin Cancer Res, 2009. 15(5): p. 1721-9. 16. Klopp, A.H., et al., Tumor irradiation increases the recruitment of circulating mesenchymal stem cells into the tumor microenvironment. Cancer Res, 2007. 67(24): p. 11687-95. 17. Souhami, L., et al., Randomized comparison of stereotactic radiosurgery followed by conventional radiotherapy with carmustine to conventional radiotherapy with carmustine for patients with glioblastoma multiforme: report of Radiation Therapy Oncology Group 93-05 protocol. Int J Radiat Oncol Biol Phys, 2004. 60(3): p. 853-60. 18. Calgani, A., et al., Suppression of SRC Signaling Is Effective in Reducing Synergy between Glioblastoma and Stromal Cells. Molecular Cancer Therapeutics, 2016. 15(7): p. 1535-1544. 19. Chiang, C.S., et al., Irradiation promotes an m2 macrophage phenotype in tumor hypoxia. Front Oncol, 2012. 2: p. 89. 20. Yoshimoto, K., et al., Current Trends and Healthcare Resource Usage in the Hospital Treatment of Primary Malignant Brain Tumor in Japan: A National Survey Using the Diagnostic Procedure Combination Database (J-ASPECT Study-Brain Tumor). Neurologia Medico-Chirurgica, 2016. 56(11): p. 664-673. 21. Niyazi, M., et al., Bevacizumab and radiotherapy for the treatment of glioblastoma: brothers in arms or unholy alliance? Oncotarget, 2016. 7(3): p. 2313-28. 22. Jin, K., et al., Vascular endothelial growth factor (VEGF) stimulates neurogenesis in vitro and in vivo. Proc Natl Acad Sci U S A, 2002. 99(18): p. 11946-50. 23. Amaral, R.L.F., et al., Comparative Analysis of 3D Bladder Tumor Spheroids Obtained by Forced Floating and Hanging Drop Methods for Drug Screening. Frontiers in Physiology, 2017. 8. 24. Bingel, C., et al., Three-dimensional tumor cell growth stimulates autophagic flux and recapitulates chemotherapy resistance. Cell Death Dis, 2017. 8(8): p. e3013. 25. Maolake, A., et al., Tumor-associated macrophages promote prostate cancer migration through activation of the CCL22-CCR4 axis. Oncotarget, 2017. 8(6): p. 9739-9751. 26. Green, C.E., et al., Chemoattractant signaling between tumor cells and macrophages regulates cancer cell migration, metastasis and neovascularization. PLoS One, 2009. 4(8): p. e6713. 27. Gu, R., et al., Probing the Bi-directional Interaction Between Microglia and Gliomas in a Tumor Microenvironment on a Microdevice. Neurochem Res, 2017. 42(5): p. 1478-1487. 28. Lu, B., et al., Drug Delivery Using Nanoparticles for Cancer Stem-Like Cell Targeting. Front Pharmacol, 2016. 7: p. 84. 29. Yan, Y., X. Zuo, and D. Wei, Concise Review: Emerging Role of CD44 in Cancer Stem Cells: A Promising Biomarker and Therapeutic Target. Stem Cells Transl Med, 2015. 4(9): p. 1033-43. 30. Huang, R. and E.K. Rofstad, Cancer stem cells (CSCs), cervical CSCs and targeted therapies. Oncotarget, 2017. 8(21): p. 35351-35367. 31. Ahmed, M., et al., Concise Review: Emerging Drugs Targeting Epithelial Cancer Stem-Like Cells. Stem Cells, 2017. 35(4): p. 839-850. 32. Carroll, M.J., et al., M2 macrophages induce ovarian cancer cell proliferation via a heparin binding epidermal growth factor/matrix metalloproteinase 9 intercellular feedback loop. Oncotarget, 2016. 7(52): p. 86608-86620. 33. Lindsten, T., et al., Effect of macrophages on breast cancer cell proliferation, and on expression of hormone receptors, uPAR and HER-2. Int J Oncol, 2017. 51(1): p. 104-114. 34. Ou, L., et al., The mechanisms of graphene-based materials-induced programmed cell death: a review of apoptosis, autophagy, and programmed necrosis. Int J Nanomedicine, 2017. 12: p. 6633-6646. 35. Moraya, A.I., et al., Novel glycolipid agents for killing cisplatin-resistant human epithelial ovarian cancer cells. J Exp Clin Cancer Res, 2017. 36(1): p. 67. 36. Baker, A.E.G., R.Y. Tam, and M.S. Shoichet, Independently Tuning the Biochemical and Mechanical Properties of 3D Hyaluronan-Based Hydrogels with Oxime and Diels-Alder Chemistry to Culture Breast Cancer Spheroids. Biomacromolecules, 2017. 37. Kraniak, J.M., et al., Development of 3D culture models of plexiform neurofibroma and initial application for phenotypic characterization and drug screening. Exp Neurol, 2017. 38. Lamichhane, S.P., et al., Recapitulating epithelial tumor microenvironment in vitro using three dimensional tri-culture of human epithelial, endothelial, and mesenchymal cells. Bmc Cancer, 2016. 16. 39. Chuang, H.N., et al., Coculture system with an organotypic brain slice and 3D spheroid of carcinoma cells. J Vis Exp, 2013(80).
|