帳號:guest(3.14.133.5)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):任郁安
作者(外文):Ren, Yu-An
論文名稱(中文):巨噬細胞對腦腫瘤細胞遷徙及治療的影響
論文名稱(外文):Effects of macrophages on brain tumor cell migration and response to therapy
指導教授(中文):江啟勳
指導教授(外文):Chiang, Chi-Shiun
口試委員(中文):陳之碩
李佳陽
口試委員(外文):Chen, Chi-Shuo
Lee, Chia-Yang
學位類別:碩士
校院名稱:國立清華大學
系所名稱:生醫工程與環境科學系
學號:104012531
出版年(民國):106
畢業學年度:106
語文別:英文
論文頁數:62
中文關鍵詞:腫瘤巨噬細胞M1 巨噬細胞M2 巨噬細胞骨髓細胞放射治療
外文關鍵詞:tumormacrophageM1 macrophageM2 macrophageBone marrowradiation therapy
相關次數:
  • 推薦推薦:0
  • 點閱點閱:110
  • 評分評分:*****
  • 下載下載:46
  • 收藏收藏:0
本篇研究主要是探討腦腫瘤細胞與腦內環境的巨噬細胞的交互作用,在本實驗室過去的研究有發現,在腦腫瘤生長的過程中常會伴隨大量進潤的巨噬細胞,這些巨噬細胞在腫瘤生長過程中扮演著中要的角色,而過度繁殖和具有入侵能力的腫瘤細胞常是造成之治療失敗的原因,在本篇研究也發現在體外系統中,當腦腫瘤細胞與巨噬細胞共培養後,會使得腦腫瘤細胞聚集的生長在一起,而這些球狀的腫瘤細胞也表現出與原來腫瘤細胞不同的特性,對於放射治療與藥物治療也有不同的反應。
Excessive proliferation and high invasive ability are prime accused for the failure on current brain tumor therapy. Our previous study has shown that the recurrent brain tumors are frequently associated with higher content of tumor-associated macrophages (TAMs). This study aimed to explore the interaction between macrophage and brain tumor cell and delineate their role on brain tumor response to therapy. Initially, we measured the migration rate of a murine astrocytoma cell line, ALTS1C1. We found that the migration rate of ALTS1C1 could be increased if they were co-cultured with macrophages without direct cell contact. On the other hand, we were surprised to find that tumor cells were restrained within a spheroid like structure by macrophages when these two cells were cultured together. The macrophage-promoted tumor cell colonization also affect their response to the cytotoxicity of radiation.
摘要………………………………………………………………………………………………………………………p.1
誌謝………………………………………………………………………………………………………………………p.2
目錄………………………………………………………………………………………………………………………p.3
Chapter1 Introduction……………………………………………………………………….p.4
1.1 Brain tumor……………………………………………………………………………………….p.4
1.2 Microglia…………………………………………………………………………………………….p.4
1.3 Tumor microenvironment……………………………………………………………p.5
1.4 Radiation therapy…………………………………………………………………………p.6
1.5 Chemo-drug therapy………………………………………………………………………p.7
1.6 3D cell culture……………………………………………………………………p.7
Chapter 2 Material and method……………………………………………………....p.9
2.1 Cell culture……………………………………………………………………....p.9
2.2 Immunofluorescence……………………………………………………....p.10
2.3 Bone marrow derived macrophagedistraction…p.13
2.4 MTT assay…………………………………..p.14
Chapter 3 Result…………………………………………………………………………………………………..p.15
Chapter 4 Discussion………………………………………………………………………………………….p.22
4.1 Tumor migration………………………………………………………………………….p.22
4.2 Proliferation…………………………………………………………………………………p.23
4.3 DNA damage……………………………………………………………………………………..p.23
4.4 3D cell culture………………………………………………………………………..p.24
Grapic…………………………………………………………………………………………………………………......p.26
References……………………………………………………………………………………………………………....p.54

1. Labandeira-Garcia, J.L., et al., Brain Renin-Angiotensin System and Microglial Polarization: Implications for Aging and Neurodegeneration. Front Aging Neurosci, 2017. 9: p. 129.
2. Takamori, S., et al., Combination Therapy of Radiotherapy and Anti-PD-1/PD-L1 Treatment in Non-Small-cell Lung Cancer: A Mini-review. Clin Lung Cancer, 2017.
3. Mostofa, A.G., et al., The Process and Regulatory Components of Inflammation in Brain Oncogenesis. Biomolecules, 2017. 7(2).
4. Wang, S.C., et al., Tumor-secreted SDF-1 promotes glioma invasiveness and TAM tropism toward hypoxia in a murine astrocytoma model. Lab Invest, 2012. 92(1): p. 151-62.
5. Song, J., et al., Resveratrol induces the expression of interleukin-10 and brain-derived neurotrophic factor in BV2 microglia under hypoxia. Int J Mol Sci, 2014. 15(9): p. 15512-29.
6. Liu, Y., et al., CX3CL1/CX3CR1-mediated microglia activation plays a detrimental role in ischemic mice brain via p38MAPK/PKC pathway. J Cereb Blood Flow Metab, 2015. 35(10): p. 1623-31.
7. Song, G.J. and K. Suk, Pharmacological Modulation of Functional Phenotypes of Microglia in Neurodegenerative Diseases. Front Aging Neurosci, 2017. 9: p. 139.
8. Quatromoni, J.G. and E. Eruslanov, Tumor-associated macrophages: function, phenotype, and link to prognosis in human lung cancer. Am J Transl Res, 2012. 4(4): p. 376-89.
9. Subramaniam, S.R. and H.J. Federoff, Targeting Microglial Activation States as a Therapeutic Avenue in Parkinson's Disease. Front Aging Neurosci, 2017. 9: p. 176.
10. Hambardzumyan, D., D.H. Gutmann, and H. Kettenmann, The role of microglia and macrophages in glioma maintenance and progression. Nat Neurosci, 2016. 19(1): p. 20-7.
11. Parisi, C., et al., M1 and M2 Functional Imprinting of Primary Microglia: Role of P2X7 Activation and miR-125b. Mediators Inflamm, 2016. 2016: p. 2989548.
12. Chavez-Galan, L., et al., Much More than M1 and M2 Macrophages, There are also CD169(+) and TCR(+) Macrophages. Front Immunol, 2015. 6: p. 263.
13. Green, C.E., et al., Chemoattractant Signaling between Tumor Cells and Macrophages Regulates Cancer Cell Migration, Metastasis and Neovascularization. Plos One, 2009. 4(8).
14. Tsai, J.H., et al., Ionizing radiation inhibits tumor neovascularization by inducing ineffective angiogenesis. Cancer Biol Ther, 2005. 4(12): p. 1395-1400.
15. Chen, F.H., et al., Radiotherapy decreases vascular density and causes hypoxia with macrophage aggregation in TRAMP-C1 prostate tumors. Clin Cancer Res, 2009. 15(5): p. 1721-9.
16. Klopp, A.H., et al., Tumor irradiation increases the recruitment of circulating mesenchymal stem cells into the tumor microenvironment. Cancer Res, 2007. 67(24): p. 11687-95.
17. Souhami, L., et al., Randomized comparison of stereotactic radiosurgery followed by conventional radiotherapy with carmustine to conventional radiotherapy with carmustine for patients with glioblastoma multiforme: report of Radiation Therapy Oncology Group 93-05 protocol. Int J Radiat Oncol Biol Phys, 2004. 60(3): p. 853-60.
18. Calgani, A., et al., Suppression of SRC Signaling Is Effective in Reducing Synergy between Glioblastoma and Stromal Cells. Molecular Cancer Therapeutics, 2016. 15(7): p. 1535-1544.
19. Chiang, C.S., et al., Irradiation promotes an m2 macrophage phenotype in tumor hypoxia. Front Oncol, 2012. 2: p. 89.
20. Yoshimoto, K., et al., Current Trends and Healthcare Resource Usage in the Hospital Treatment of Primary Malignant Brain Tumor in Japan: A National Survey Using the Diagnostic Procedure Combination Database (J-ASPECT Study-Brain Tumor). Neurologia Medico-Chirurgica, 2016. 56(11): p. 664-673.
21. Niyazi, M., et al., Bevacizumab and radiotherapy for the treatment of glioblastoma: brothers in arms or unholy alliance? Oncotarget, 2016. 7(3): p. 2313-28.
22. Jin, K., et al., Vascular endothelial growth factor (VEGF) stimulates neurogenesis in vitro and in vivo. Proc Natl Acad Sci U S A, 2002. 99(18): p. 11946-50.
23. Amaral, R.L.F., et al., Comparative Analysis of 3D Bladder Tumor Spheroids Obtained by Forced Floating and Hanging Drop Methods for Drug Screening. Frontiers in Physiology, 2017. 8.
24. Bingel, C., et al., Three-dimensional tumor cell growth stimulates autophagic flux and recapitulates chemotherapy resistance. Cell Death Dis, 2017. 8(8): p. e3013.
25. Maolake, A., et al., Tumor-associated macrophages promote prostate cancer migration through activation of the CCL22-CCR4 axis. Oncotarget, 2017. 8(6): p. 9739-9751.
26. Green, C.E., et al., Chemoattractant signaling between tumor cells and macrophages regulates cancer cell migration, metastasis and neovascularization. PLoS One, 2009. 4(8): p. e6713.
27. Gu, R., et al., Probing the Bi-directional Interaction Between Microglia and Gliomas in a Tumor Microenvironment on a Microdevice. Neurochem Res, 2017. 42(5): p. 1478-1487.
28. Lu, B., et al., Drug Delivery Using Nanoparticles for Cancer Stem-Like Cell Targeting. Front Pharmacol, 2016. 7: p. 84.
29. Yan, Y., X. Zuo, and D. Wei, Concise Review: Emerging Role of CD44 in Cancer Stem Cells: A Promising Biomarker and Therapeutic Target. Stem Cells Transl Med, 2015. 4(9): p. 1033-43.
30. Huang, R. and E.K. Rofstad, Cancer stem cells (CSCs), cervical CSCs and targeted therapies. Oncotarget, 2017. 8(21): p. 35351-35367.
31. Ahmed, M., et al., Concise Review: Emerging Drugs Targeting Epithelial Cancer Stem-Like Cells. Stem Cells, 2017. 35(4): p. 839-850.
32. Carroll, M.J., et al., M2 macrophages induce ovarian cancer cell proliferation via a heparin binding epidermal growth factor/matrix metalloproteinase 9 intercellular feedback loop. Oncotarget, 2016. 7(52): p. 86608-86620.
33. Lindsten, T., et al., Effect of macrophages on breast cancer cell proliferation, and on expression of hormone receptors, uPAR and HER-2. Int J Oncol, 2017. 51(1): p. 104-114.
34. Ou, L., et al., The mechanisms of graphene-based materials-induced programmed cell death: a review of apoptosis, autophagy, and programmed necrosis. Int J Nanomedicine, 2017. 12: p. 6633-6646.
35. Moraya, A.I., et al., Novel glycolipid agents for killing cisplatin-resistant human epithelial ovarian cancer cells. J Exp Clin Cancer Res, 2017. 36(1): p. 67.
36. Baker, A.E.G., R.Y. Tam, and M.S. Shoichet, Independently Tuning the Biochemical and Mechanical Properties of 3D Hyaluronan-Based Hydrogels with Oxime and Diels-Alder Chemistry to Culture Breast Cancer Spheroids. Biomacromolecules, 2017.
37. Kraniak, J.M., et al., Development of 3D culture models of plexiform neurofibroma and initial application for phenotypic characterization and drug screening. Exp Neurol, 2017.
38. Lamichhane, S.P., et al., Recapitulating epithelial tumor microenvironment in vitro using three dimensional tri-culture of human epithelial, endothelial, and mesenchymal cells. Bmc Cancer, 2016. 16.
39. Chuang, H.N., et al., Coculture system with an organotypic brain slice and 3D spheroid of carcinoma cells. J Vis Exp, 2013(80).

 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *