帳號:guest(18.191.233.80)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):陳若瑾
作者(外文):Chen, Jo-Chin
論文名稱(中文):三維列印仿生酵素及其受質功能化即時檢測裝置的開發及其葡萄糖定量分析應用
論文名稱(外文):3D-Printed, Peroxidase Mimic/Chromogenic Substrate-Incorporated Multi-Well Device for in Situ Glucose Determination
指導教授(中文):孫毓璋
蘇正寬
指導教授(外文):SUN, YUH-CHANG
SU, CHENG-KAUN
口試委員(中文):楊末雄
周禮君
黃志清
口試委員(外文):YANG, MO-HSIUNG
Chau, Lai-Kwan
Huang, Chih-Ching
學位類別:碩士
校院名稱:國立清華大學
系所名稱:生醫工程與環境科學系
學號:104012526
出版年(民國):106
畢業學年度:105
語文別:中文
論文頁數:88
中文關鍵詞:仿生過氧化物酶三維列印技術葡萄糖即時檢測原位檢測
外文關鍵詞:3D-printingpoint-of-careperoxidase mimicglucose
相關次數:
  • 推薦推薦:0
  • 點閱點閱:77
  • 評分評分:*****
  • 下載下載:23
  • 收藏收藏:0
開發低成本與操作簡便的現場即時檢測分析裝置,可視為現今臨床與預防醫學 中,急待突破的重要議題,然而目前所發展的現場即時檢測分析裝置,仍需仰賴繁 瑣的微流體裝置製作程序,在分析檢測上,亦需額外添加反應試劑以協助反應進行, 有鑑於此,為了簡化裝置製作與分析操作步驟,本研究首度成功引進雙噴頭熱熔融 沈積成型三維列印技術,發展賦予列印材料具有仿生過氧化物酶及其呈色受質的功 能化程序,於單一製程內,製作出具有仿生過氧化物酶活性與呈色受質化學反應性 的多孔反應盤裝置,並搭配葡萄糖氧化酶固定程序,開發出可立即獲得分析結果的 三維列印仿生過氧化物酶及其受質功能化即時快速檢測葡萄糖濃度分析裝置;在完 成分析方法最佳化探討與效能驗證之後,此方法對於 H2O2 與葡萄糖的偵測極限分 別為 2.8 μM 與 5.0 μM,根據添加分析正常人的尿液、糖尿病患者的尿液、胎牛血 清與大鼠血漿中葡萄糖濃度所獲得之結果(回收率介於 83 至 108%之間),與市售 檢測方法進行比較(相對誤差介於-4.6 至 6.6%之間),顯示本研究所發展之三維列 印仿生過氧化物酶及其受質功能化即時檢測裝置,確實具有準確分析複雜生物基質 樣品中葡萄糖濃度的能力。
Nanomaterials with intrinsic peroxidase-like activities have been demonstrated as promising artificial enzymes for numerous biochemical applications. In recent years, three dimensional printing (3DP) technologies have accelerated the customization and rapid prototyping of multilayer components/devices in general laboratories for a wide range of analytical applications. In this study, to enable the 3D-printed devices to have both the peroxidase and chromogenic activities, a multi-well plate is one-step printed using a dual-head fused deposition modeling-type 3D printer with two functionalized thermoplastic filaments, acrylonitrile butadiene styrene incorporated with peroxidase-mimicking iron oxide (Fe3O4) nanoparticles and polyvinyl alcohol infiltrated with chromogenic substrate o-phenylenediamine (OPD). The fabricated plates are confirmed to efficiently catalyze the oxidation of OPD by peroxidase substrate H2O2 and allow measurement of the absorbance of the derivatized samples through directly loading it into a conventional plate reader. After method’s optimization, the method’s detection limits can reach as low as 2.8 μM for H2O2 and 5.0 μM for glucose. Based on our demonstrations, the proposed 3D-printed peroxidase mimic/chromogenic substrate-incorporated multi-well plates can provide the competitive peroxidase activities, in-well derivatization and measurement/visualization without any sample transfer, and the applicability of in situ, rapid, high-throughput analyses of glucose concentrations in clinical samples.
中文摘要.....................................................I
英文摘要.....................................................II
謝誌............................................................III
目錄............................................................IV
圖目錄.........................................................VIII
表目錄........................................................ XI
第一章 前言.................................................1
第二章 實驗設備儀器及原理 ...................... 18
第三章 實驗材料與方法 ............................. 24
第四章、結果與討論 ................................. 40
第五章 結論.................................................66
第六章 參考文獻..........................................69
附錄............................................................ 88
1. Gauglitz, G. Point-of-Care Platforms, Annu. Rev. Anal. Chem. 2014, 7, 297–315.
2. Yager, P.; Domingo, G. J.; Gerdes, J. Point-of-Care Diagnostics for Global Health,
Annu. Rev. Biomed. Eng. 2008, 10, 107–144.
3. Giljohann, D. A.; Mirkin, C. A. Drivers of Biodiagnostic Development, Nature 2009,462, 461–464.
4. Gubala, V.; Harris, L. F.; Ricco, A. J.; Tan, M. X.; Williams, D. E. Point of Care
Diagnostics: Status and Future, Anal. Chem. 2012, 84, 487–515.
5. John, N. S.; Reed, R. G. Point-of-Care Testing. Meeting Regulatory Guidelines with Nonlaboratory Personnel, Am. Clin. Lab. 1994, 14, 11–12.
6. http://www.whitmiremedical.com/pages/POC.htm
7. Jung, W. S.; Han, J. Y.; Choi, J. W.; Ahn C. H. Point-of-Care Testing (POCT)
Diagnostic Systems Using Microfluidic Lab-on-a-Chip Technologies, Microelectron.
Eng. 2015, 132, 46–57.
8. Vashist, S. K.; Luppa, P. B.; Yeo, L. Y.; Ozcan, A.; Luong, J. H. T. Emerging
Technologies for Next-Generation Point-of-Care Testing, Trends Biotechnol. 2015,
33, 692–705.
9. Bahadir, E. B.; Sezginturk, M.K. Applications of Commercial Biosensors in Clinical,Food, Environmental, and Biothreat/Biowarfare Analyses, Anal. Biochem. 2015, 478,107–120.
10. Nayak, S.; Blumenfeld, N. R.; Laksanasopin, T.; Sia, S. K. Point-of-Care
Diagnostics: Recent Developments in a Connected Age, Anal. Chem. 2017, 89, 102−123.
11. Singh, V.; Khatana, S.; Gupta, P. Blood Gas Analysis for Bedside Diagnosis, Natl. J. Maxillofac. Surg. 2013, 4, 136–141.
12. Kim, D. H.; Lu, N.; Ma, R.; Kim, Y. S.; Kim, R. H.; Wang, S.; Wu, J.; Won, S. M.; Tao, H.; Islam, A.; Yu, K. J.; Kim, T. I.; Chowdhury, R.; Ying, M.; Xu, L.; Li. M.; Chung, H. J.; Keum, H.; McCormick, M.; Liu, P.; Zhang, Y. W.; Omenetto, F. G.; Huang, Y.; Coleman, T.; Rogers, J. A. Epidermal Electronics, Science 2011, 333, 838−843.
13. Chandler, D. L. John Rogers and the Ultrathin Limits of Technology: His Flexible, Skin-Mounted Biostamp is Changing the Game for Wearable Diagnostic Devices, Ieee Pulse 2016, 7, 9−12.
14. Ulrich, M. P.; Christensen, D. R.; Coyne, S. R.; Craw, P. D.; Henchal, E. A.; Sakai, S. H.; Swenson, D.; Tholath, J.; Tsai, J.; Weir, A. F.; Norwood, D. A. J. Evaluation of the Cepheid Genexpert® System for Detecting Bacillus Anthracis, Appl. Microbiol. 2006, 100, 1011–1016.
15. International Diabetes Federation. IDF Diabetes Atlas 7th Edition (2015).
16. https://www.asdreports.com/news-259/global-blood-glucose-monitoring-devices-ma rket-valued-at-89-billion-2010
17. Mabey, D.; Peeling, R. W.; Perkins, M. D. Rapid and Simple Point-of-Care Diagnostics for STIs, Sex. Transm. Infect. 2001, 7, 397–398.
18. WHO. Diagnostics for tuberculosis: global demand and market potential. Geneva. http://apps.who.int/tdr/publications/tdr-research-publications/diagnostics-tuberculosi s-global-demand/pdf/tbdi/pdf, Date: 2006
19. Urdea, M.; Penny, L. A.; Olmsted, S. S. Requirements for High Impact Diagnostics in the Developing World, Nature 2006, 444, 73–79.
20. Keeler, E.; Perkins, M. D.; Small, P. Reducing the Global Burden of Tuberculosis: the Contribution of Improved Diagnostics, Nature 2006, 444, 49–57.
21. Lim, Y. W.; Steinhoff, M.; Girosi, F. Reducing the Global Burden of Acute Lower Respiratory Infections in Children: the Contribution of New Diagnostics, Nature 2006, 444, 9–18.
22. RAND Corporation. Estimating the global health impact of improved diagnostic
tools for the developing world. Research highlights. http://www.rand.org/content/dam/rand/pubs/research_briefs/2007/RAND_RB9293.p df, Date: 2007
23. Gervais, L.; Rooij, N. D.; Delamarche, E. Microfluidic Chips for Point-of-Care Immunodiagnostics, Adv. Mater. 2011, 23, H151–H176.
24. Amin, R.; Joshi, A.; Tasoglu, S. Commercialization of 3D-Printed Microfluidic Devices, J. 3D Print. Med. 2017, 1, 85–89.
25. Luo, Y.; Zhang, Z.; Wang, X.; Zheng, Y.; Ultrasonic Bonding for Thermoplastic Microfluidic Devices without Energy Director, Microelectron. Eng. 2010, 87, 2429–2436.
26. Martinez, A. W.; Phillips, S. T.; Whitesides, G. M. Three-Dimensional Microfluidic Devices Fabricated in Layered Paper and tape, Proc. Natl. Acad. Sci. 2008, 105, 19606 –19611.
27. Wang, S. Q.; Sarenac, D.; Chen, M. H.; Huang, S. H.; Giguel, F. F.; Kuritzkes, D. R.; Demirci, U. Simple Filter Microchip for Rapid Separation of Plasma and Viruses from Whole Blood, Int. J. Nanomed. 2012, 7, 5019–5028.
28. Han, X.; Liu, X.; Tian, L.; Zhang, H.; Mao, Z. G. A Non-Photolithography Fabrication for a Microfluidic Chip Based on Pmma Polymer, Machines 2015, 3, 107–122.
29. Nery, E. W.; Kubota, L. T. Sensing Approaches on Paper-Based Devices: A review, Anal. Bioanal. Chem. 2013, 405, 7573–7595.
30. Rodrigues, R. O.; Lima, R., Gomes, H. T.; Silva, A. M. T. Polymer Microfluidic Devices: An Overview of Fabrication Methods, U.Porto Journal of Engineering 2015, 1, 67-79.
31. Dincer, C.; Bruch, R.; Kling, A. Dittrich, Urban, G. A. Multiplexed Point-of-Care
Testing – xPOCT, Trends Biotechnol. DOI: 10.1016/j.tibtech.2017.03.013.
32. Jung, W. S.; Han, J. Y.; Choi, J. W.; Ahn C. H. Point-of-Care Testing (POCT) Diagnostic Systems Using Microfluidic Lab-on-a-Chip Technologies, Microelectron.
Eng. 2015, 132, 46–57.
33. Hull, C. W. Apparatus for PROduction of Three-Dimensional Objects by
Stereolithography, U. S. Patent No. 4575330 (8 August, 1984)
34. Crump, S.S. Modeling Apparatus for Three-Dimensional Objects, U. S. Patent No.5121329 (9 June, 1994)
35. Ambrosi, A.; Pumera, M. 3D-Printing Technologies for Electrochemical Applications, Chem. Soc. Rev. 2016, 45, 2740−2755.
36. Murphy, S. V.; Atala, A. Nat. 3D Bioprinting of Tissues and Organs, Biotechnol. 2014, 32, 773−785.
37. Ho, C. M. B.; Ng, S. H.; Li, K. H. H.; Yoon, Y. J. 3D Printed Microfluidics for Biological Applications, Lab Chip 2015, 15, 3627–3637.
38. Lupton, D. Fabricated Data Bodies: Reflections on 3D Printed Digital Body Objects in Medical and Health Domains, Soc. Theory Health. 2015, 13, 99−115.
39. Su, C. K.; Peng, P. J.; Sun, Y. C. Fully 3D-Printed Preconcentrator for Selective Extraction of Trace Elements in Seawater, Anal. Chem. 2015, 87, 6945−6950.
40. Baden, T.; Chagas, A. M.; Gage, G.; Marzullo, T.; PrietoGodino, L. L.; Euler, T. Open Labware: 3-D Printing Your Own Lab Equipment, PLoS Biol. 2015, 13, e1002086.
41. Pearce, J. M.; Building Research Equipment with Free, Open-Source Hardware, Science 2012, 337, 1303–1304.
42. Gross, B. C.; Erkal, J. L.; Lockwood, S. Y.; Chen, C.; Spence, D. M. Evaluation of 3d Printing and Its Potential Impact on Biotechnology and The Chemical Sciences, Anal. Chem. 2014, 86, 3240–3253.
43. Shallan, A. I.; Smejkal, P.; Corban, M.; Guijt, R. M.; Breadmore, M. C. Cost-Effective Three-Dimensional Printing of Visibly Transparent Microchips within Minutes, Anal. Chem. 2014, 86, 3124–3130.
44. Bhargava, K. C.; Thompson, B.; Malmstadt, N. Discrete Elements for 3D Microfluidics, Proc. Natl. Acad. Sci. 2014, 111, 15013–15018.
45. Waheed, S.; Cabot, J. M.; Macdonald, N. P.; Lewis, T.; Guijt, R. M.; Paull, B.; Breadmore, M. C. 3D Printed Microfluidic Devices: Enablers and Barriers, Lab Chip 2016, 16, 1993–2013.
46. Bhattacharjee, N.; Urrios, A.; Kang, S.; Folch, A. The Upcoming 3D-Printing Revolution in Microfluidics, Lab Chip 2016, 16, 1720–1742.
47. Au, K. A.; Huynh, W.; Horowitz, L. F.; Folch, A. 3D-Printed Microfluidics, Angew. Chem. Int. Ed. 2016, 55, 3862–3881.
48. Gross, B.; Lockwood, S. Y.; Spence, D. M. Recent Advances in Analytical Chemistry by 3D Printing, Anal. Chem. 2017, 89, 57−70.
49. Wijnen, B.; Hunt, E. J.; Gerald. C. A.; Pearce J. M. Open-Source Syringe Pump Library, PloS ONE, 2014, 9, e107216.
50. atao a, . M. M rer, R. C. Santos, . M. Car alho, R. M.; Eberlin, M. N.; Augusto, F.; Poppi, R. J.; Gobbi, A. L.; Hantao L. W. Simple, Expendable, 3D-Printed Microfluidic Systems for Sample Preparation of Petroleum, Anal. Chem. 2017, 89, 3460−3467.
51. Li, F.; Smejkal, P.; Macdonald, N. P.; Guijt, R. M.; Breadmore, M. C. One-Step Fabrication of A Microfluidic Device with An Integrated Membrane and Embedded Reagents by Multimaterial 3D Printing, Anal. Chem. 2017, 89, 4701−4707
52. Lockwood, S. Y.; Meisel, J. E.; Monsma, F. J.; Spence, D. M. A Diffusion-Based and Dynamic 3D-Printed Device that Enables Parallel in vitro Pharmacokinetic Profiling of Molecules, Anal. Chem. 2016, 88, 1864−1870.
53. Salentijn, G. I. J.; Permentier, H. P.; Verpoorte E. 3D-Printed Paper Spray Ionization Cartridge with Fast Wetting and Continuous Solvent Supply Features, Anal. Chem. 2014, 86, 11657–11665.
54. Chan, H. N.; Shu, Y. W.; Xiong, B.; Chen, Y. F.; Chen, Y.; Tian, Q.; Michael, S. A.; Shen, B.; Wu H. Simple, Cost-Effective 3D Printed Microfluidic Components for Disposable, Point-of-Care Colorimetric Analysis, ACS Sens. 2016, 1, 227–234.
55. Amin, R.; Knowlton, S.; Hart, A.; Yenilmez, B.; Ghaderinezhad, F.; Katebifar, S.; Messina, M.; Khademhosseini, A.; Tasoglu, S. 3D-printed Microfluidic Devices, Biofabrication 2016, 8, 022001.
56. Kitson, P. J.; Glatzel, S.; Chen, W.; Lin, C. G.; Song, Y. F.; Cronin, L. 3D Printing of Versatile Reactionware for Chemical Synthesis, Nat Protoc. 2016, 11, 920–936.
57. Mathieson, J. S.; Rosnes, M. H.; Sans, V.; Kitson, P. J.; Cronin, L. Continuous
Parallel ESI-MS Analysis of Reactions Carried Out in A Bespoke 3D Printed
Device, Beilstein J. Nanotechnol. 2013, 4, 285–291.
58. Roda, A.; Guardigli, M.; Calabria, D.; Calabretta, M. M.; Cevenini, L.; E. Michelini.
A 3D-Printed Device for a Smartphone-Based Chemiluminescence Biosensor for
Lactate in Oral Fluid and Sweat, Analyst 2014, 139, 6494–6501.
59. Symes, M. D.; Kitson, P. J.; Yan, J.; Richmond, C. J.; Cooper, G. J. T.; Bowman, R. W.; Vilbrandt, T.; Cronin, L. Integrated 3D-Printed Reactionware for Chemical
Synthesis and Analysis, Nat. Chem. 2012, 4, 349–354.
60. Kitson, P. J.; Symes, M. D.; Dragone, V.; Cronin, L. Combining 3D Printing and
Liquid Handling to Produce User-Friendly Reactionware for Chemical Synthesis and Purification, Chem. Sci. 2013, 4, 3099–3103.
61. Kitson, P. J.; Glatzel, S.; Chen, W.; Lin, C.; Song, Y.; Cronin, L. 3D Printing of Versatile Reactionware for Chemical Synthesis, Nat. Protoc. 2016, 11, 920–936.
62. Wang, X.; Cai, X.; Guo, Q.; Zhang, T.; Kobe, B.; Yang, J. i3DP, A Robust 3D Printing Approach Enabling Genetic Post-Printing Surface Modification, Chem. Commun. 2013, 49, 10064–10066.
63. Guo, Q.; Cai, X.; Wang, X.; Yang, J.; Mater. J. "Paintable” 3D Printed Str ct res via a Post-ATRP Process with Antimicrobial Function for Biomedical Applications, J. Mater. Chem. B 2013, 1, 6644–6649.
64. Sandler, N.; Salmela, I.; Fallarero, A.; Rosling, A.; Khajeheian, M.; Kolakovic, R.; Genina, N.; Nyman, J.; Vuorela, P. Towards Fabrication of 3D Printed Medical Devices to Prevent Biofilm Formation, Int. J. Pharm. 2014, 459, 62–64.
65. Peterson, G. I.; Larsen, M. B.; Ganter, M. A.; Storti, D. W.; Boydston, A. J. 3D-Printed Mechanochromic Materials, ACS Appl. Mater. Interfaces 2015, 7, 577–583.
66. Wang, Z.; Wang, J.; Li, M.; Sun, K.; Liu, C.; Three-dimensional Printed Acrylonitrile Butadiene Styrene Framework Coated with Cu-BTC Metal-Organic Frameworks for the Removal of Methylene Blue, Sci. Rep. 2014, 5, 5939.
67. Jakus, A. E.; Taylor, S. L.; Geisendorfer, N. R.; Dunand, D. C.; Shah, R. N. Metallic Architectures from 3D-Printed Powder-Based Liquid Inks, Adv. Funct. Mater. 2015, 25, 6985–6995.
68. Seo, J.; Kushner, D. I.; Hickner, M. A. Three-Dimensional Printing of pH-Responsive and Functional Polymers on An Affordable Desktop Printer, ACS Appl. Mater. Interfaces 2016, 8, 16656–16663.
69. Skorski, M. R.; Esenther, J. M.; Ahmed, Z.; Miller, A. E.; Hartings, M. R. The Chemical, Mechanical, and Physical Properties of 3D Printed Materials Composed of TiO2-ABS Nanocomposites, Sci. Tech. Adv. Mater. 2016, 17, 89–97.
70. Zhanga, D.; Chic, B.; Lia, B.; Gaoa, Z.; Dua, Y.; Guoa, J.; Wei, J. Fabrication of Highly Conductive Graphene flexible Circuits by 3D Printing, Synthetic Metals 2016, 217, 79–86.
71. Goyanes, A.; Buanz, A. B. M.; Basit, W. A.; Gaisford, S. Fused-Filament 3D Printing (3DP) for Fabrication of Tablets, Int. J. Pharm. 2014, 476, 88–92.
72. Goyanes, A.; Buanz, A. B. M.; Basit, W. A.; Gaisford, S.; Hatton, G. B.; Basit, A. W. 3D Printing of Modified-Release Aminosalicylate (4-ASA and 5-ASA) Tablets, Eur. J. Pharm. Biopharm. 2015, 89, 157–162.
73. Skowyra, J.; Pietrzak, K.; Alhnan. M. A. Fabrication of Extended-Release Patient-Tailored Prednisolone Tablets via Fused Deposition Modelling (FDM) 3D Printing, Eur. J. Pharm. Sci. 2015, 68, 11–17.
74. Nikzad, M.; Masood, S.; Sbarski, I. Thermo-Mechanical Properties of A Highly Filled Polymeric Composites for Fused Deposition Modeling, Mater. Des. 2011, 32, 3448–3456.
75. Hwang, S.; Reyes, E. I.; Moon, K. S.; Rumpf, R. C.; Kim, N. S. Thermo-Mechanical Characterization of Metal/Polymer Composite Filaments and Printing Parameter Study for Fused Deposition Modeling in the 3D Printing Process, J. Electron. Mater. 2015, 44, 771–777.
76. Boparai, K.; Singh, R.; Singh, H. Comparison of Tribological Behaviour for Nylon6-Al-Al2O3 and ABS Parts Fabricated by Fused Deposition Modelling ABS, Virtual Phys Prototyp. 2015, 10, 59–66.
77. Castles, F.; Isakov, D.; Lui, A.; Lei, Q.; Dancer, C.; Wang, Y.; Janurudin, J.; Speller, S.; Grovenor, C.; Grant, P. S. Microwave Dielectric Characterisation of 3D-Printed BaTiO3/ABS Polymer Composites, Sci. Rep. 2016, 6, 22714.
78. Shemelya, C. M.; Rivera, A.; Perez, A. T.; Rocha, C.; Liang, M.; Yu, X.; Kief, C.; Alexander, D.; Stegeman, J.; Xin H. Mechanical, Electromagnetic, and X-Ray Shielding Characterization of A 3D Printable Tungstene Polycarbonate Polymer Matrix Composite for Space-Based Applications, J. Electron. Mater. 2015, 44, 2598–2607.
79. Kurimoto, M.; Yamashita, Y.; Ozaki, H.; Kato, T.; Funabashi, T.; Suzuoki, Y. 3D Printing of Conical Insulating Spacer Using Alumina/UV-Cured-Resin Composite, IEEE 2015, 463−466.
80. Chung, H.; Das, S. Processing and Properties of Glass Bead Particulate-Filled Functionally Graded Nylon-11 Composites Produced by Selective Laser Sintering, Mater. Sci. Eng. A 2006, 437, 226−234.
81. Mandon, C. A.; Blum, L. J.; Marquette, C. A. Adding Biomolecular Recognition Capability to 3D printed Objects, Anal. Chem. 2016, 88, 10767−10772.
82. https://3dplatform.com/getting-3d-prints-to-stick-to-the-bed-3dprintingtips/
83. Lin, Y.; Ren, J.; Qu, X. Catalytically Active Nanomaterials: A Promising Candidate
for Artificial Enzymes, Acc. Chem. Res. 2014, 47, 1097–1105.
84. Wang, X.; Hu, Y.; Wei, H. Nanozymes in bionanotechnology: from sensing to therapeutics and beyond, Inorg. Chem. Front. 2016, 3, 41–60.
85. Zhang, S. X.; Xue, S. F.; Deng, J.; Zhang M.; Shi, G.; Zhou, T. Polyacrylic acid-Coated Cerium Oxide Nanoparticles: An Oxidase Mimic Applied for colorimetric Assay to Organophosphorus Pesticides, Biosens. Bioelectron. 2016, 85, 457–463.
86. Liu, X.; Wang, Q.; Zhao, H. H.; Zhang, L. H.; Su, Y. Y.; Lv, Y. BSA-Templated Mno2 Nanoparticles as both Peroxidase and Oxidase Mimics, Analyst 2012, 137, 4552–4558.
87. Deng, H.; Shen, W.; Peng, Y.; Chen, X.; Yi, G.; Gao Z. Nanoparticulate Peroxidase/Catalase Mimetic and Its Application, Chem. Eur. J. 2012, 18. 8906–8911.
88. Wang, Q. Q.; Zhang, L. L.; Shang, C. S.; Zhang, Z. Q.; Dong, S. j. Triple-Enzyme Mimetic Activity of Nickel–Palladium Hollow Nanoparticles and Their Application in Colorimetric Biosensing of Glucose, Chem. Commun. 2016, 52, 5410–5413.
89. Dashtestani, F.; Ghourchian, H.; Eskandari, K.; Rafiee-Pour, H, A. A superoxide Dismutase Mimic Nanocomposite for Amperometric Sensing of Superoxide Anions, Microchim. Acta 2015, 182, 1045–1053.
90. He, W.; Wamer, W.; Xia, Q.; Yin, J. J.; Fu, P. P. Enzyme-Like Activity of Nanomaterials, J. Environ. Sci. Heal. C 2014, 32, 186–211.
91. Gao, L.; Zhuang, J.; Nie, L.; Zhang, L.; Zhang, Y.; Gu, N.; Wang, T.; Feng, J.; Yang, D.; Perrett, S.; Yan, X. Intrinsic Peroxidase-Like Activity of Ferromagnetic Nanoparticles Nat. Nanotechnol. 2007, 2, 577–583.
92. Song, Y.; Qu, K.; Zhao, C.; Ren, J.; Qu, X. Graphene Oxide: Intrinsic Peroxidase Catalytic Activity and Its Application to Glucose Detection, Adv. Mater. 2010, 22, 2206−2210.
93. Song, Y. J.; Wang, X. H.; Zhao, C.; Qu, K. G.; Ren, J. S.; Qu, X. G. Label-Free Colorimetric Detection of Single Nucleotide Polymorphismby Using Single-Walled Carbon Nanotube Intrinsic Peroxidase-Like Activity, Chem. Eur. J. 2010, 16, 3617−3621.
94. Xue, T.; Jiang, S.; Qu, Y.; Su, Q.; Cheng, R.; Dubin, S.; Chiu, C.-Y.; Kaner, R.; Huang, Y.; Duan, X. Graphene-Supported Hemin as A Highly Active Biomimetic Oxidation Catalyst, Angew. Chem. Int. Ed. 2012, 51, 3822−3825.
95. Luo, W.; Zhu, C.; Su, S.; Li, D.; He, Y.; Huang, Q.; Fan, C. Selfcatalyzed, Self-Limiting Growth of Glucose Oxidase-Mimicking Gold Nanoparticles, ACS Nano. 2010, 4, 7451−7458.
96. Comotti, M.; Della Pina, C.; Falletta, E.; Rossi, M. Aerobic Oxidation of Glucose with Gold Catalyst: Hydrogen Peroxide as Intermediate and Reagent, Adv. Synth. Catal. 2006, 348, 313−316.
97. Zheng, X.; Liu, Q.; Jing, C.; Li, Y.; Li, D.; Luo, W.; Wen, Y.; He, Y.; Huang, Q.; Long, Y.-T.; Fan, C. Catalytic Gold Nanoparticles for Nanoplasmonic Detection of DNA Hybridization, Angew. Chem. Int. Ed. 2011, 50, 11994−11998.
98. Lin, X. Q.; Deng, H. H.; Wu,G. W.; Peng, H. P.; Liu, A. L.; Lin, X. H.; Xiad, X. H.; Chen, W. Platinum Nanoparticles/Graphene-Oxide Hybrid with excellent Peroxidase-Like Activity and Its Application for Cysteine Detection, Analyst 2015, 140, 5251–5256.
99. Xia, X.; Zhang, J.; Lu, N.; Kim, M. J.; Ghale, K.; Xu, Y.; McKenzie, E.; Liu, J.; Ye, H. Pd–Ir Core–Shell Nanocubes: A Type of Highly Efficient and Versatile Peroxidase Mimic, ACS Nano. 2015, 9, 9994–10004.
100. Aditya, T.; Jana, J.; Sahoo, R.; Roy, A.; Pal, A.; Pal T. Silver Molybdates with Intriguing Morphology and as A Peroxidase Mimic with High Sulfide Sensing Capacity, Cryst. Growth Des. 2017, 17, 295–307.
101. André, R.; Natálio, F.; Humanes, M.; Leppin, J.; Heinze, K.; Wever, R.; Schröder, H. C.; Müller, W. E. G.; Tremel, W.V2O5 Nanowires with An Intrinsic Peroxidase-Like Activity, Adv. Funct. Mater. 2011, 21, 501–505.
102. Wei, H.; Wang, E. Fe3O4 Magnetic Nanoparticles as peroxidase Mimetics and Their Applications in H2O2 and Glucose Detection, Anal. Chem. 2008, 80, 2250–2254.
103. Wang, Q. Q.; Zhang, X.; Huang, L.; Zhang, Z. Q.; Dong, S. J. One-Pot Synthesis of Fe3O4 Nanoparticle Loaded 3D Porous Graphene Nanocomposites with enhanced Nanozyme Activity for Glucose Detection, ACS Appl. Mater. Interfaces 2017, 9, 7465–7471.
104. Chaudhari, K. N.; Chaudhari, N. K.; Yu, J. S.; Peroxidase Mimic Activity of Hematite Iron Oxides (α-Fe2O3) with Different Nanostructures, Catal. Sci. Technol. 2012, 2, 119–124.
105. Yang, W. S.; Hao, J. H.; Zhang, Z.; Zhang, B. L.; PB@Co3O4 Nanoparticles as Both Oxidase and Peroxidase Mimics and Their Application for Colorimetric Detection of Glutathione, New J. Chem. 2015, 39, 8802–8806.
106. Sharmaa, V.; Mobin S. M. Cytocompatible Peroxidase Mimic Cuo: Graphene Nanosphere Composite as Colorimetric dual Sensor for Hydrogen Peroxide and Cholesterol with Its Logic Gate Implementation, Sens. Actuator B-Chem. 2017, 240, 338–348.
107. Maddinedi, S. B.; Mandal, B. K.; Peroxidase Like Activity of Quinic Acid Stabilized
Copper Oxide Nanosheets, Austin J. Anal. Pharm. Chem. 2014, 1, 2381–8913.
108. Xie, J. X.; Caoa, H.; Jianga, H.; Chena, Y.; Shi, W.; Zhenga, H.; Huang, Y. Co3O4-Reduced Graphene Oxide Nanocomposite as an Effective Peroxidase Mimetic and Its Application in Visual Biosensing of Glucose, Anal. Chim. Acta
2013, 796, 92–100.
109. 劉益宏. 利用金奈米粒子探針搭配分子及原子光譜儀測測定拱梨子的分析研究.
Determination of Mercuric Ion Using Oligonucleotide-Gold Nanoparticle Conjugates Coupled with Molecular Atomic Spectrometric Delection,國立清華大
學(2011)
110. Zeina, I.; Hutmacherb, D. W.; Tanc, K. C.; Teoh, S. H. Fused Deposition Modeling of Novel Scaffold Architectures for tissue Engineering Applications, Biomaterials 2002, 23, 1169–1185
111. http://www.custompartnet.com/wu/fused-deposition-modeling
112. Zhang, Y. F.; Tsitkov, S.; Hess, H. Proximity does not Contribute to Activity Enhancement in the Glucose Oxidase–Horseradish Peroxidase Cascade, Nat.
Commun. 2016, 7, 13982.
113. Piero, G. B.; Darbre, T.; Reymond, J. L. pH-Tuned Metal Coordination and
Peroxidase Activity of A Peptide Dendrimer Enzyme Model with A Fe(II)bipyridine
at Its Core, Biomol. Chem. 2013, 11, 344–352.
114. http://nicklievendag.com/filament-guide/
115. Nery, E. W.; Kubota, L. T. Evaluation of enzyme Immobilization Methods for Paper-Based Devices - A Glucose Oxidase Study, J. Pharmaceut. Biome. 2016, 117, 551–559.
116. Schilling, K. M.; Lepore, A. L.; Kurian, J. A.; Martinez, A. W. Fully Enclosed Microfluidic Paper-Based Analytical Devices, Anal. Chem. 2012, 84, 1579–1585.
117. Bokare, A. D.; Choi W. Review of Iron-Free Fenton-Like Systems for Activating H2O2 in Advanced Oxidation Processes, J. Hazard. Mater. 2014, 275, 121–135.
118. Nieto- arez, . I. Pierzchła, . Sien iewicz, A. Kohn, T. Inactivation of MS2
Coliphage in Fenton and Fenton-like Systems: Role of Transition Metals, Hydrogen
Peroxide and Sunlight, Environ. Sci. Technol. 2010, 44, 3351–3356.
119. Burg, A.; Shusterman, I.; Kornweitzc, H.; Meyerstein D. Three H2O2 Molecules are
In ol ed in the “Fentonli e” Reaction Between Co(H2O)62+ and H2O2, Dalton Trans.
2014, 43, 9111–9115
120. Lin, S. S.; Gurol, M. D. Catalytic Decomposition of Hydrogen Peroxide on Iron
Oxide: Kinetics, Mechanism, and Implications, Environ. Sci. Technol. 1998, 32 ,
1417–1423.
121. Mua, J.; Zhanga, L.; Zhao, M.; Wang Y. Co3O4 Nanoparticles as An Efficient Catalase Mimic: Properties, Mechanism and Its Electrocatalytic Sensing Application for Hydrogen Peroxide, J. Mol. Catal. A: Chem. 2013, 378, 30–37.
122. Li, J.; Liu, W.; Wu, X.; Gao, X. Mechanism of pH-Switchable Peroxidase and Catalase-Like Activities of Gold, Silver, Platinum and Palladium, Biomaterials 2015, 48, 37–44.
123. Wang, D.; Guan, K.; Bai, Z.; Liu, F. Facile Preparation of acid-Resistant Magnetite Particles for Removal of Sb(III) from Strong Acidic Solution, Sci. Technol. Adv.
Mater. 2016, 17, 80–88.
124. Wang, Z.; Zhao, L.; Yang, P.; Lv, Z.; Sun, H.; Jiang, Q. Water-Soluble Amorphous
Iron Oxide Nanoparticles Synthesized by A Quickly Pestling and Nontoxic Method
at Room Temperature as MRI Contrast Agent, Chem. Eng. J. 2014, 235, 231–235.
125. Dowd, J. E.; Riggs, D. S. A Comparison of Estimates of Michaelis-Menten Kinetic
Constants from Various Linear Transformations, J Biol Chem. 1965, 240, 863–869.
126. Jiang, Y. L.; Feng, C. L. The Study on Reaction Kinetics based on A New System of the Horseradish Peroxidase Catalyting the Oxidation of o-phenylenediamine by
H2O2, Guang Pu. 2002, 22, 436–440.
127. Salgado, P.; Melin, V.; Contreras, D.; Moreno, Y.; Mansilla, H. D. Fenton Reaction
Driven by Iron Ligands, J. Chil. Chem. Soc. 2013, 58, 2096–2101.
128. Zhang, S. J.; Yu, H. Q.; Ge, X. W.; Zhu. R. F. Optimization of Radiolytic
Degradation of Poly(vinyl alcohol), Ind. Eng. Chem. Res. 2005, 44, 1995–2001.
129. Harris, J. M.; Reyes, C.; Lopez, G. P. Common Causes of Glucose Oxidase Instability in vivo Biosensing: A Brief Review, J. Diabetes Sci. Technol. 2013, 7,
1030–1038.
130.Wilson, R.; Turner, A. P. F. Glucose Oxidase: An Ideal Enzyme, Biosens.
Bioelectron. 1992, 7, 165–185.
131. Lee, J.; Lin, E. W.; Lau, U. Y.; Hedrick, J. L.; Bat, E.; Maynard, H. D. Trehalose
Glycopolymers as Excipients for Protein Stabilization, Biomacromolecules 2013, 14, 2561−2569.
132. Zhu, J.; Zhu, Z.; Lai, Z.; Wang, R.; Guo, X.; Wu, X.; Zhang, G.; Zhang, Z.; Wang. Y.; Chen, Z. Planar Amperometric Glucose Sensor based on Glucose Oxidase Immobilized by Chitosan Film on Prussian Blue Layer, Sensors 2002, 2, 127–136.
133. Nagvenkar, A. P.; Gedanken, A. Cu0.89Zn0.11O, A New Peroxidase-Mimicking Nanozyme with High Sensitivity for Glucose and Antioxidant Detection, ACS Appl. Mater. Interfaces, 2016, 8, 22301–22308.
134. Liu, Q.; Li, H.; Zhao, Q.; Zhu, R.; Yang, Y.; Jia, Q.; Bian, B.; Zhuo, L. Glucose-Sensitive Colorimetric Sensor based on Peroxidase Mimics Activity of Porphyrin-Fe3O4 Nanocomposites, Mater. Sci. Eng. C. Mater. Biol. Appl. 2014, 1, 142–151.
135. Yang, W.; Hao, J.; Zhang, Z.; Lu, B.; Zhang, B.; Tang, J. CoxFe3−xO4 Hierarchical Nanocubes as Peroxidase Mimetics and Their Applications in H2O2 and Glucose Detection, Rsc Adv. 2014, 4, 35500–35504.
136. Lin, T.; Zhong, L.; Song, Z.; Guo, L.; Wu, H.; Guo, Q.; Chen, Y.; Fu, F.; Chen, G. Visual Detection of Blood Glucose based on Peroxidase-Like Activity of WS2 Nanosheets, Biosens. Bioelectron. 2014, 62, 302–307
137. Kim, M.; Shim, J.; Li, T., Lee, J.; Park, H. G. Fabrication of Nanoporous Nanocomposites Entrapping Fe3O4 Magnetic Nanoparticles and Oxidases for Colorimetric Biosensing, Chem. Eur. J. 2011, 17, 10700–10707.
138. Jiao, X.; Song, H.; Zhao, H.; Bai, W.; Zhang, L.; Lv, Y. Well-Redispersed Ceria Nanoparticles: Promising Peroxidase Mimetics for H2O2 and Glucose Detection, Anal. Methods 2012, 4, 3261–3267.
139. Lu, C.; Liu, X.; Li, Y.; Yu, F.; Tang, L.; Hu, Y.; Ying, Y. Multifunctional Janus Hematite–Silica Nanoparticles: Mimicking Peroxidase-Like Activity and Sensitive Colorimetric Detectionof Glucose, ACS Appl. Mater. Interfaces 2015, 7, 15395–15402.

140. Han, L.; Zeng, L.; Wei, M.; Li, C.M.; Liu, A. A V2O3-Ordered Mesoporous Carbon Composite with Novel Peroxidase-Like Activity Towards the Glucose Colorimetric Assay, Nanoscale 2015, 7, 11678–11685.
141. Darabdharaa, G.; Sharmaa, B.; Das, M. R.; Boukherroubc, R.; Szunerits S. Cu-Ag Bimetallic Nanoparticles on Reduced Graphene Oxide Nanosheets as Peroxidase Mimic for Glucose and Ascorbic Acid Detection, Sens. Actuators. B Chem. 2017, 238, 842–851.
142. Wang, Y.; Zhou, B.; Wu, S.; Wang, K.; He, X. Colorimetric Detection of Hydrogen Peroxide and Glucose Using the Magnetic Mesoporous Silica Nanoparticles, Talanta 2015, 134, 712–717.
143. Jia, H.; Yang, D.; Han, X.; Cai, J.; Liu, H.; He, W. Peroxidase-Like Activity of the Co3O4 Nanoparticles Used for Biodetection and Evaluation of Antioxidant Behavior, Nanoscale 2016, 8, 5938–5945.
144. Zhao, H.; Dong, Y.; Jiang, P.; Wang, G.; Zhang, J. Highly Dispersed CeO2 on TiO2 Nanotube : A Synergistic Nanocomposite with Superior Peroxidase-Like Activity, ACS Appl. Mater.Interfaces 2015, 7, 6451–6461.
145. Yu, C. J.; Lin, C. Y.; Liu, C. H.; Cheng, T. L.; Tseng, W. L. Synthesis of Poly (diallyldimethylammonium chloride)-Coated Fe3O4 Nanoparticles for colorimetric Sensing of Glucose and Selective Extraction of Thiol, Biosens. Bioelectron. 2010, 26, 913–917.
146. Liu, J. B.; Hu, X. N.; Hou, S.; Wen, T.; Liu, W. Q.; Zhu, X.;. Yin, J. J.; Wu, X. C. Au@Pt Core/Shell Nanorods with Peroxidase- and Ascorbate Oxidase-Like Activities for Improved Detection of Glucose, Sens. actuators. B Chem. 2012, 166–167, 708–714.
147. Fine, J. Glucose Content of Normal Urine, Br. Med. J. 1965, 1, 1209–1214.
148. Griffin, N. K.; Smith, M. A.; Jenkins, P. A.; Werther, G.; Baum, J. D. Relationship Between Urinary and Blood Glucose in Diabetic Children, Arch. Dis. Child. 1979,
54, 371–374.
149. Engelgau, M. M.; Narayan, K. M.; Herman, W. H. Screening for Type 2 Diabetes,
Diabetes Care 2000, 23, 1563–1580.
150. Rave, K.; Nosek, L.; Posner, J.; Heise, T.; Roggen, K.; Hoogdalem, E. van Renal
Glucose Excretion as a Function of Blood Glucose Concentration in Subjects with Type 2 Diabetes - Results of A Hyperglycaemic Glucose Clamp Study, Nephrol. Dial. Transplant. 2006, 21, 2166–2171.
151. Honn, K. V.; Singley, J. A.; Chavin, W. Fetal Bovine Serum: A Multivariate Standard, Proc. Soc. Exp. Biol. Med. 1975, 149, 344–347.
152. Hales, C. N.; Kennedy, G. C. Plasma Glucose, Non-Esterified Fatty Acid and Insulin Concentrations in Hypothalamic-Hyperphagic Rats, Biochem J. 1964, 90, 620–624.
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top

相關論文

1. 利用Neutralizer-(micro-column)-ICP-MS連線系統測定高濃度酸中超微量雜質元素之分析研究
2. 利用批次及離體模式進行online HPLC-UV/nano-TiO2/HCOOH PCRD-ICP-MS系統在自然水樣及尿液中連線測定硒物種之研究
3. 磁性奈米粒子及其複合材料之製備應用與氧化鋅奈米粒子細胞毒性之研究
4. 建立HPLC-UV/nano-TiO2-ICP-MS連線系統進行尿液中汞物種之分析研究
5. 開發PVC beads packed micro-column ICP-MS連線系統進行高鹽基質樣品中微量元素的分析研究
6. 晶片型固相萃取技術開發及其在微量元素分析上的應用
7. 活體動物體內量子點及鎘離子動態變化連線分析系統的開發與應用
8. 建立線上HPLC-Photocatalyst-Assisted Digestion and Vaporization Device (PADVD)-ICP-MS連線系統進行人體尿液中硒物種之分析研究
9. 開發Microdialysis-Desalter-ICP-MS連線分析系統進行活體動物肝臟中量子點穩定性及鎘元素拮抗作用之分析研究
10. 利用奈米金粒子訊號放大及磁性粒子分離技術進行核酸序列及汞離子之分析研究
11. Development of online HPLC-PMMA Chip-based Photo-Catalyst Reduction Device (PC2RD)-ICP-MS hyphenated system for determination of selenium species in nature water
12. Development of Microdialysis-In-tube SPE-ICP-MS System for the determination of trace elements in brain of anesthetized rat
13. 利用奈米探針技術搭配感應耦合電漿質譜儀建立高靈敏的病毒分型及定量分析研究
14. 建立開管式固相萃取晶片搭配感應耦合電漿質譜儀之連線分析系統進行高鹽基質微透析樣品中微量元素之分析研究
15. 建立Photocatalyst-Assisted Digestion-PMMA SPE-ICP-MS連線分析系統進行環境水樣中微量元素之分析研究
 
* *