|
1. Gauglitz, G. Point-of-Care Platforms, Annu. Rev. Anal. Chem. 2014, 7, 297–315. 2. Yager, P.; Domingo, G. J.; Gerdes, J. Point-of-Care Diagnostics for Global Health, Annu. Rev. Biomed. Eng. 2008, 10, 107–144. 3. Giljohann, D. A.; Mirkin, C. A. Drivers of Biodiagnostic Development, Nature 2009,462, 461–464. 4. Gubala, V.; Harris, L. F.; Ricco, A. J.; Tan, M. X.; Williams, D. E. Point of Care Diagnostics: Status and Future, Anal. Chem. 2012, 84, 487–515. 5. John, N. S.; Reed, R. G. Point-of-Care Testing. Meeting Regulatory Guidelines with Nonlaboratory Personnel, Am. Clin. Lab. 1994, 14, 11–12. 6. http://www.whitmiremedical.com/pages/POC.htm 7. Jung, W. S.; Han, J. Y.; Choi, J. W.; Ahn C. H. Point-of-Care Testing (POCT) Diagnostic Systems Using Microfluidic Lab-on-a-Chip Technologies, Microelectron. Eng. 2015, 132, 46–57. 8. Vashist, S. K.; Luppa, P. B.; Yeo, L. Y.; Ozcan, A.; Luong, J. H. T. Emerging Technologies for Next-Generation Point-of-Care Testing, Trends Biotechnol. 2015, 33, 692–705. 9. Bahadir, E. B.; Sezginturk, M.K. Applications of Commercial Biosensors in Clinical,Food, Environmental, and Biothreat/Biowarfare Analyses, Anal. Biochem. 2015, 478,107–120. 10. Nayak, S.; Blumenfeld, N. R.; Laksanasopin, T.; Sia, S. K. Point-of-Care Diagnostics: Recent Developments in a Connected Age, Anal. Chem. 2017, 89, 102−123. 11. Singh, V.; Khatana, S.; Gupta, P. Blood Gas Analysis for Bedside Diagnosis, Natl. J. Maxillofac. Surg. 2013, 4, 136–141. 12. Kim, D. H.; Lu, N.; Ma, R.; Kim, Y. S.; Kim, R. H.; Wang, S.; Wu, J.; Won, S. M.; Tao, H.; Islam, A.; Yu, K. J.; Kim, T. I.; Chowdhury, R.; Ying, M.; Xu, L.; Li. M.; Chung, H. J.; Keum, H.; McCormick, M.; Liu, P.; Zhang, Y. W.; Omenetto, F. G.; Huang, Y.; Coleman, T.; Rogers, J. A. Epidermal Electronics, Science 2011, 333, 838−843. 13. Chandler, D. L. John Rogers and the Ultrathin Limits of Technology: His Flexible, Skin-Mounted Biostamp is Changing the Game for Wearable Diagnostic Devices, Ieee Pulse 2016, 7, 9−12. 14. Ulrich, M. P.; Christensen, D. R.; Coyne, S. R.; Craw, P. D.; Henchal, E. A.; Sakai, S. H.; Swenson, D.; Tholath, J.; Tsai, J.; Weir, A. F.; Norwood, D. A. J. Evaluation of the Cepheid Genexpert® System for Detecting Bacillus Anthracis, Appl. Microbiol. 2006, 100, 1011–1016. 15. International Diabetes Federation. IDF Diabetes Atlas 7th Edition (2015). 16. https://www.asdreports.com/news-259/global-blood-glucose-monitoring-devices-ma rket-valued-at-89-billion-2010 17. Mabey, D.; Peeling, R. W.; Perkins, M. D. Rapid and Simple Point-of-Care Diagnostics for STIs, Sex. Transm. Infect. 2001, 7, 397–398. 18. WHO. Diagnostics for tuberculosis: global demand and market potential. Geneva. http://apps.who.int/tdr/publications/tdr-research-publications/diagnostics-tuberculosi s-global-demand/pdf/tbdi/pdf, Date: 2006 19. Urdea, M.; Penny, L. A.; Olmsted, S. S. Requirements for High Impact Diagnostics in the Developing World, Nature 2006, 444, 73–79. 20. Keeler, E.; Perkins, M. D.; Small, P. Reducing the Global Burden of Tuberculosis: the Contribution of Improved Diagnostics, Nature 2006, 444, 49–57. 21. Lim, Y. W.; Steinhoff, M.; Girosi, F. Reducing the Global Burden of Acute Lower Respiratory Infections in Children: the Contribution of New Diagnostics, Nature 2006, 444, 9–18. 22. RAND Corporation. Estimating the global health impact of improved diagnostic tools for the developing world. Research highlights. http://www.rand.org/content/dam/rand/pubs/research_briefs/2007/RAND_RB9293.p df, Date: 2007 23. Gervais, L.; Rooij, N. D.; Delamarche, E. Microfluidic Chips for Point-of-Care Immunodiagnostics, Adv. Mater. 2011, 23, H151–H176. 24. Amin, R.; Joshi, A.; Tasoglu, S. Commercialization of 3D-Printed Microfluidic Devices, J. 3D Print. Med. 2017, 1, 85–89. 25. Luo, Y.; Zhang, Z.; Wang, X.; Zheng, Y.; Ultrasonic Bonding for Thermoplastic Microfluidic Devices without Energy Director, Microelectron. Eng. 2010, 87, 2429–2436. 26. Martinez, A. W.; Phillips, S. T.; Whitesides, G. M. Three-Dimensional Microfluidic Devices Fabricated in Layered Paper and tape, Proc. Natl. Acad. Sci. 2008, 105, 19606 –19611. 27. Wang, S. Q.; Sarenac, D.; Chen, M. H.; Huang, S. H.; Giguel, F. F.; Kuritzkes, D. R.; Demirci, U. Simple Filter Microchip for Rapid Separation of Plasma and Viruses from Whole Blood, Int. J. Nanomed. 2012, 7, 5019–5028. 28. Han, X.; Liu, X.; Tian, L.; Zhang, H.; Mao, Z. G. A Non-Photolithography Fabrication for a Microfluidic Chip Based on Pmma Polymer, Machines 2015, 3, 107–122. 29. Nery, E. W.; Kubota, L. T. Sensing Approaches on Paper-Based Devices: A review, Anal. Bioanal. Chem. 2013, 405, 7573–7595. 30. Rodrigues, R. O.; Lima, R., Gomes, H. T.; Silva, A. M. T. Polymer Microfluidic Devices: An Overview of Fabrication Methods, U.Porto Journal of Engineering 2015, 1, 67-79. 31. Dincer, C.; Bruch, R.; Kling, A. Dittrich, Urban, G. A. Multiplexed Point-of-Care Testing – xPOCT, Trends Biotechnol. DOI: 10.1016/j.tibtech.2017.03.013. 32. Jung, W. S.; Han, J. Y.; Choi, J. W.; Ahn C. H. Point-of-Care Testing (POCT) Diagnostic Systems Using Microfluidic Lab-on-a-Chip Technologies, Microelectron. Eng. 2015, 132, 46–57. 33. Hull, C. W. Apparatus for PROduction of Three-Dimensional Objects by Stereolithography, U. S. Patent No. 4575330 (8 August, 1984) 34. Crump, S.S. Modeling Apparatus for Three-Dimensional Objects, U. S. Patent No.5121329 (9 June, 1994) 35. Ambrosi, A.; Pumera, M. 3D-Printing Technologies for Electrochemical Applications, Chem. Soc. Rev. 2016, 45, 2740−2755. 36. Murphy, S. V.; Atala, A. Nat. 3D Bioprinting of Tissues and Organs, Biotechnol. 2014, 32, 773−785. 37. Ho, C. M. B.; Ng, S. H.; Li, K. H. H.; Yoon, Y. J. 3D Printed Microfluidics for Biological Applications, Lab Chip 2015, 15, 3627–3637. 38. Lupton, D. Fabricated Data Bodies: Reflections on 3D Printed Digital Body Objects in Medical and Health Domains, Soc. Theory Health. 2015, 13, 99−115. 39. Su, C. K.; Peng, P. J.; Sun, Y. C. Fully 3D-Printed Preconcentrator for Selective Extraction of Trace Elements in Seawater, Anal. Chem. 2015, 87, 6945−6950. 40. Baden, T.; Chagas, A. M.; Gage, G.; Marzullo, T.; PrietoGodino, L. L.; Euler, T. Open Labware: 3-D Printing Your Own Lab Equipment, PLoS Biol. 2015, 13, e1002086. 41. Pearce, J. M.; Building Research Equipment with Free, Open-Source Hardware, Science 2012, 337, 1303–1304. 42. Gross, B. C.; Erkal, J. L.; Lockwood, S. Y.; Chen, C.; Spence, D. M. Evaluation of 3d Printing and Its Potential Impact on Biotechnology and The Chemical Sciences, Anal. Chem. 2014, 86, 3240–3253. 43. Shallan, A. I.; Smejkal, P.; Corban, M.; Guijt, R. M.; Breadmore, M. C. Cost-Effective Three-Dimensional Printing of Visibly Transparent Microchips within Minutes, Anal. Chem. 2014, 86, 3124–3130. 44. Bhargava, K. C.; Thompson, B.; Malmstadt, N. Discrete Elements for 3D Microfluidics, Proc. Natl. Acad. Sci. 2014, 111, 15013–15018. 45. Waheed, S.; Cabot, J. M.; Macdonald, N. P.; Lewis, T.; Guijt, R. M.; Paull, B.; Breadmore, M. C. 3D Printed Microfluidic Devices: Enablers and Barriers, Lab Chip 2016, 16, 1993–2013. 46. Bhattacharjee, N.; Urrios, A.; Kang, S.; Folch, A. The Upcoming 3D-Printing Revolution in Microfluidics, Lab Chip 2016, 16, 1720–1742. 47. Au, K. A.; Huynh, W.; Horowitz, L. F.; Folch, A. 3D-Printed Microfluidics, Angew. Chem. Int. Ed. 2016, 55, 3862–3881. 48. Gross, B.; Lockwood, S. Y.; Spence, D. M. Recent Advances in Analytical Chemistry by 3D Printing, Anal. Chem. 2017, 89, 57−70. 49. Wijnen, B.; Hunt, E. J.; Gerald. C. A.; Pearce J. M. Open-Source Syringe Pump Library, PloS ONE, 2014, 9, e107216. 50. atao a, . M. M rer, R. C. Santos, . M. Car alho, R. M.; Eberlin, M. N.; Augusto, F.; Poppi, R. J.; Gobbi, A. L.; Hantao L. W. Simple, Expendable, 3D-Printed Microfluidic Systems for Sample Preparation of Petroleum, Anal. Chem. 2017, 89, 3460−3467. 51. Li, F.; Smejkal, P.; Macdonald, N. P.; Guijt, R. M.; Breadmore, M. C. One-Step Fabrication of A Microfluidic Device with An Integrated Membrane and Embedded Reagents by Multimaterial 3D Printing, Anal. Chem. 2017, 89, 4701−4707 52. Lockwood, S. Y.; Meisel, J. E.; Monsma, F. J.; Spence, D. M. A Diffusion-Based and Dynamic 3D-Printed Device that Enables Parallel in vitro Pharmacokinetic Profiling of Molecules, Anal. Chem. 2016, 88, 1864−1870. 53. Salentijn, G. I. J.; Permentier, H. P.; Verpoorte E. 3D-Printed Paper Spray Ionization Cartridge with Fast Wetting and Continuous Solvent Supply Features, Anal. Chem. 2014, 86, 11657–11665. 54. Chan, H. N.; Shu, Y. W.; Xiong, B.; Chen, Y. F.; Chen, Y.; Tian, Q.; Michael, S. A.; Shen, B.; Wu H. Simple, Cost-Effective 3D Printed Microfluidic Components for Disposable, Point-of-Care Colorimetric Analysis, ACS Sens. 2016, 1, 227–234. 55. Amin, R.; Knowlton, S.; Hart, A.; Yenilmez, B.; Ghaderinezhad, F.; Katebifar, S.; Messina, M.; Khademhosseini, A.; Tasoglu, S. 3D-printed Microfluidic Devices, Biofabrication 2016, 8, 022001. 56. Kitson, P. J.; Glatzel, S.; Chen, W.; Lin, C. G.; Song, Y. F.; Cronin, L. 3D Printing of Versatile Reactionware for Chemical Synthesis, Nat Protoc. 2016, 11, 920–936. 57. Mathieson, J. S.; Rosnes, M. H.; Sans, V.; Kitson, P. J.; Cronin, L. Continuous Parallel ESI-MS Analysis of Reactions Carried Out in A Bespoke 3D Printed Device, Beilstein J. Nanotechnol. 2013, 4, 285–291. 58. Roda, A.; Guardigli, M.; Calabria, D.; Calabretta, M. M.; Cevenini, L.; E. Michelini. A 3D-Printed Device for a Smartphone-Based Chemiluminescence Biosensor for Lactate in Oral Fluid and Sweat, Analyst 2014, 139, 6494–6501. 59. Symes, M. D.; Kitson, P. J.; Yan, J.; Richmond, C. J.; Cooper, G. J. T.; Bowman, R. W.; Vilbrandt, T.; Cronin, L. Integrated 3D-Printed Reactionware for Chemical Synthesis and Analysis, Nat. Chem. 2012, 4, 349–354. 60. Kitson, P. J.; Symes, M. D.; Dragone, V.; Cronin, L. Combining 3D Printing and Liquid Handling to Produce User-Friendly Reactionware for Chemical Synthesis and Purification, Chem. Sci. 2013, 4, 3099–3103. 61. Kitson, P. J.; Glatzel, S.; Chen, W.; Lin, C.; Song, Y.; Cronin, L. 3D Printing of Versatile Reactionware for Chemical Synthesis, Nat. Protoc. 2016, 11, 920–936. 62. Wang, X.; Cai, X.; Guo, Q.; Zhang, T.; Kobe, B.; Yang, J. i3DP, A Robust 3D Printing Approach Enabling Genetic Post-Printing Surface Modification, Chem. Commun. 2013, 49, 10064–10066. 63. Guo, Q.; Cai, X.; Wang, X.; Yang, J.; Mater. J. "Paintable” 3D Printed Str ct res via a Post-ATRP Process with Antimicrobial Function for Biomedical Applications, J. Mater. Chem. B 2013, 1, 6644–6649. 64. Sandler, N.; Salmela, I.; Fallarero, A.; Rosling, A.; Khajeheian, M.; Kolakovic, R.; Genina, N.; Nyman, J.; Vuorela, P. Towards Fabrication of 3D Printed Medical Devices to Prevent Biofilm Formation, Int. J. Pharm. 2014, 459, 62–64. 65. Peterson, G. I.; Larsen, M. B.; Ganter, M. A.; Storti, D. W.; Boydston, A. J. 3D-Printed Mechanochromic Materials, ACS Appl. Mater. Interfaces 2015, 7, 577–583. 66. Wang, Z.; Wang, J.; Li, M.; Sun, K.; Liu, C.; Three-dimensional Printed Acrylonitrile Butadiene Styrene Framework Coated with Cu-BTC Metal-Organic Frameworks for the Removal of Methylene Blue, Sci. Rep. 2014, 5, 5939. 67. Jakus, A. E.; Taylor, S. L.; Geisendorfer, N. R.; Dunand, D. C.; Shah, R. N. Metallic Architectures from 3D-Printed Powder-Based Liquid Inks, Adv. Funct. Mater. 2015, 25, 6985–6995. 68. Seo, J.; Kushner, D. I.; Hickner, M. A. Three-Dimensional Printing of pH-Responsive and Functional Polymers on An Affordable Desktop Printer, ACS Appl. Mater. Interfaces 2016, 8, 16656–16663. 69. Skorski, M. R.; Esenther, J. M.; Ahmed, Z.; Miller, A. E.; Hartings, M. R. The Chemical, Mechanical, and Physical Properties of 3D Printed Materials Composed of TiO2-ABS Nanocomposites, Sci. Tech. Adv. Mater. 2016, 17, 89–97. 70. Zhanga, D.; Chic, B.; Lia, B.; Gaoa, Z.; Dua, Y.; Guoa, J.; Wei, J. Fabrication of Highly Conductive Graphene flexible Circuits by 3D Printing, Synthetic Metals 2016, 217, 79–86. 71. Goyanes, A.; Buanz, A. B. M.; Basit, W. A.; Gaisford, S. Fused-Filament 3D Printing (3DP) for Fabrication of Tablets, Int. J. Pharm. 2014, 476, 88–92. 72. Goyanes, A.; Buanz, A. B. M.; Basit, W. A.; Gaisford, S.; Hatton, G. B.; Basit, A. W. 3D Printing of Modified-Release Aminosalicylate (4-ASA and 5-ASA) Tablets, Eur. J. Pharm. Biopharm. 2015, 89, 157–162. 73. Skowyra, J.; Pietrzak, K.; Alhnan. M. A. Fabrication of Extended-Release Patient-Tailored Prednisolone Tablets via Fused Deposition Modelling (FDM) 3D Printing, Eur. J. Pharm. Sci. 2015, 68, 11–17. 74. Nikzad, M.; Masood, S.; Sbarski, I. Thermo-Mechanical Properties of A Highly Filled Polymeric Composites for Fused Deposition Modeling, Mater. Des. 2011, 32, 3448–3456. 75. Hwang, S.; Reyes, E. I.; Moon, K. S.; Rumpf, R. C.; Kim, N. S. Thermo-Mechanical Characterization of Metal/Polymer Composite Filaments and Printing Parameter Study for Fused Deposition Modeling in the 3D Printing Process, J. Electron. Mater. 2015, 44, 771–777. 76. Boparai, K.; Singh, R.; Singh, H. Comparison of Tribological Behaviour for Nylon6-Al-Al2O3 and ABS Parts Fabricated by Fused Deposition Modelling ABS, Virtual Phys Prototyp. 2015, 10, 59–66. 77. Castles, F.; Isakov, D.; Lui, A.; Lei, Q.; Dancer, C.; Wang, Y.; Janurudin, J.; Speller, S.; Grovenor, C.; Grant, P. S. Microwave Dielectric Characterisation of 3D-Printed BaTiO3/ABS Polymer Composites, Sci. Rep. 2016, 6, 22714. 78. Shemelya, C. M.; Rivera, A.; Perez, A. T.; Rocha, C.; Liang, M.; Yu, X.; Kief, C.; Alexander, D.; Stegeman, J.; Xin H. Mechanical, Electromagnetic, and X-Ray Shielding Characterization of A 3D Printable Tungstene Polycarbonate Polymer Matrix Composite for Space-Based Applications, J. Electron. Mater. 2015, 44, 2598–2607. 79. Kurimoto, M.; Yamashita, Y.; Ozaki, H.; Kato, T.; Funabashi, T.; Suzuoki, Y. 3D Printing of Conical Insulating Spacer Using Alumina/UV-Cured-Resin Composite, IEEE 2015, 463−466. 80. Chung, H.; Das, S. Processing and Properties of Glass Bead Particulate-Filled Functionally Graded Nylon-11 Composites Produced by Selective Laser Sintering, Mater. Sci. Eng. A 2006, 437, 226−234. 81. Mandon, C. A.; Blum, L. J.; Marquette, C. A. Adding Biomolecular Recognition Capability to 3D printed Objects, Anal. Chem. 2016, 88, 10767−10772. 82. https://3dplatform.com/getting-3d-prints-to-stick-to-the-bed-3dprintingtips/ 83. Lin, Y.; Ren, J.; Qu, X. Catalytically Active Nanomaterials: A Promising Candidate for Artificial Enzymes, Acc. Chem. Res. 2014, 47, 1097–1105. 84. Wang, X.; Hu, Y.; Wei, H. Nanozymes in bionanotechnology: from sensing to therapeutics and beyond, Inorg. Chem. Front. 2016, 3, 41–60. 85. Zhang, S. X.; Xue, S. F.; Deng, J.; Zhang M.; Shi, G.; Zhou, T. Polyacrylic acid-Coated Cerium Oxide Nanoparticles: An Oxidase Mimic Applied for colorimetric Assay to Organophosphorus Pesticides, Biosens. Bioelectron. 2016, 85, 457–463. 86. Liu, X.; Wang, Q.; Zhao, H. H.; Zhang, L. H.; Su, Y. Y.; Lv, Y. BSA-Templated Mno2 Nanoparticles as both Peroxidase and Oxidase Mimics, Analyst 2012, 137, 4552–4558. 87. Deng, H.; Shen, W.; Peng, Y.; Chen, X.; Yi, G.; Gao Z. Nanoparticulate Peroxidase/Catalase Mimetic and Its Application, Chem. Eur. J. 2012, 18. 8906–8911. 88. Wang, Q. Q.; Zhang, L. L.; Shang, C. S.; Zhang, Z. Q.; Dong, S. j. Triple-Enzyme Mimetic Activity of Nickel–Palladium Hollow Nanoparticles and Their Application in Colorimetric Biosensing of Glucose, Chem. Commun. 2016, 52, 5410–5413. 89. Dashtestani, F.; Ghourchian, H.; Eskandari, K.; Rafiee-Pour, H, A. A superoxide Dismutase Mimic Nanocomposite for Amperometric Sensing of Superoxide Anions, Microchim. Acta 2015, 182, 1045–1053. 90. He, W.; Wamer, W.; Xia, Q.; Yin, J. J.; Fu, P. P. Enzyme-Like Activity of Nanomaterials, J. Environ. Sci. Heal. C 2014, 32, 186–211. 91. Gao, L.; Zhuang, J.; Nie, L.; Zhang, L.; Zhang, Y.; Gu, N.; Wang, T.; Feng, J.; Yang, D.; Perrett, S.; Yan, X. Intrinsic Peroxidase-Like Activity of Ferromagnetic Nanoparticles Nat. Nanotechnol. 2007, 2, 577–583. 92. Song, Y.; Qu, K.; Zhao, C.; Ren, J.; Qu, X. Graphene Oxide: Intrinsic Peroxidase Catalytic Activity and Its Application to Glucose Detection, Adv. Mater. 2010, 22, 2206−2210. 93. Song, Y. J.; Wang, X. H.; Zhao, C.; Qu, K. G.; Ren, J. S.; Qu, X. G. Label-Free Colorimetric Detection of Single Nucleotide Polymorphismby Using Single-Walled Carbon Nanotube Intrinsic Peroxidase-Like Activity, Chem. Eur. J. 2010, 16, 3617−3621. 94. Xue, T.; Jiang, S.; Qu, Y.; Su, Q.; Cheng, R.; Dubin, S.; Chiu, C.-Y.; Kaner, R.; Huang, Y.; Duan, X. Graphene-Supported Hemin as A Highly Active Biomimetic Oxidation Catalyst, Angew. Chem. Int. Ed. 2012, 51, 3822−3825. 95. Luo, W.; Zhu, C.; Su, S.; Li, D.; He, Y.; Huang, Q.; Fan, C. Selfcatalyzed, Self-Limiting Growth of Glucose Oxidase-Mimicking Gold Nanoparticles, ACS Nano. 2010, 4, 7451−7458. 96. Comotti, M.; Della Pina, C.; Falletta, E.; Rossi, M. Aerobic Oxidation of Glucose with Gold Catalyst: Hydrogen Peroxide as Intermediate and Reagent, Adv. Synth. Catal. 2006, 348, 313−316. 97. Zheng, X.; Liu, Q.; Jing, C.; Li, Y.; Li, D.; Luo, W.; Wen, Y.; He, Y.; Huang, Q.; Long, Y.-T.; Fan, C. Catalytic Gold Nanoparticles for Nanoplasmonic Detection of DNA Hybridization, Angew. Chem. Int. Ed. 2011, 50, 11994−11998. 98. Lin, X. Q.; Deng, H. H.; Wu,G. W.; Peng, H. P.; Liu, A. L.; Lin, X. H.; Xiad, X. H.; Chen, W. Platinum Nanoparticles/Graphene-Oxide Hybrid with excellent Peroxidase-Like Activity and Its Application for Cysteine Detection, Analyst 2015, 140, 5251–5256. 99. Xia, X.; Zhang, J.; Lu, N.; Kim, M. J.; Ghale, K.; Xu, Y.; McKenzie, E.; Liu, J.; Ye, H. Pd–Ir Core–Shell Nanocubes: A Type of Highly Efficient and Versatile Peroxidase Mimic, ACS Nano. 2015, 9, 9994–10004. 100. Aditya, T.; Jana, J.; Sahoo, R.; Roy, A.; Pal, A.; Pal T. Silver Molybdates with Intriguing Morphology and as A Peroxidase Mimic with High Sulfide Sensing Capacity, Cryst. Growth Des. 2017, 17, 295–307. 101. André, R.; Natálio, F.; Humanes, M.; Leppin, J.; Heinze, K.; Wever, R.; Schröder, H. C.; Müller, W. E. G.; Tremel, W.V2O5 Nanowires with An Intrinsic Peroxidase-Like Activity, Adv. Funct. Mater. 2011, 21, 501–505. 102. Wei, H.; Wang, E. Fe3O4 Magnetic Nanoparticles as peroxidase Mimetics and Their Applications in H2O2 and Glucose Detection, Anal. Chem. 2008, 80, 2250–2254. 103. Wang, Q. Q.; Zhang, X.; Huang, L.; Zhang, Z. Q.; Dong, S. J. One-Pot Synthesis of Fe3O4 Nanoparticle Loaded 3D Porous Graphene Nanocomposites with enhanced Nanozyme Activity for Glucose Detection, ACS Appl. Mater. Interfaces 2017, 9, 7465–7471. 104. Chaudhari, K. N.; Chaudhari, N. K.; Yu, J. S.; Peroxidase Mimic Activity of Hematite Iron Oxides (α-Fe2O3) with Different Nanostructures, Catal. Sci. Technol. 2012, 2, 119–124. 105. Yang, W. S.; Hao, J. H.; Zhang, Z.; Zhang, B. L.; PB@Co3O4 Nanoparticles as Both Oxidase and Peroxidase Mimics and Their Application for Colorimetric Detection of Glutathione, New J. Chem. 2015, 39, 8802–8806. 106. Sharmaa, V.; Mobin S. M. Cytocompatible Peroxidase Mimic Cuo: Graphene Nanosphere Composite as Colorimetric dual Sensor for Hydrogen Peroxide and Cholesterol with Its Logic Gate Implementation, Sens. Actuator B-Chem. 2017, 240, 338–348. 107. Maddinedi, S. B.; Mandal, B. K.; Peroxidase Like Activity of Quinic Acid Stabilized Copper Oxide Nanosheets, Austin J. Anal. Pharm. Chem. 2014, 1, 2381–8913. 108. Xie, J. X.; Caoa, H.; Jianga, H.; Chena, Y.; Shi, W.; Zhenga, H.; Huang, Y. Co3O4-Reduced Graphene Oxide Nanocomposite as an Effective Peroxidase Mimetic and Its Application in Visual Biosensing of Glucose, Anal. Chim. Acta 2013, 796, 92–100. 109. 劉益宏. 利用金奈米粒子探針搭配分子及原子光譜儀測測定拱梨子的分析研究. Determination of Mercuric Ion Using Oligonucleotide-Gold Nanoparticle Conjugates Coupled with Molecular Atomic Spectrometric Delection,國立清華大 學(2011) 110. Zeina, I.; Hutmacherb, D. W.; Tanc, K. C.; Teoh, S. H. Fused Deposition Modeling of Novel Scaffold Architectures for tissue Engineering Applications, Biomaterials 2002, 23, 1169–1185 111. http://www.custompartnet.com/wu/fused-deposition-modeling 112. Zhang, Y. F.; Tsitkov, S.; Hess, H. Proximity does not Contribute to Activity Enhancement in the Glucose Oxidase–Horseradish Peroxidase Cascade, Nat. Commun. 2016, 7, 13982. 113. Piero, G. B.; Darbre, T.; Reymond, J. L. pH-Tuned Metal Coordination and Peroxidase Activity of A Peptide Dendrimer Enzyme Model with A Fe(II)bipyridine at Its Core, Biomol. Chem. 2013, 11, 344–352. 114. http://nicklievendag.com/filament-guide/ 115. Nery, E. W.; Kubota, L. T. Evaluation of enzyme Immobilization Methods for Paper-Based Devices - A Glucose Oxidase Study, J. Pharmaceut. Biome. 2016, 117, 551–559. 116. Schilling, K. M.; Lepore, A. L.; Kurian, J. A.; Martinez, A. W. Fully Enclosed Microfluidic Paper-Based Analytical Devices, Anal. Chem. 2012, 84, 1579–1585. 117. Bokare, A. D.; Choi W. Review of Iron-Free Fenton-Like Systems for Activating H2O2 in Advanced Oxidation Processes, J. Hazard. Mater. 2014, 275, 121–135. 118. Nieto- arez, . I. Pierzchła, . Sien iewicz, A. Kohn, T. Inactivation of MS2 Coliphage in Fenton and Fenton-like Systems: Role of Transition Metals, Hydrogen Peroxide and Sunlight, Environ. Sci. Technol. 2010, 44, 3351–3356. 119. Burg, A.; Shusterman, I.; Kornweitzc, H.; Meyerstein D. Three H2O2 Molecules are In ol ed in the “Fentonli e” Reaction Between Co(H2O)62+ and H2O2, Dalton Trans. 2014, 43, 9111–9115 120. Lin, S. S.; Gurol, M. D. Catalytic Decomposition of Hydrogen Peroxide on Iron Oxide: Kinetics, Mechanism, and Implications, Environ. Sci. Technol. 1998, 32 , 1417–1423. 121. Mua, J.; Zhanga, L.; Zhao, M.; Wang Y. Co3O4 Nanoparticles as An Efficient Catalase Mimic: Properties, Mechanism and Its Electrocatalytic Sensing Application for Hydrogen Peroxide, J. Mol. Catal. A: Chem. 2013, 378, 30–37. 122. Li, J.; Liu, W.; Wu, X.; Gao, X. Mechanism of pH-Switchable Peroxidase and Catalase-Like Activities of Gold, Silver, Platinum and Palladium, Biomaterials 2015, 48, 37–44. 123. Wang, D.; Guan, K.; Bai, Z.; Liu, F. Facile Preparation of acid-Resistant Magnetite Particles for Removal of Sb(III) from Strong Acidic Solution, Sci. Technol. Adv. Mater. 2016, 17, 80–88. 124. Wang, Z.; Zhao, L.; Yang, P.; Lv, Z.; Sun, H.; Jiang, Q. Water-Soluble Amorphous Iron Oxide Nanoparticles Synthesized by A Quickly Pestling and Nontoxic Method at Room Temperature as MRI Contrast Agent, Chem. Eng. J. 2014, 235, 231–235. 125. Dowd, J. E.; Riggs, D. S. A Comparison of Estimates of Michaelis-Menten Kinetic Constants from Various Linear Transformations, J Biol Chem. 1965, 240, 863–869. 126. Jiang, Y. L.; Feng, C. L. The Study on Reaction Kinetics based on A New System of the Horseradish Peroxidase Catalyting the Oxidation of o-phenylenediamine by H2O2, Guang Pu. 2002, 22, 436–440. 127. Salgado, P.; Melin, V.; Contreras, D.; Moreno, Y.; Mansilla, H. D. Fenton Reaction Driven by Iron Ligands, J. Chil. Chem. Soc. 2013, 58, 2096–2101. 128. Zhang, S. J.; Yu, H. Q.; Ge, X. W.; Zhu. R. F. Optimization of Radiolytic Degradation of Poly(vinyl alcohol), Ind. Eng. Chem. Res. 2005, 44, 1995–2001. 129. Harris, J. M.; Reyes, C.; Lopez, G. P. Common Causes of Glucose Oxidase Instability in vivo Biosensing: A Brief Review, J. Diabetes Sci. Technol. 2013, 7, 1030–1038. 130.Wilson, R.; Turner, A. P. F. Glucose Oxidase: An Ideal Enzyme, Biosens. Bioelectron. 1992, 7, 165–185. 131. Lee, J.; Lin, E. W.; Lau, U. Y.; Hedrick, J. L.; Bat, E.; Maynard, H. D. Trehalose Glycopolymers as Excipients for Protein Stabilization, Biomacromolecules 2013, 14, 2561−2569. 132. Zhu, J.; Zhu, Z.; Lai, Z.; Wang, R.; Guo, X.; Wu, X.; Zhang, G.; Zhang, Z.; Wang. Y.; Chen, Z. Planar Amperometric Glucose Sensor based on Glucose Oxidase Immobilized by Chitosan Film on Prussian Blue Layer, Sensors 2002, 2, 127–136. 133. Nagvenkar, A. P.; Gedanken, A. Cu0.89Zn0.11O, A New Peroxidase-Mimicking Nanozyme with High Sensitivity for Glucose and Antioxidant Detection, ACS Appl. Mater. Interfaces, 2016, 8, 22301–22308. 134. Liu, Q.; Li, H.; Zhao, Q.; Zhu, R.; Yang, Y.; Jia, Q.; Bian, B.; Zhuo, L. Glucose-Sensitive Colorimetric Sensor based on Peroxidase Mimics Activity of Porphyrin-Fe3O4 Nanocomposites, Mater. Sci. Eng. C. Mater. Biol. Appl. 2014, 1, 142–151. 135. Yang, W.; Hao, J.; Zhang, Z.; Lu, B.; Zhang, B.; Tang, J. CoxFe3−xO4 Hierarchical Nanocubes as Peroxidase Mimetics and Their Applications in H2O2 and Glucose Detection, Rsc Adv. 2014, 4, 35500–35504. 136. Lin, T.; Zhong, L.; Song, Z.; Guo, L.; Wu, H.; Guo, Q.; Chen, Y.; Fu, F.; Chen, G. Visual Detection of Blood Glucose based on Peroxidase-Like Activity of WS2 Nanosheets, Biosens. Bioelectron. 2014, 62, 302–307 137. Kim, M.; Shim, J.; Li, T., Lee, J.; Park, H. G. Fabrication of Nanoporous Nanocomposites Entrapping Fe3O4 Magnetic Nanoparticles and Oxidases for Colorimetric Biosensing, Chem. Eur. J. 2011, 17, 10700–10707. 138. Jiao, X.; Song, H.; Zhao, H.; Bai, W.; Zhang, L.; Lv, Y. Well-Redispersed Ceria Nanoparticles: Promising Peroxidase Mimetics for H2O2 and Glucose Detection, Anal. Methods 2012, 4, 3261–3267. 139. Lu, C.; Liu, X.; Li, Y.; Yu, F.; Tang, L.; Hu, Y.; Ying, Y. Multifunctional Janus Hematite–Silica Nanoparticles: Mimicking Peroxidase-Like Activity and Sensitive Colorimetric Detectionof Glucose, ACS Appl. Mater. Interfaces 2015, 7, 15395–15402.
140. Han, L.; Zeng, L.; Wei, M.; Li, C.M.; Liu, A. A V2O3-Ordered Mesoporous Carbon Composite with Novel Peroxidase-Like Activity Towards the Glucose Colorimetric Assay, Nanoscale 2015, 7, 11678–11685. 141. Darabdharaa, G.; Sharmaa, B.; Das, M. R.; Boukherroubc, R.; Szunerits S. Cu-Ag Bimetallic Nanoparticles on Reduced Graphene Oxide Nanosheets as Peroxidase Mimic for Glucose and Ascorbic Acid Detection, Sens. Actuators. B Chem. 2017, 238, 842–851. 142. Wang, Y.; Zhou, B.; Wu, S.; Wang, K.; He, X. Colorimetric Detection of Hydrogen Peroxide and Glucose Using the Magnetic Mesoporous Silica Nanoparticles, Talanta 2015, 134, 712–717. 143. Jia, H.; Yang, D.; Han, X.; Cai, J.; Liu, H.; He, W. Peroxidase-Like Activity of the Co3O4 Nanoparticles Used for Biodetection and Evaluation of Antioxidant Behavior, Nanoscale 2016, 8, 5938–5945. 144. Zhao, H.; Dong, Y.; Jiang, P.; Wang, G.; Zhang, J. Highly Dispersed CeO2 on TiO2 Nanotube : A Synergistic Nanocomposite with Superior Peroxidase-Like Activity, ACS Appl. Mater.Interfaces 2015, 7, 6451–6461. 145. Yu, C. J.; Lin, C. Y.; Liu, C. H.; Cheng, T. L.; Tseng, W. L. Synthesis of Poly (diallyldimethylammonium chloride)-Coated Fe3O4 Nanoparticles for colorimetric Sensing of Glucose and Selective Extraction of Thiol, Biosens. Bioelectron. 2010, 26, 913–917. 146. Liu, J. B.; Hu, X. N.; Hou, S.; Wen, T.; Liu, W. Q.; Zhu, X.;. Yin, J. J.; Wu, X. C. Au@Pt Core/Shell Nanorods with Peroxidase- and Ascorbate Oxidase-Like Activities for Improved Detection of Glucose, Sens. actuators. B Chem. 2012, 166–167, 708–714. 147. Fine, J. Glucose Content of Normal Urine, Br. Med. J. 1965, 1, 1209–1214. 148. Griffin, N. K.; Smith, M. A.; Jenkins, P. A.; Werther, G.; Baum, J. D. Relationship Between Urinary and Blood Glucose in Diabetic Children, Arch. Dis. Child. 1979, 54, 371–374. 149. Engelgau, M. M.; Narayan, K. M.; Herman, W. H. Screening for Type 2 Diabetes, Diabetes Care 2000, 23, 1563–1580. 150. Rave, K.; Nosek, L.; Posner, J.; Heise, T.; Roggen, K.; Hoogdalem, E. van Renal Glucose Excretion as a Function of Blood Glucose Concentration in Subjects with Type 2 Diabetes - Results of A Hyperglycaemic Glucose Clamp Study, Nephrol. Dial. Transplant. 2006, 21, 2166–2171. 151. Honn, K. V.; Singley, J. A.; Chavin, W. Fetal Bovine Serum: A Multivariate Standard, Proc. Soc. Exp. Biol. Med. 1975, 149, 344–347. 152. Hales, C. N.; Kennedy, G. C. Plasma Glucose, Non-Esterified Fatty Acid and Insulin Concentrations in Hypothalamic-Hyperphagic Rats, Biochem J. 1964, 90, 620–624.
|