帳號:guest(3.145.9.186)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):謝宜峯
作者(外文):Hsieh, Yi-Feng
論文名稱(中文):多孔碳球/氧化石墨烯複合材料應用於高靈敏性偵測循環腫瘤細胞
論文名稱(外文):Modified Porous Carbon Spheres/Graphene Oxide Nanocomposites as a Sensitive Platform for Circulating Tumor Cells Biosensing
指導教授(中文):胡尚秀
指導教授(外文):Hu, Shang-Hsiu
口試委員(中文):陳之碩
王翔郁
學位類別:碩士
校院名稱:國立清華大學
系所名稱:生醫工程與環境科學系
學號:104012520
出版年(民國):107
畢業學年度:106
語文別:英文
論文頁數:55
中文關鍵詞:氧化石墨烯粗糙度循環伏安法交流阻抗法循環腫瘤細胞
外文關鍵詞:Graphene oxideCirculating tumor cellsAC impedanceErbituxCell capture and detectionRoughness
相關次數:
  • 推薦推薦:0
  • 點閱點閱:116
  • 評分評分:*****
  • 下載下載:2
  • 收藏收藏:0
近幾十年來,全球陷入癌症的恐慌之中,雖然現今科技已經發展出許多針對惡性腫瘤的醫療技術,但是癌症的可怕之處不在於腫瘤細胞,而是在其散佈全身的轉移性,我們稱此細胞為循環腫瘤細胞(CTCs)。癌症的轉移不只讓藥物治療的效果降低,更增添癌症治癒的困難度,故利用氧化石墨烯材料進行抓取細胞並使用高靈敏度的電訊號偵測,以達到循環腫瘤細胞的快速篩檢功效,使人類及早發現且加以治療,有效降低癌症的高死亡風險。
在此篇研究中,我們製備氧化石墨烯(GO)材料,以氧化石墨烯表面官能基跟溴化十六烷基三甲銨(CATB)正負電相吸形成模板,利用雙層乳化法將乳化層包覆在模板內,形成有機相包覆水相之二氧化矽球,接者利用高溫絕氧鍛燒方式,將模板去除並形成中空的二氧化矽孔洞球(PSG)。使用掃描式及穿透式電子顯微鏡(SEM與TEM)可以鑑定其為吸附在氧化石墨烯表面的球狀結構。
氧化石墨烯表面的樹枝狀粗糙結構可以有效的增加與細胞的接觸面積並促進細胞的貼附,有別於氧化石墨烯平面的粗糙度變化,二氧化矽球除了增加表面粗糙度,也可以構築出空間的高低落差,我們稱此為三維粗糙度的改變,以達到更高的細胞抓取效率。此外,為了達到檢測血液中癌細胞的目標,將西妥昔單抗以化學鍵結的方式鍵結在材料表面用以增加材料的標靶特性,並利用紫外可見光譜以及原子力顯微鏡鑑定。抓取細胞的定量檢測則可以藉由電化學感測的高靈敏且快速應答等優點,利用循環伏安法與交流阻抗法來探測細胞黏附在電極表面時電解質阻抗之變化。經由氧化石墨烯表面粗糙度的改變以及修飾上二氧化矽球的三維粗糙度變化可以有效的增加細胞的貼附,並利用即時且靈敏的電化學檢測將細胞定量,此研究的短時間抓取以及檢測適合應用於血液的快速篩檢平台,並期許未來能夠在循環腫瘤細胞的血液檢測有更多方面性應用。
Cancer has occupied the symbol of death for years. The devastating effect of this complex illness is due to the progression from a localized to metastatic disease. We call it circulating tumor cells (CTCs). Early detection of cancer cells is important for clinical diagnostics, toxicity monitoring, and public health protection.
Graphene materials illustrated to be a biocompatible material nowadays are commonly used in the CTCs capture and detection due to the surface roughness structure which is believed to enhance the surface area-to volume ratio with cells. In this work, we construct carbon nanospheres coated on graphene oxide (PSG) not only to increase surface roughness but for the difference in height called 3D roughness difference. The capture efficiency indicates that the 3D roughness does effect the cell adhesions compared with graphene oxide and smooth ITO glass.
Rapid detection of blood includes both detection and specificity. Erbitux is conjugated with materials by the peptide bond and illustrated by UV-VIS and atomic force microscopy. Detection of captured cells by electrochemical detection can provide high sensitivity and rapid response. Here, cyclic voltammetry (CV) and AC impedance are used for device examination and cell quantification.
This detecting method adapting roughness difference to enhance cell adhesion and quickly response by electrochemical detection can accurately quantify the captured cells on the surface which is suitable for CTCs examination or other chemical detection platform.
中文摘要 I
Abstract II
致謝 III
Table of Contents V
List of Schemes VII
List of Figures VIII
1.1 Circulating Tumor Cells 1
1.2 Materials and Cell Capture 2
1.2.1 Techniques for CTC Isolation 2
1.2.1.1 Affinity-based Isolation 2
1.2.1.2 Size-Based Separation of CTCs 3
1.2.1.3 Dielectric Separation of CTCs 4
1.2.2 After Isolation, Cell Capture and Analysis 5
1.2.2.1 Marker-Free Isolation of CTCs 5
1.2.2.2 Capture and Release of CTCs 6
1.2.2.3 Enabling Culture and Expansion 8
1.2.3 Clinical Technology 8
1.2.3.1 Line-confocal Microscope Detection 9
1.2.3.2 Surface-Enhanced Raman Scattering Detection 10
1.2.3.3 CTCs Detection with Negative Enrichment 12
1.2.3.4 Positive Enrichment – In vivo Measurement 12
1.2.3.5 Positive Enrichment – In vitro Measurement 14
1.3 Graphene for CTC Analysis 17
1.4 Electric Signal and Quantization 20
Chapter 2 Experimental Section 23
2.1 Chemicals 23
2.2 Apparatus 23
2.3 Methods 24
2.3.1 Synthesis of Graphene Oxide 24
2.3.2 Synthesis of Porous Silica Nanospheres @ GO (PSG) 25
2.3.3 Preparation of GO/PSG@PEDOT Chip (GPC/SPC) 25
2.3.4 Erbitux Immobilization 26
2.3.5 Characterization 27
2.3.6 Cell Culture 27
2.3.7 Cell Capture and Sample Produce for SEM Image 28
2.3.8 Cell Staining 28
2.3.9 Cytotoxicity of ITO Chips 29
2.3.10 Electrochemical Measurement 29
Chapter 3 Results and Discussion 30
3.1 Electric Detection of CTCs by GO and PSG 30
3.2 Synthesis and Characterize of GO and PSG 30
3.3 Cell Adhesion on GO and PSG 34
3.3.1 Roughness of Materials 35
3.3.2 Capture Efficiency by Flow Cytometer 36
3.3.3 Image of Captured Cells 38
3.4 Erbitux Immobilization 40
3.5 CTCs Detecting Chips 42
3.5.1 Cell Viability of ITO Chips 43
3.5.2 GO/PSG@PEDOT Chip (GPC/SPC) 43
3.5.3 Cyclic voltammetry (CV) for GPC/SPC 44
3.5.4 Erbitux conjugation on GPC/SPC 45
3.6 Captured cells detecting by CV and EIS 46
3.7 Macrophage Test 48
Chapter 4 Conclusion 49
Reference 50

1. Yoon, H. J.; Kim, T. H.; Zhang, Z.; Azizi, E.; Pham, T. M.; Paoletti, C.; Lin, J.; Ramnath, N.; Wicha, M. S.; Hayes, D. F.; Simeone, D. M.; Nagrath, S., Sensitive capture of circulating tumour cells by functionalized graphene oxide nanosheets. Nat Nanotechnol 2013, 8 (10), 735-41.
2. Hanahan, D.; Weinberg, R. A., The hallmarks of cancer. Cell 2000, 100 (1), 57-70.
3. Gupta, G. P.; Massague, J., Cancer metastasis: building a framework. Cell 2006, 127 (4), 679-95.
4. Cristofanilli , M.; Budd , G. T.; Ellis , M. J.; Stopeck , A.; Matera , J.; Miller , M. C.; Reuben , J. M.; Doyle , G. V.; Allard , W. J.; Terstappen , L. W. M. M.; Hayes , D. F., Circulating Tumor Cells, Disease Progression, and Survival in Metastatic Breast Cancer. New England Journal of Medicine 2004, 351 (8), 781-791.
5. Green, B. J.; Saberi Safaei, T.; Mepham, A.; Labib, M.; Mohamadi, R. M.; Kelley, S. O., Beyond the Capture of Circulating Tumor Cells: Next-Generation Devices and Materials. Angew Chem Int Ed Engl 2016, 55 (4), 1252-65.
6. Nagrath, S.; Sequist, L. V.; Maheswaran, S.; Bell, D. W.; Irimia, D.; Ulkus, L.; Smith, M. R.; Kwak, E. L.; Digumarthy, S.; Muzikansky, A.; Ryan, P.; Balis, U. J.; Tompkins, R. G.; Haber, D. A.; Toner, M., Isolation of rare circulating tumour cells in cancer patients by microchip technology. Nature 2007, 450 (7173), 1235-9.
7. Autebert, J.; Coudert, B.; Champ, J.; Saias, L.; Guneri, E. T.; Lebofsky, R.; Bidard, F. C.; Pierga, J. Y.; Farace, F.; Descroix, S.; Malaquin, L.; Viovy, J. L., High purity microfluidic sorting and analysis of circulating tumor cells: towards routine mutation detection. Lab Chip 2015, 15 (9), 2090-101.
8. Sekine, J.; Luo, S. C.; Wang, S.; Zhu, B.; Tseng, H. R.; Yu, H. H., Functionalized conducting polymer nanodots for enhanced cell capturing: the synergistic effect of capture agents and nanostructures. Adv Mater 2011, 23 (41), 4788-92.
9. Zhang, N.; Deng, Y.; Tai, Q.; Cheng, B.; Zhao, L.; Shen, Q.; He, R.; Hong, L.; Liu, W.; Guo, S.; Liu, K.; Tseng, H. R.; Xiong, B.; Zhao, X. Z., Electrospun TiO2 nanofiber-based cell capture assay for detecting circulating tumor cells from colorectal and gastric cancer patients. Adv Mater 2012, 24 (20), 2756-60.
10. Hou, S.; Zhao, L.; Shen, Q.; Yu, J.; Ng, C.; Kong, X.; Wu, D.; Song, M.; Shi, X.; Xu, X.; OuYang, W. H.; He, R.; Zhao, X. Z.; Lee, T.; Brunicardi, F. C.; Garcia, M. A.; Ribas, A.; Lo, R. S.; Tseng, H. R., Polymer nanofiber-embedded microchips for detection, isolation, and molecular analysis of single circulating melanoma cells. Angew Chem Int Ed Engl 2013, 52 (12), 3379-83.
11. Seal, S. H., A Sieve for the Isolation of Cancer Cells and Other Large Cells from the Blood. Cancer 1964, 17, 637-42.
12. Zheng, S.; Lin, H.; Liu, J. Q.; Balic, M.; Datar, R.; Cote, R. J.; Tai, Y. C., Membrane microfilter device for selective capture, electrolysis and genomic analysis of human circulating tumor cells. J Chromatogr A 2007, 1162 (2), 154-61.
13. Vona, G.; Sabile, A.; Louha, M.; Sitruk, V.; Romana, S.; Schutze, K.; Capron, F.; Franco, D.; Pazzagli, M.; Vekemans, M.; Lacour, B.; Brechot, C.; Paterlini-Brechot, P., Isolation by size of epithelial tumor cells : a new method for the immunomorphological and molecular characterization of circulatingtumor cells. Am J Pathol 2000, 156 (1), 57-63.
14. Hur, S. C.; Henderson-MacLennan, N. K.; McCabe, E. R.; Di Carlo, D., Deformability-based cell classification and enrichment using inertial microfluidics. Lab Chip 2011, 11 (5), 912-20.
15. Lee, H. J.; Oh, J. H.; Oh, J. M.; Park, J. M.; Lee, J. G.; Kim, M. S.; Kim, Y. J.; Kang, H. J.; Jeong, J.; Kim, S. I.; Lee, S. S.; Choi, J. W.; Huh, N., Efficient isolation and accurate in situ analysis of circulating tumor cells using detachable beads and a high-pore-density filter. Angew Chem Int Ed Engl 2013, 52 (32), 8337-40.
16. Moon, H. S.; Kwon, K.; Kim, S. I.; Han, H.; Sohn, J.; Lee, S.; Jung, H. I., Continuous separation of breast cancer cells from blood samples using multi-orifice flow fractionation (MOFF) and dielectrophoresis (DEP). Lab Chip 2011, 11 (6), 1118-25.
17. Gascoyne, P. R.; Noshari, J.; Anderson, T. J.; Becker, F. F., Isolation of rare cells from cell mixtures by dielectrophoresis. Electrophoresis 2009, 30 (8), 1388-98.
18. Zheng, F.; Cheng, Y.; Wang, J.; Lu, J.; Zhang, B.; Zhao, Y.; Gu, Z., Aptamer-functionalized barcode particles for the capture and detection of multiple types of circulating tumor cells. Adv Mater 2014, 26 (43), 7333-8.
19. Sheng, W.; Chen, T.; Tan, W.; Fan, Z. H., Multivalent DNA nanospheres for enhanced capture of cancer cells in microfluidic devices. ACS Nano 2013, 7 (8), 7067-76.
20. Karabacak, N. M.; Spuhler, P. S.; Fachin, F.; Lim, E. J.; Pai, V.; Ozkumur, E.; Martel, J. M.; Kojic, N.; Smith, K.; Chen, P. I.; Yang, J.; Hwang, H.; Morgan, B.; Trautwein, J.; Barber, T. A.; Stott, S. L.; Maheswaran, S.; Kapur, R.; Haber, D. A.; Toner, M., Microfluidic, marker-free isolation of circulating tumor cells from blood samples. Nat Protoc 2014, 9 (3), 694-710.
21. Xie, M.; Lu, N. N.; Cheng, S. B.; Wang, X. Y.; Wang, M.; Guo, S.; Wen, C. Y.; Hu, J.; Pang, D. W.; Huang, W. H., Engineered decomposable multifunctional nanobioprobes for capture and release of rare cancer cells. Anal Chem 2014, 86 (9), 4618-26.
22. Shen, Q. L.; Xu, L.; Zhao, L. B.; Wu, D. X.; Fan, Y. S.; Zhou, Y. L.; OuYang, W. H.; Xu, X. C.; Zhang, Z.; Song, M.; Lee, T.; Garcia, M. A.; Xiong, B.; Hou, S.; Tseng, H. R.; Fang, X. H., Specific Capture and Release of Circulating Tumor Cells Using Aptamer-Modified Nanosubstrates. Advanced Materials 2013, 25 (16), 2368-2373.
23. Wan, Y.; Liu, Y. L.; Allen, P. B.; Asghar, W.; Mahmood, M. A. I.; Tan, J. F.; Duhon, H.; Kim, Y. T.; Ellington, A. D.; Iqbal, S. M., Capture, isolation and release of cancer cells with aptamer-functionalized glass bead array. Lab on a Chip 2012, 12 (22), 4693-4701.
24. Reategui, E.; Aceto, N.; Lim, E. J.; Sullivan, J. P.; Jensen, A. E.; Zeinali, M.; Martel, J. M.; Aranyosi, A. J.; Li, W.; Castleberry, S.; Bardia, A.; Sequist, L. V.; Haber, D. A.; Maheswaran, S.; Hammond, P. T.; Toner, M.; Stott, S. L., Tunable Nanostructured Coating for the Capture and Selective Release of Viable Circulating Tumor Cells. Advanced Materials 2015, 27 (9), 1593-+.
25. Yu, M.; Bardia, A.; Aceto, N.; Bersani, F.; Madden, M. W.; Donaldson, M. C.; Desai, R.; Zhu, H.; Comaills, V.; Zheng, Z.; Wittner, B. S.; Stojanov, P.; Brachtel, E.; Sgroi, D.; Kapur, R.; Shioda, T.; Ting, D. T.; Ramaswamy, S.; Getz, G.; Iafrate, A. J.; Benes, C.; Toner, M.; Maheswaran, S.; Haber, D. A., Cancer therapy. Ex vivo culture of circulating breast tumor cells for individualized testing of drug susceptibility. Science 2014, 345 (6193), 216-20.
26. Baccelli, I.; Schneeweiss, A.; Riethdorf, S.; Stenzinger, A.; Schillert, A.; Vogel, V.; Klein, C.; Saini, M.; Bauerle, T.; Wallwiener, M.; Holland-Letz, T.; Hofner, T.; Sprick, M.; Scharpff, M.; Marme, F.; Sinn, H. P.; Pantel, K.; Weichert, W.; Trumpp, A., Identification of a population of blood circulating tumor cells from breast cancer patients that initiates metastasis in a xenograft assay. Nat Biotechnol 2013, 31 (6), 539-44.
27. Wen, C. Y.; Wu, L. L.; Zhang, Z. L.; Liu, Y. L.; Wei, S. Z.; Hu, J.; Tang, M.; Sun, E. Z.; Gong, Y. P.; Yu, J.; Pang, D. W., Quick-response magnetic nanospheres for rapid, efficient capture and sensitive detection of circulating tumor cells. ACS Nano 2014, 8 (1), 941-9.
28. Kang, J. H.; Krause, S.; Tobin, H.; Mammoto, A.; Kanapathipillai, M.; Ingber, D. E., A combined micromagnetic-microfluidic device for rapid capture and culture of rare circulating tumor cells. Lab Chip 2012, 12 (12), 2175-81.
29. Shen, Z.; Wu, A.; Chen, X., Current detection technologies for circulating tumor cells. Chem Soc Rev 2017, 46 (8), 2038-2056.
30. Schiro, P. G.; Zhao, M.; Kuo, J. S.; Koehler, K. M.; Sabath, D. E.; Chiu, D. T., Sensitive and high-throughput isolation of rare cells from peripheral blood with ensemble-decision aliquot ranking. Angew Chem Int Ed Engl 2012, 51 (19), 4618-22.
31. Zhao, M.; Schiro, P. G.; Kuo, J. S.; Koehler, K. M.; Sabath, D. E.; Popov, V.; Feng, Q.; Chiu, D. T., An automated high-throughput counting method for screening circulating tumor cells in peripheral blood. Anal Chem 2013, 85 (4), 2465-71.
32. Wang, X.; Qian, X.; Beitler, J. J.; Chen, Z. G.; Khuri, F. R.; Lewis, M. M.; Shin, H. J.; Nie, S.; Shin, D. M., Detection of circulating tumor cells in human peripheral blood using surface-enhanced Raman scattering nanoparticles. Cancer Res 2011, 71 (5), 1526-32.
33. Wu, X.; Luo, L.; Yang, S.; Ma, X.; Li, Y.; Dong, C.; Tian, Y.; Zhang, L.; Shen, Z.; Wu, A., Improved SERS Nanoparticles for Direct Detection of Circulating Tumor Cells in the Blood. ACS Appl Mater Interfaces 2015, 7 (18), 9965-71.
34. Lara, O.; Tong, X.; Zborowski, M.; Chalmers, J. J., Enrichment of rare cancer cells through depletion of normal cells using density and flow-through, immunomagnetic cell separation. Exp Hematol 2004, 32 (10), 891-904.
35. Hyun, K. A.; Lee, T. Y.; Jung, H. I., Negative enrichment of circulating tumor cells using a geometrically activated surface interaction chip. Anal Chem 2013, 85 (9), 4439-45.
36. Cognart, H. A.; Chang, C. P., Negative Enrichment of Circulating Tumor Cells in Blood Using a Microfluidic Chip. Methods Mol Biol 2017, 1547, 167-174.
37. Galanzha, E. I.; Shashkov, E. V.; Kelly, T.; Kim, J. W.; Yang, L.; Zharov, V. P., In vivo magnetic enrichment and multiplex photoacoustic detection of circulating tumour cells. Nat Nanotechnol 2009, 4 (12), 855-60.
38. Yang, L.; Cao, Z.; Sajja, H. K.; Mao, H.; Wang, L.; Geng, H.; Xu, H.; Jiang, T.; Wood, W. C.; Nie, S.; Wang, Y. A., Development of Receptor Targeted Magnetic Iron Oxide Nanoparticles for Efficient Drug Delivery and Tumor Imaging. J Biomed Nanotechnol 2008, 4 (4), 439-449.
39. Kim, J. W.; Galanzha, E. I.; Shashkov, E. V.; Moon, H. M.; Zharov, V. P., Golden carbon nanotubes as multimodal photoacoustic and photothermal high-contrast molecular agents. Nat Nanotechnol 2009, 4 (10), 688-94.
40. Chen, W.; Weng, S.; Zhang, F.; Allen, S.; Li, X.; Bao, L.; Lam, R. H.; Macoska, J. A.; Merajver, S. D.; Fu, J., Nanoroughened surfaces for efficient capture of circulating tumor cells without using capture antibodies. ACS Nano 2013, 7 (1), 566-75.
41. Mayo, C.; Ortega, F. G.; Gimenez-Capitan, A.; Molina-Vila, M. A.; Serrano, M. J.; Viteri, S.; Costa, C.; Gasco, A.; Bertran-Alamillo, J.; Karachaliou, N.; Lorente, J. A.; Taron, M.; Rosell, R., CK-coated magnetic-based beads as a tool to isolate circulating tumor cells (CTCs) in human tumors. Transl Lung Cancer Res 2013, 2 (2), 65-71.
42. Li, P.; Stratton, Z. S.; Dao, M.; Ritz, J.; Huang, T. J., Probing circulating tumor cells in microfluidics. Lab Chip 2013, 13 (4), 602-9.
43. Xiong, K.; Wei, W.; Jin, Y.; Wang, S.; Zhao, D.; Wang, S.; Gao, X.; Qiao, C.; Yue, H.; Ma, G.; Xie, H. Y., Biomimetic Immuno-Magnetosomes for High-Performance Enrichment of Circulating Tumor Cells. Adv Mater 2016, 28 (36), 7929-7935.
44. Tang, Y.; Shi, J.; Li, S.; Wang, L.; Cayre, Y. E.; Chen, Y., Microfluidic device with integrated microfilter of conical-shaped holes for high efficiency and high purity capture of circulating tumor cells. Sci Rep 2014, 4, 6052.
45. Dobrovolskaia, M. A.; McNeil, S. E., Immunological properties of engineered nanomaterials. Nat Nanotechnol 2007, 2 (8), 469-78.
46. Eda, G.; Fanchini, G.; Chhowalla, M., Large-area ultrathin films of reduced graphene oxide as a transparent and flexible electronic material. Nat Nanotechnol 2008, 3 (5), 270-4.
47. Wang, J.; Cheng, M.; Zhang, Z.; Guo, L.; Liu, Q.; Jiang, G., An antibody-graphene oxide nanoribbon conjugate as a surface enhanced laser desorption/ionization probe with high sensitivity and selectivity. Chem Commun (Camb) 2015, 51 (22), 4619-22.
48. Li, Y.; Lu, Q.; Liu, H.; Wang, J.; Zhang, P.; Liang, H.; Jiang, L.; Wang, S., Antibody-Modified Reduced Graphene Oxide Films with Extreme Sensitivity to Circulating Tumor Cells. Adv Mater 2015, 27 (43), 6848-54.
49. Novotna, Z.; Reznickova, A.; Kvitek, O.; Kasalkova, N. S.; Kolska, Z.; Svorcik, V., Cells adhesion and growth on gold nanoparticle grafted glass. Applied Surface Science 2014, 307, 217-223.
50. Feng, L.; Chen, Y.; Ren, J.; Qu, X., A graphene functionalized electrochemical aptasensor for selective label-free detection of cancer cells. Biomaterials 2011, 32 (11), 2930-7.
51. Abraham, S.; Ciobota, V.; Srivastava, S.; Srivastava, S. K.; Singh, R. K.; Dellith, J.; Malhotra, B. D.; Schmitt, M.; Popp, J.; Srivastava, A., Mesoporous silica particle embedded functional graphene oxide as an efficient platform for urea biosensing. Analytical Methods 2014, 6 (17), 6711.
52. Srivastava, R. K.; Srivastava, S.; Narayanan, T. N.; Mahlotra, B. D.; Vajtai, R.; Ajayan, P. M.; Srivastava, A., Functionalized multilayered graphene platform for urea sensor. ACS Nano 2012, 6 (1), 168-75.
53. Kamat, D. K.; Bagul, D.; Patil, P. M., Blood Glucose Measurement Using Bioimpedance Technique. Advances in Electronics 2014, 2014, 1-5.
54. K'Owino, I. O.; Sadik, O. A., Impedance spectroscopy: A powerful tool for rapid biomolecular screening and cell culture monitoring. Electroanal 2005, 17 (23), 2101-2113.
55. Chang, B. Y.; Park, S. M., Electrochemical impedance spectroscopy. Annu Rev Anal Chem (Palo Alto Calif) 2010, 3, 207-29.
56. Kissinger, P. T.; Heineman, W. R., Cyclic Voltammetry. J Chem Educ 1983, 60 (9), 702-706.
57. Matsunaga, T.; Namba, Y., Detection of microbial cells by cyclic voltammetry. Anal Chem 1984, 56 (4), 798-801.
58. Hummers, W. S.; Offeman, R. E., Preparation of Graphitic Oxide. J Am Chem Soc 1958, 80 (6), 1339-1339.
59. Dreyer, D. R.; Park, S.; Bielawski, C. W.; Ruoff, R. S., The chemistry of graphene oxide. Chem Soc Rev 2010, 39 (1), 228-40.
60. Wu, S.-H.; Hung, Y.; Mou, C.-Y., Compartmentalized Hollow Silica Nanospheres Templated from Nanoemulsions. Chemistry of Materials 2013, 25 (3), 352-364.
61. Wu, L. P.; Zhang, L.; Lu, L. M.; Duan, X. M.; Xu, J. K.; Nie, T., Graphene oxide doped poly(hydroxymethylated-3,4-ethylenedioxythiophene): enhanced sensitivity for electrochemical determination of rutin and ascorbic acid. Chinese J Polym Sci 2014, 32 (8), 1019-1031.
62. Yang, P. P.; Liu, Q.; Liu, J. Y.; Zhang, H. S.; Li, Z. S.; Li, R. M.; Liu, L. H.; Wang, J., Bovine Serum Albumin-Coated Graphene Oxide for Effective Adsorption of Uranium(VI) from Aqueous Solutions. Industrial & Engineering Chemistry Research 2017, 56 (13), 3588-3598.
63. Wu, Z.; Li, Y.; Gao, L.; Wang, S.; Fu, G., Synthesis of Na-doped ZnO hollow spheres with improved photocatalytic activity for hydrogen production. Dalton Trans 2016, 45 (27), 11145-9.
64. Pae, A.; Lee, H.; Noh, K.; Woo, Y. H., Cell attachment and proliferation of bone marrow-derived osteoblast on zirconia of various surface treatment. J Adv Prosthodont 2014, 6 (2), 96-102.
65. Safa, A. R.; Tseng, M. T., A Simple Method for Scanning Electron-Microscope Preparation of Cells Grown in Multiwell Culture Plates. Stain Technol 1982, 57 (2), 107-112.
66. Meng, W.; Gall, E.; Ke, F.; Zeng, Z.; Kopchick, B.; Timsina, R.; Qiu, X., Structure and Interaction of Graphene Oxide– Cetyltrimethylammonium Bromide Complexation. The Journal of Physical Chemistry C 2015, 119 (36), 21135-21140.
67. Kudin, K. N.; Ozbas, B.; Schniepp, H. C.; Prud'homme, R. K.; Aksay, I. A.; Car, R., Raman spectra of graphite oxide and functionalized graphene sheets. Nano Lett 2008, 8 (1), 36-41.
68. Wen, Y.; Xing, F.; He, S.; Song, S.; Wang, L.; Long, Y.; Li, D.; Fan, C., A graphene-based fluorescent nanoprobe for silver(I) ions detection by using graphene oxide and a silver-specific oligonucleotide. Chem Commun (Camb) 2010, 46 (15), 2596-8.
69. Song, Y.; Qu, K.; Zhao, C.; Ren, J.; Qu, X., Graphene oxide: intrinsic peroxidase catalytic activity and its application to glucose detection. Adv Mater 2010, 22 (19), 2206-10.
70. Zhang, Y.; Ali, S. F.; Dervishi, E.; Xu, Y.; Li, Z.; Casciano, D.; Biris, A. S., Cytotoxicity effects of graphene and single-wall carbon nanotubes in neural phaeochromocytoma-derived PC12 cells. ACS Nano 2010, 4 (6), 3181-6.
71. Yang, P.; Liu, Q.; Liu, J.; Zhang, H.; Li, Z.; Li, R.; Liu, L.; Wang, J., Bovine Serum Albumin-Coated Graphene Oxide for Effective Adsorption of Uranium(VI) from Aqueous Solutions. Industrial & Engineering Chemistry Research 2017, 56 (13), 3588-3598.
72. Weaver, C. L.; Li, H.; Luo, X.; Cui, X. T., A graphene oxide/conducting polymer nanocomposite for electrochemical dopamine detection: origin of improved sensitivity and specificity. J Mater Chem B 2014, 2 (32), 5209-5219.
73. Davis, R. H.; Zhao, Y.; Galvin, K. P.; Wilson, H. J., Solid-solid contacts due to surface roughness and their effects on suspension behaviour. Philos Trans A Math Phys Eng Sci 2003, 361 (1806), 871-94.
74. Abraham, S.; Ciobota, V.; Srivastava, S.; Srivastava, S. K.; Singh, R. K.; Dellith, J.; Malhotra, B. D.; Schmitt, M.; Popp, J.; Srivastava, A., Mesoporous silica particle embedded functional graphene oxide as an efficient platform for urea biosensing. Analytical Methods 2014, 6 (17), 6711-6720.

 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top

相關論文

1. 利用循環伏安法及交流阻抗法探討染料敏化型太陽能電池之電解液
2. 具光熱應答性乳鐵蛋白修飾奈米豌豆應用於雷射刺激藥物釋放、腫瘤標靶與光熱/化學協同治療
3. 磁性奈米殼核膠囊特性改質應用於疏水性藥物控制釋放與增強腫瘤治療
4. 磷脂質修飾多孔碳矽複合奈米片經磁刺激 用於加強類神經細胞分化和腫瘤治療
5. 具標靶功能紅血球膜包覆介孔性二氧化矽奈米粒子應用於藥物輸送與光熱治療
6. 具藥物再填充之可注射型磁性多孔隙複合奈米載體應於腫瘤治療
7. 仿紅血球多孔磁性奈米粒子用於增強阿黴素- 高分子粒子釋放應用於轉移肺腫瘤治療
8. 具自發性多重階段標靶與穿透的磁製藥物傳輸系統應用於腫瘤深處的協同治療
9. 3D列印應用於具階段性藥物控制釋放磁性微針製備於雄性禿治療
10. 具磁電操控表面電性之金奈米腦攜帶可穿透次級藥物載體應用於腦瘤深度治療
11. 可躲避免疫系統偵測之外泌體修飾奈米氧化鐵應用於黑色素瘤轉移型之肺癌治療
12. 可注射型多孔金奈米腦/微米水膠球複合材料應用於創傷性腦損傷治療
13. 可注射式新月形水膠微球與具磁電操控表面電性之金奈米腦應用於腦創傷的修復
14. 外泌體修飾磁性奈米粒子透過對流增強遞送系統應用於腦瘤治療
15. 具光熱免疫療法之巨噬細胞外泌體裝飾金/銀殼核三角奈米板結合檢查點阻斷劑應用於抑制轉移性腫瘤
 
* *