帳號:guest(3.142.252.185)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):何啟弘
作者(外文):Ho, Chi-Hung
論文名稱(中文):牽引力顯微鏡量測肌動蛋白對細胞牽引力之影響
論文名稱(外文):Studying the Influences of Actin Assembly on Cellular Traction Force with Traction Force Microscopy
指導教授(中文):陳之碩
指導教授(外文):Chen, Chi-Shuo
口試委員(中文):吳順吉
李夢麟
口試委員(外文):Wu, Shun-Chi
Li, Meng-Lin
學位類別:碩士
校院名稱:國立清華大學
系所名稱:生醫工程與環境科學系
學號:104012516
出版年(民國):107
畢業學年度:106
語文別:中文
論文頁數:78
中文關鍵詞:牽引力顯微鏡肝癌細胞外基質癌症轉移
外文關鍵詞:TractionForceMicroscopyHepatocellularcarcinomaExtracellularmatrixMetastasis
相關次數:
  • 推薦推薦:0
  • 點閱點閱:935
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
中文摘要
  肝癌在世界上為第五大常見癌症以及第三大致死率癌症。許多致癌風險因子如B型與C型肝炎病毒或是病患有長期酗酒行為,都會引發慢性發炎,造成細胞外基質過度累積在肝臟形成肝硬化,進而演變成肝癌Hepatocellular carcinoma (HCC)。細胞外基質與細胞間機械訊號都會改變細胞的生理型態,包括生長、轉移以及入侵等。其中癌細胞與細胞外基質間的細胞機械力與癌病惡化轉移有高度相關,因此我們透過牽引力顯微鏡量測肝癌細胞在不同微環境下的機械訊號變化。
  本研究中,以人類肝癌Alexander cells (PLC/PRF/5 ATCC® CRL-8024) 以及過度表達kappa-actin的Alexander cells (Alex-к) 作為實驗模型,藉由影像處理方式來量化細胞在基材上所產生的細胞牽引力大小。Kappa-actin 是一種與術後致死率有高度相關的肌動蛋白突變。實驗發現,當微環境硬度較高時癌細胞產生較大牽引力,有較高的vinculin表現量,顯示focal adhesion表達量與細胞牽引力成正比關係。實驗結果指出Alex會比Alex-к有更大的牽引力,且細胞內肌動蛋白有較高的自組裝效率,推測其細胞在遷移速率較快與牽引力較大的情況下利於癌細胞入侵周遭組織。研究中也發現藉由改變基質硬度或是不同細胞外基質分子會對細胞牽引力造成影響,再而間接調節細胞間張力。
  從本研究中建立一套細胞牽引力顯微鏡系統,並觀察到當癌細胞感受不同細胞外基質硬度時,其細胞上機械力訊號也隨之改變,而癌細胞中肌動蛋白的突變,也會造成機械力訊號上的變化,進而影響癌細胞黏附、侵入、轉移等生理特性。癌症在轉移過程中,癌細胞型態以及機械力會因微環境不同而有所變化,透過牽引力顯微鏡系統觀測癌細胞生理特性改變,能夠更進一步確認癌症轉移過程,對於後續癌症治療無疑是一大利器。
Abstract
Liver cancer is the fifth most common cancer in the world and the third most common cause of cancer mortality. During liver cancer progression, liver cirrhosis, the abnormal extracellular matrix accumulated in liver, is highly associated with the development of hepatocellular carcinoma (HCC). Numerous studies identified the important gene pathways related to HCC progression, however, the influences of physical microenvironment have not been fully explored yet.
In this study, we established the traction force microscopy to investigate the mechanical responses of HCC in engineered cirrhosis environment. The Alexander cells (PLC / PRF / 5 ATCC® CRL-8024) and cells overexpressing kappa-actin, which is correlated to poor post-operate survival rate, are selected as our cell models. The outcomes of traction force microscopy demonstrated that the traction force of HCC increases with the increasing substrate stiffness, and the expression of focal adhesion increases accordingly. We also observed the alteration of traction force and migration speed of HCC with actin mutant. From our intercellular force analysis, a unique correlation between traction force and intercellular force seems be regulated by actin assembly in HCC.
The results of this study demonstrated the rigidity of microenvironment can alter the mechanical responses of HCC, which is associated with tumor invasion and metastasis. Moreover, the interconnection between cell-ECM traction force and intercellular force through action cytoskeleton may contribute to our current understanding about the transmission of mechanical signals over multicellular structures. In cancer metastasis, variation of microenvironment will change morphology and mechanical force of cancer cells. By traction force microscope, cancer metastasis process can confirm through observed the physiological characteristics changes of cancer cells. Traction force microscope will be a great method to involve cancer treatment in the future.
章節目錄
中文摘要 i
Abstract ii
章節目錄 iii
表目錄 viii
第1章 序論 1
1-1 肝癌與肝硬化 1
1-2 物理微環境對癌症發生的影響 2
1-3 細胞機械力改變細胞生理型態 3
1-4 細胞機械訊號傳遞 8
1-5 牽引力顯微鏡 (Traction force microscopy,TFM) 11
1-5-1 牽引力顯微鏡回顧 12
1-5-2 聚丙烯酰胺膠 13
1-5-3 圖像速度測定技術 15
1-5-4 牽引力場重建方法 16
1-5-5 牽引力顯微鏡的特性與其他量測機械訊號的系統 17


第2章 材料與方法 20
2-1 細胞培養 20
2-2 聚丙烯酰胺成膠 20
2-2-1 玻璃表面活化 20
2-2-3 膠原蛋白與纖維連接蛋白塗佈上聚丙烯酰胺膠 22
2-2-4 聚丙烯酰胺膠滅菌與細胞貼附 22
2-3 藉由旋轉離心使聚丙烯酰胺成膠 24
2-4 牽引力顯微鏡 25
2-4-1 活細胞影像 25
2-4-2 聚丙烯酰胺膠型變 26
2-4-3 迭代互相關函數粒子成像測速法 (Particle Image Velocimetry,PIV) 27
2-4-4 牽引力場重建 28
2-4-5 細胞對張力量測 30
2-5 細胞遷移 31
2-6 免疫螢光染色 31
2-7 Q-PCR (Quantitative real time polymerase chain reaction) 31
2-7-1 抽取mRNA 31
2-7-2 反轉錄反應 32
2-7-3 Q-PCR即時定量 32
2-8 Actin光漂白螢光恢復術 33
第3章 結果與討論 36
3-1 選擇最佳interrogation window大小 36
3-2 單顆細胞的牽引力分析 39
3-4 藉由旋轉離心方法改善螢光影像背景訊號的干擾 44
3-5 肝癌細胞在不同硬度下牽引力分布與表現 47
3-6 細胞貼附面積與總牽引力及細胞單位面積牽引力關係 52
3-7 細胞面積與遷移速率 54
3-8 不同細胞外基質的牽引力 57
3-9 細胞對牽引力分析 61
3-10 改變細胞外基質硬度或生化組成以調節細胞與細胞間張力表現 62
3-11 Latrunculin-B阻止細胞內G-actin聚合 64
第4章 結論 69
參考文獻 71

圖目錄
圖 1 1 肝癌病發途徑 1
圖 1 2 細胞與細胞外基質相互作用產生牽引力 3
圖 1 3 肌肉成纖維細胞產生機械力促使傷口修復 4
圖 1 4 Myosin透過ATP黏附上actin產生細胞收縮力 5
圖 1 5 癌細胞轉移過程 6
圖 1 6 ECM分子與ECM受體訊息傳遞影響癌細胞侵入 7
圖 1 7 細胞內focal adhesion的分子結構 8
圖 1 8 FAK傳遞至下游訊傳蛋白影響細胞遷移與癌細胞入侵 9
圖 1 9 單體G-actin聚合成F-actin 11
圖 1 10 Actin聚合及解聚產生牽引力驅使細胞遷移 11
圖 1 11 細胞種植於垂直的彈性支柱上 12
圖 1 12 纖維母細胞種植於矽膠薄膜上產生皺摺 12
圖 1 13 牽引力顯微鏡系統 13
圖 1 14 丙烯酰胺與BIS的vinyl加成聚合反應 14
圖 1 15 粒子追踪測速技術 15
圖 1 16 粒子影像測速技術 16
圖 1 17 單位interrogation window中所包含粒子個數對於平均位移與平均力誤差值 17
圖 2 1 聚丙烯酰胺成膠製作流程 23
圖 2 2 Sulfo-SANPAH分別與聚丙烯酰胺及I型膠原蛋白進行交聯 23
圖 2 3 聚二甲基矽氧烷夾具 24
圖 2 4 不鏽鋼夾具 25
圖 2 5 細胞產生牽引力造成聚丙烯酰胺膠中奈米螢光珠位移 26
圖 2 6 互相關函數做圖表示與50% interrogation window部分重疊 27
圖 2 7 迭代互相關函數粒子成像測速法操作流程 28
圖 2 8 運用FTTC重建牽引力場 28
圖 2 9 逆問題正歸化算式 29
圖 2 10 細胞對中牽引力與張力方向向量 30
圖 2 11 細胞對牽引力與張力相互作用 30
圖 3 1 不同interrogation window大小內所包含螢光珠數目(N=10) 36
圖 3 2 聚丙烯酰胺膠最上層奈米螢光珠影像 36
圖 3 3 不同interrogation window大小經由PIV計算位移方向向量的解析度 37
圖 3 4 單顆細胞牽引力方向向量與熱點圖 39
圖 3 5 HCC中vinculin聚集情形 40
圖 3 6 HCC貼附在交聯膠原蛋白的6.2kPa聚丙烯酰胺膠下牽引力點分佈 41
圖 3 7 Alex與Alex-κ貼附交聯膠原蛋白6.2 kPa聚丙烯酰胺膠下平均牽引力 42
圖 3 8 HCC在glass組的團簇表現數量 43
圖 3 9 比較新式與舊式的聚丙烯酰胺膠最上層螢光影像與螢光強度 44
圖 3 10 聚丙烯酰胺膠Z軸切面圖 45
圖 3 11 HCC貼附舊式交聯膠原蛋白6.2kPa聚丙烯酰胺膠下牽引力點分布 45
圖 3 12 比較Alex與Alex-κ貼附新式與舊式聚丙烯酰胺膠平均牽引力改變 46
圖 3 13 HCC貼附交聯膠原蛋白1.4 kPa聚丙烯酰胺膠下牽引力點分布 47
圖 3 14 比較Alex與Alex-κ貼附1.4 kPa聚丙烯酰胺膠下平均牽引力大小 48
圖 3 15 比較Alex與Alex-κ貼附不同硬度聚丙烯酰胺膠下平均牽引力大小 48
圖 3 16 肝癌細胞在不同硬度下的vinculin表達量 49
圖 3 17 不同硬度下β1 integrin與Cav1之間的相互調節 50
圖 3 18 Alex與Alex-κ在6.2kPa聚丙烯酰胺膠下總牽引力與細胞單位面積牽引力及細胞貼附面積關係 52
圖 3 19 Alex與Alex-κ在1.4kPa聚丙烯酰胺膠下總牽引力與細胞單位面積牽引力及細胞貼附面積關係 53
圖 3 20 單顆肝癌細胞貼附面積與移動速率關係 54
圖 3 21 單顆肝癌細胞貼附交聯膠原蛋白6.2kPa聚丙烯酰胺膠上移動軌跡 55
圖 3 22 肝癌細胞經光漂白螢光回復系統後actin的回覆時間 57
圖 3 23 HCC貼附交聯纖維連接蛋白6.2 kPa聚丙烯酰胺膠下牽引力點分布 58
圖 3 24 比較Alex與Alex-κ貼附交聯纖維連接蛋白6.2 kPa聚丙烯酰胺膠下 58
圖 3 25 比較Alex與Alex-κ在不同細胞外基質下平均牽引力差異 59
圖 3 26 膠原蛋白與纖維連接蛋白透過不同integrin黏附於細胞外基質上 60
圖 3 27 細胞對牽引力方向向量與熱點圖 61
圖 3 28 Alex細胞間張力和細胞牽引力 62
圖 3 29 Alex-κ細胞間張力和細胞牽引力 62
圖 3 30 鈣粘蛋白與牽引力不平衡調節EMT 64
圖 3 31 Latrunculin-B阻止G-actin聚合影響HCC型態與牽引力 65
圖 3 32 Latrunculin-A or B黏附使G-actin無法聚合成F-actin 65
圖 3 33 HCC加入Latrunculin-B 6分鐘後牽引力點改變 67
圖 3 34 比較Alex與Alex-κ在加入Latrunculin-B 6分鐘後平均牽引力差異 68

表目錄
表格 1 1 涉及癌細胞入侵的細胞外分子 7
表格 1 2 BEM與FTTC優缺點比較 17
表格 2 1 不同硬度下丙烯酰胺膠成分比例 22
表格 2 2 PCR使用之引子 32
表格 2 3 實驗材料與儀器 34

參考文獻
1. Kahrilas PJ, Boeckxstaens G (2013) Reviews in Basic and Clinical Gastroenterology and Hepatology. Gastroenterology 145: 954-965.
2. Llovet JM, Burroughs A, Bruix J (2003) Hepatocellular carcinoma. Lancet 362: 1907-1917.
3. Pellicoro A, Ramachandran P, Iredale JP, Fallowfield JA (2014) Liver fibrosis and repair: immune regulation of wound healing in a solid organ. Nature Reviews Immunology 14: 181-194.
4. McKillop IH, Schrum LW (2005) Alcohol and liver cancer. Alcohol 35: 195-203.
5. Toosi AE (2015) Liver Fibrosis: Causes and Methods of Assessment, A Review. Rom J Intern Med 53: 304-314.
6. Forbes SJ, Parola M (2011) Liver fibrogenic cells. Best Pract Res Clin Gastroenterol 25: 207-217.
7. El-Serag HB, Rudolph L (2007) Hepatocellular carcinoma: Epidemiology and molecular carcinogenesis. Gastroenterology 132: 2557-2576.
8. Tatsumi A, Maekawa S, Sato M, Komatsu N, Miura M, et al. (2015) Liver stiffness measurement for risk assessment of hepatocellular carcinoma. Hepatology Research 45: 523-532.
9. Tung JC, Barnes JM, Desai SR, Sistrunk C, Conklin MW, et al. (2015) Tumor mechanics and metabolic dysfunction. Free Radical Biology and Medicine 79: 269-280.
10. Lu Q, Ling WW, Lu CL, Li JW, Ma L, et al. (2015) Hepatocellular Carcinoma: Stiffness Value and Ratio to Discriminate Malignant from Benign Focal Liver Lesions. Radiology 275: 880-888.
11. Schrader J, Gordon-Walker TT, Aucott RL, van Deemter M, Quaas A, et al. (2011) Matrix Stiffness Modulates Proliferation, Chemotherapeutic Response, and Dormancy in Hepatocellular Carcinoma Cells. Hepatology 53: 1192-1205.
12. Frantz C, Stewart KM, Weaver VM (2010) The extracellular matrix at a glance. Journal of Cell Science 123: 4195-4200.
13. Mouw JK, Ou GQ, Weaver VM (2014) Extracellular matrix assembly: a multiscale deconstruction. Nature Reviews Molecular Cell Biology 15: 771-785.
14. Stivarou T, Patsavoudi E (2015) Extracellular Molecules Involved in Cancer Cell Invasion. Cancers 7: 238-265.
15. Stetlerstevenson WG, Aznavoorian S, Liotta LA (1993) Tumor-Cell Interactions with the Extracellular-Matrix during Invasion and Metastasis. Annual Review of Cell Biology 9: 541-573.
16. Lu PF, Weaver VM, Werb Z (2012) The extracellular matrix: A dynamic niche in cancer progression. Journal of Cell Biology 196: 395-406.
17. Zaman MH, Trapani LM, Siemeski A, MacKellar D, Gong H, et al. (2006) Migration of tumor cells in 3D matrices is governed by matrix stiffness along with cell-matrix adhesion and proteolysis (vol 103, pg 10889, 2006). Proceedings of the National Academy of Sciences of the United States of America 103: 13897-13897.
18. Ganz A, Lambert M, Saez A, Silberzan P, Buguin A, et al. (2006) Traction forces exerted through N-cadherin contacts. Biology of the Cell 98: 721-730.
19. Polackwich RJ, Koch D, McAllister R, Geller HM, Urbach JS (2015) Traction force and tension fluctuations in growing axons. Frontiers in Cellular Neuroscience 9.
20. Maruthamuthu V, Sabass B, Schwarz US, Gardel ML (2011) Cell-ECM traction force modulates endogenous tension at cell-cell contacts. Proceedings of the National Academy of Sciences of the United States of America 108: 4708-4713.
21. Li B, Wang JHC (2010) Application of Sensing Techniques to Cellular Force Measurement. Sensors 10: 9948-9962.
22. Brugues A, Anon E, Conte V, Veldhuis J, Gupta M, et al. (2014) Forces driving epithelial wound healing. Molecular Biology of the Cell 25.
23. Li B, Wang JHC (2011) Fibroblasts and myofibroblasts in wound healing: Force generation and measurement. Journal of Tissue Viability 20: 108-120.
24. Hunter MV, Fernandez-Gonzalez R (2014) CELL MIGRATION A force to be reckoned with. Nature Physics 10: 626-627.
25. Plikus MV, Guerrero-Juarez CF, Ito M, Li YR, Dedhia PH, et al. (2017) Regeneration of fat cells from myofibroblasts during wound healing. Science 355: 748-+.
26. Yu HB, Ma L, Yang Y, Cui Q (2007) Mechanochemical coupling in the myosin motor domain. I. Insights from equilibrium active-site simulations. Plos Computational Biology 3: 199-213.
27. Spano D, Heck C, De Antonellis P, Christofori G, Zollo M (2012) Molecular networks that regulate cancer metastasis. Seminars in Cancer Biology 22: 234-249.
28. Christofori G (2006) New signals from the invasive front. Nature 441: 444-450.
29. Valastyan S, Weinberg RA (2011) Tumor Metastasis: Molecular Insights and Evolving Paradigms. Cell 147: 275-292.
30. Koch TM, Munster S, Bonakdar N, Butler JP, Fabry B (2012) 3D Traction Forces in Cancer Cell Invasion. Plos One 7.
31. Desgrosellier JS, Cheresh DA (2010) Integrins in cancer: biological implications and therapeutic opportunities (vol 10, pg 9, 2010). Nature Reviews Cancer 10: 890-890.
32. Humphries JD, Wang P, Streuli C, Geiger B, Humphries MJ, et al. (2007) Vinculin controls focal adhesion formation by direct interactions with talin and actin. Journal of Cell Biology 179: 1043-1057.
33. Mitra SK, Hanson DA, Schlaepfer DD (2005) Focal adhesion kinase: In command and control of cell motility. Nature Reviews Molecular Cell Biology 6: 56-68.
34. Zhao X, Guan JL (2011) Focal adhesion kinase and its signaling pathways in cell migration and angiogenesis. Advanced Drug Delivery Reviews 63: 610-615.
35. Parsons JT (2003) Focal adhesion kinase: the first ten years. Journal of Cell Science 116: 1409-1416.
36. Illc D, Furuta Y, Kanazawa S, Takeda N, Sobue K, et al. (1995) Reduced Sell Motility and Enhanced Focal Adhesion Contact Formation in Cells from Fak-Deficient Mice. Nature 377: 539-544.
37. Gates RE, King LE, Hanks SK, Nanney LB (1994) Potential Role for Focal Adhesion Kinase in Migrating and Proliferating Keratinocytes near Epidermal Wounds and in Culture. Cell Growth & Differentiation 5: 891-899.
38. Weiner TM, Liu ET, Craven RJ, Cance WG (1993) Expression of Focal Adhesion Kinase Gene and Invasive Cancer. Lancet 342: 1024-1025.
39. Owens LV, Xu LH, Craven RJ, Dent GA, Weiner TM, et al. (1995) Overexpression of the Focal Adhesion Kinase (P125(Fak)) in Invasive Human Tumors. Cancer Research 55: 2752-2755.
40. Van Nhieu GT, Izard T (2008) Vinculin binding in its closed conformation by a helix addition mechanism (vol 26, pg 4588, 2007). Embo Journal 27: 922-922.
41. del Rio A, Perez-Jimenez R, Liu RC, Roca-Cusachs P, Fernandez JM, et al. (2009) Stretching Single Talin Rod Molecules Activates Vinculin Binding. Science 323: 638-641.
42. Ziegler WH, Liddington RC, Critchley DR (2006) The structure and regulation of vinculin. Trends in Cell Biology 16: 453-460.
43. Carisey A, Ballestrem C (2011) Vinculin, an adapter protein in control of cell adhesion signalling. European Journal of Cell Biology 90: 157-163.
44. Jannie KM, Ellerbroek SM, Zhou DW, Chen S, Crompton DJ, et al. (2015) Vinculin-dependent actin bundling regulates cell migration and traction forces. Biochemical Journal 465: 383-393.
45. Kanchanawong P, Shtengel G, Pasapera AM, Ramko EB, Davidson MW, et al. (2010) Nanoscale architecture of integrin-based cell adhesions. Nature 468: 580-U262.
46. Lehnert D, Wehrle-Haller B, David C, Weiland U, Ballestrem C, et al. (2004) Cell behaviour on micropatterned substrata: limits of extracellular matrix geometry for spreading and adhesion. Journal of Cell Science 117: 41-52.
47. Zhukarev V, Ashton F, Sanger JM, Sanger JW, Shuman H (1995) Organization and Structure of Actin Filament Bundles in Listeria-Infected Cells. Cell Motility and the Cytoskeleton 30: 229-246.
48. Ananthakrishnan R, Ehrlicher A (2007) The forces behind cell movement. International Journal of Biological Sciences 3: 303-317.
49. Rosel D, Brabek J, Tolde O, Mierke CT, Zitterbart DP, et al. (2008) Up-regulation of Rho/ROCK signaling in sarcoma cells drives invasion and increased generation of protrusive forces. Molecular Cancer Research 6: 1410-1420.
50. Kumar S, Maxwell IZ, Heisterkamp A, Polte TR, Lele TP, et al. (2006) Viscoelastic retraction of single living stress fibers and its impact on cell shape, cytoskeletal organization, and extracellular matrix mechanics. Biophysical Journal 90: 3762-3773.
51. Polacheck WJ, Chen CS (2016) Measuring cell-generated forces: a guide to the available tools. Nature Methods 13: 415-423.
52. Harris AK, Wild P, Stopak D (1980) Silicone-Rubber Substrata - New Wrinkle in the Study of Cell Locomotion. Science 208: 177-179.
53. Kraning-Rush CM, Carey SP, Califano JP, Reinhart-King CA (2012) Quantifying Traction Stresses in Adherent Cells. Computational Methods in Cell Biology 110: 139-178.
54. Holenstein CN, Silvan U, Snedeker JG (2017) High-resolution traction force microscopy on small focal adhesions - improved accuracy through optimal marker distribution and optical flow tracking. Scientific Reports 7.
55. Sabbagh F, Muhamad II (2017) Acrylamide-based hydrogel drug delivery systems: Release of Acyclovir from MgO nanocomposite hydrogel. Journal of the Taiwan Institute of Chemical Engineers 72: 182-193.
56. Ng SS, Li C, Chan V (2011) Experimental and numerical determination of cellular traction force on polymeric hydrogels. Interface Focus 1: 777-791.
57. Sabass B, Gardel ML, Waterman CM, Schwarz US (2008) High resolution traction force microscopy based on experimental and computational advances. Biophysical Journal 94: 207-220.
58. Sokoray-Varga B, Jozsa J (2008) Particle tracking velocimetry (PTV) and its application to analyse free surface flows in laboratory scale models. Periodica Polytechnica-Civil Engineering 52: 63-71.
59. Keane RD, Adrian RJ (1992) Theory of Cross-Correlation Analysis of Piv Images. Applied Scientific Research 49: 191-215.
60. Stamhuis EJ (2006) Basics and principles of particle image velocimetry (PIV) for mapping biogenic and biologically relevant flows. Aquatic Ecology 40: 463-479.
61. Schwarz US, Soine JRD (2015) Traction force microscopy on soft elastic substrates: A guide to recent computational advances. Biochimica Et Biophysica Acta-Molecular Cell Research 1853: 3095-3104.
62. Vukasinovic B, Smith MK, Glezer A (2004) Spray characterization during vibration-induced drop atomization. Physics of Fluids 16: 306-316.
63. Choi SM, Kim WH, Cote D, Park CW, Lee H (2011) Blood cell assisted in vivo Particle Image Velocimetry using the confocal laser scanning microscope. Optics Express 19: 4357-4368.
64. Butler JP, Tolic-Norrelykke IM, Fabry B, Fredberg JJ (2002) Traction fields, moments, and strain energy that cells exert on their surroundings. American Journal of Physiology-Cell Physiology 282: C595-C605.
65. Schwarz US, Balaban NQ, Riveline D, Bershadsky A, Geiger B, et al. (2002) Calculation of forces at focal adhesions from elastic substrate data: The effect of localized force and the need for regularization. Biophysical Journal 83: 1380-1394.
66. Martiel JL, Leal A, Kurzawa L, Balland M, Wang I, et al. (2015) Measurement of cell traction forces with ImageJ. Biophysical Methods in Cell Biology 125: 269-287.
67. Sunyer R, Conte V, Escribano J, Elosegui-Artola A, Labernadie A, et al. (2016) Collective cell durotaxis emerges from long-range intercellular force transmission. Science 353: 1157-1161.
68. Radmacher M, Tilmann RW, Gaub HE (1993) Imaging Viscoelasticity by Force Modulation with the Atomic Force Microscope. Biophysical Journal 64: 735-742.
69. Radmacher M, Fritz M, Kacher CM, Cleveland JP, Hansma PK (1996) Measuring the viscoelastic properties of human platelets with the atomic force microscope. Biophysical Journal 70: 556-567.
70. Weisenhorn AL, Kasas S, Solletti JM, Khorsandi M, Gotzos V, et al. (1993) Deformation Observed on Soft Surfaces with an Afm. Scanning Probe Microscopies Ii 1855: 26-34.
71. Hoh JH, Schoenenberger CA (1994) Surface-Morphology and Mechanical-Properties of Mdck Monolayers by Atomic-Force Microscopy. Journal of Cell Science 107: 1105-1114.
72. Crick FHC, Hughes AFW (1950) The Physical Properties of Cytoplasm - a Study by Means of the Magnetic Particle Method .1. Experimental. Experimental Cell Research 1: 37-80.
73. Wang N, Butler JP, Ingber DE (1993) Mechanotransduction across the Cell-Surface and through the Cytoskeleton. Science 260: 1124-1127.
74. Chen JX, Fabry B, Schiffrin EL, Wang N (2001) Twisting integrin receptors increases endothelin-1 gene expression in endothelial cells. American Journal of Physiology-Cell Physiology 280: C1475-C1484.
75. Ashkin A, Dziedzic JM, Bjorkholm JE, Chu S (1986) Observation of a Single-Beam Gradient Force Optical Trap for Dielectric Particles. Optics Letters 11: 288-290.
76. Schwingel M, Bastmeyer M (2013) Force Mapping during the Formation and Maturation of Cell Adhesion Sites with Multiple Optical Tweezers. Plos One 8.
77. Sato S, Inaba H (1996) Optical trapping and manipulation of microscopic particles and biological cells by laser beams. Optical and Quantum Electronics 28: 1-16.
78. Galbraith CG, Yamada KM, Sheetz MP (2002) The relationship between force and focal complex development. Journal of Cell Biology 159: 695-705.
79. Svoboda K, Schmidt CF, Schnapp BJ, Block SM (1993) Direct Observation of Kinesin Stepping by Optical Trapping Interferometry. Nature 365: 721-727.
80. Kuo SC, Sheetz MP (1993) Force of Single Kinesin Molecules Measured with Optical Tweezers. Science 260: 232-234.
81. Spudich JA, Mehta A (1997) Single myosin molecule mechanics: Nanometer steps, piconewton forces, millisecond kinetics, and stiffness of elastic elements measured with a dual-beam laser trap. Faseb Journal 11: A855-A855.
82. Chang KW, Chou A, Lee CC, Yeh C, Lai MW, et al. (2011) Overexpression of K-Actin Alters Growth Properties of Hepatoma Cells and Predicts Poor Postoperative Prognosis. Anticancer Research 31: 2037-2044.
83. Dembo M, Wang YL (1999) Stresses at the cell-to-substrate interface during locomotion of fibroblasts. Biophysical Journal 76: 2307-2316.
84. Fischer RS, Myers KA, Gardel ML, Waterman CM (2012) Stiffness-controlled three-dimensional extracellular matrices for high-resolution imaging of cell behavior. Nature Protocols 7: 2056-2066.
85. Hart DP (2000) PIV error correction. Laser Techniques Applied to Fluid Mechanics: 19-35.
86. Yang LQ, Lin FC, Zhou Y, Xu JR, Yu CS, et al. (2013) Iterative Cross-Correlation Analysis of Resting State Functional Magnetic Resonance Imaging Data. Plos One 8.
87. Prasad AK (2000) Particle image velocimetry. Current Science 79: 51-60.
88. Fang M, Yuan JP, Peng CW, Li Y (2014) Collagen as a double-edged sword in tumor progression. Tumor Biology 35: 2871-2882.
89. Reid SE, Kay EJ, Neilson LJ, Henze AT, Serneels J, et al. (2017) Tumor matrix stiffness promotes metastatic cancer cell interaction with the endothelium. Embo Journal 36: 2373-2389.
90. Yeh YC, Ling JY, Chen WC, Lin HH, Tang MJ (2017) Mechanotransduction of matrix stiffness in regulation of focal adhesion size and number: reciprocal regulation of caveolin-1 and beta 1 integrin. Scientific Reports 7.
91. Fernandez-Sanchez ME, Barbier S, Whitehead J, Bealle G, Michel A, et al. (2015) Mechanical induction of the tumorigenic beta-catenin pathway by tumour growth pressure. Nature 523: 92-+.
92. Kraning-Rush CM, Califano JP, Reinhart-King CA (2012) Cellular Traction Stresses Increase with Increasing Metastatic Potential. Plos One 7.
93. Han SJ, Bielawski KS, Ting LH, Rodriguez ML, Sniadecki NJ (2012) Decoupling Substrate Stiffness, Spread Area, and Micropost Density: A Close Spatial Relationship between Traction Forces and Focal Adhesions. Biophysical Journal 103: 640-648.
94. Fu JP, Wang YK, Yang MT, Desai RA, Yu XA, et al. (2011) Mechanical regulation of cell function with geometrically modulated elastomeric substrates (vol 7, pg 733, 2010). Nature Methods 8: 184-184.
95. Abuhattum S, Gefen A, Weihs D (2015) Ratio of total traction force to projected cell area is preserved in differentiating adipocytes. Integrative Biology 7: 1212-1217.
96. Hammer DA, Reinhart C, Dembo M (2003) Endothelial cell traction forces on RGD-derivatized polyacrylamide substrate. Abstracts of Papers of the American Chemical Society 225: U582-U582.
97. Indra I, Undyala V, Kandow C, Thirumurthi U, Dembo M, et al. (2011) An in vitro correlation of mechanical forces and metastatic capacity. Physical Biology 8.
98. Nicolson GL (1988) Organ Specificity of Tumor-Metastasis - Role of Preferential Adhesion, Invasion and Growth of Malignant-Cells at Specific Secondary Sites. Cancer and Metastasis Reviews 7: 143-188.
99. Yamazaki D, Kurisu S, Takenawa T (2005) Regulation of cancer cell motility through actin reorganization. Cancer Science 96: 379-386.
100. deHart GW, Jones JCR (2004) Myosin-mediated cytoskeleton contraction and Rho GTPases regulate laminin-5 matrix assembly. Cell Motility and the Cytoskeleton 57: 107-117.
101. Zhou DW, Garcia AJ (2015) Measurement Systems for Cell Adhesive Forces. Journal of Biomechanical Engineering-Transactions of the Asme 137.
102. Aung A, Seo YN, Lu SY, Wang YX, Jamora C, et al. (2014) 3D Traction Stresses Activate Protease-Dependent Invasion of Cancer Cells. Biophysical Journal 107: 2528-2537.
103. Yamaguchi H, Condeelis J (2007) Regulation of the actin cytoskeleton in cancer cell migration and invasion. Biochimica Et Biophysica Acta-Molecular Cell Research 1773: 642-652.
104. Ahmed N, Riley C, Rice G, Quinn M (2005) Role of integrin receptors for fibronectin, collagen and laminin in the regulation of ovarian carcinoma functions in response to a matrix microenvironment. Clinical & Experimental Metastasis 22: 391-402.
105. Miyamoto S, Teramoto H, Coso OA, Gutkind JS, Burbelo PD, et al. (1995) Integrin Function - Molecular Hierarchies of Cytoskeletal and Signaling Molecules. Journal of Cell Biology 131: 791-805.
106. Avraamides CJ, Garmy-Susini B, Varner JA (2008) Integrins in angiogenesis and lymphangiogenesis. Nature Reviews Cancer 8: 604-617.
107. Teng YQ, Qiu JH, Zheng YM, Luo XD, Zhang LL, et al. (2014) Effects of Type I Collagen and Fibronectin on Regulation of Breast Cancer Cell Biological and Biomechanical Characteristics. Journal of Medical and Biological Engineering 34: 62-68.
108. Zeltz C, Gullberg D (2016) The integrin-collagen connection - a glue for tissue repair? (vol 129, pg 653, 2016). Journal of Cell Science 129: 1284-1284.
109. Veevers-Lowe J, Ball SG, Shuttleworth A, Kielty CM (2011) Mesenchymal stem cell migration is regulated by fibronectin through alpha 5 beta 1-integrin-mediated activation of PDGFR-beta and potentiation of growth factor signals. Journal of Cell Science 124: 1288-1300.
110. Stramer B, Mayor R (2017) Mechanisms and in vivo functions of contact inhibition of locomotion. Nature Reviews Molecular Cell Biology 18: 43-55.
111. Dominguez R, Holmes KC (2011) Actin Structure and Function. Annual Review of Biophysics, Vol 40 40: 169-186.


 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *