帳號:guest(18.222.22.145)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):何冠蓁
作者(外文):He, Guan-Zhen
論文名稱(中文):吸水性物質對吹氣捕捉系統量測氨的效能探討
論文名稱(外文):Effects of Water-Absorbent Substances on Purge-and-Trap Performance for the Determination of Ammonia in Water
指導教授(中文):吳劍侯
指導教授(外文):Wu, Chien-Hou
口試委員(中文):王順利
莊淳宇
口試委員(外文):Wang, Shun-Li
Chuang, Chun-Yu
學位類別:碩士
校院名稱:國立清華大學
系所名稱:生醫工程與環境科學系
學號:104012509
出版年(民國):107
畢業學年度:106
語文別:中文
論文頁數:74
中文關鍵詞:銨離子吸水性物質吹氣捕捉離子層析
外文關鍵詞:AmmoniumWater-absorbent substancesPurge and trapIon chromatography
相關次數:
  • 推薦推薦:0
  • 點閱點閱:45
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
利用銨離子在鹼性環境中轉換成不帶電荷的氨之特性,可以建立一套簡單的吹氣捕捉前處理系統,排除複雜的高鹽基質干擾,再利用離子層析儀量測銨離子。在前處理系統中,使用高濃度氫氧化鈉可以製造一個鹼性環境,並且減少銨離子和水之間的水合作用。然而在量測含有胺基酸樣品時,會因強鹼的環境造成胺基酸水解產生額外的氨,進而影響量測準確度。本論文主要目的為,透過使用吸水性物質,減少銨離子和水之間的水合作用,藉此達到降低氫氧化鈉使用濃度之目的。
在本系統中,測試之吸水性物質有氯化亞鈷、硫酸鎂、氧化鈣、聚丙烯酸、分子篩以及多種親水性有機溶劑等,其中甲醇之使用可使加入的氫氧化鈉濃度降低一個數量級,並維持相同吹除效率。實驗中,透過改變溶劑含量、吹除瓶內樣品和氫氧化鈉比例、樣品配製方法、吹除時間以及系統溫度等,探討對吹除效率之影響。經改良後的吹氣捕捉系統,在最佳實驗參數條件下,可得吹除效率為96%。在量測胺基酸樣品時,因強鹼的環境造成胺基酸水解產生的氨濃度,與先前系統相比,減少達1.6到10倍。
Ammonium ion can convert to ammonia under alkaline environment. Based on this characteristic, ammonium ion can be efficiently separated from the interference of high concentration of salt with purge and trap system and quantitatively measured by Ion Chromatograph. The use of high concentrations of sodium hydroxide in the pretreatment system can produce an alkaline environment and reduce the hydration between ammonium and water. However, in the measurement of amino acid-containing samples, the hydrolysis of amino acids produces additional ammonia and affects the accuracy of results. The main purpose of this paper is to reduce the hydration between ammonium and water by using a water-absorbing substance, so that the concentration of sodium hydroxide used in the pretreatment system can be reduced.
This study has tested several water-absorbing substances, such as cobalt chloride, magnesium sulfate, calcium oxide, polyacrylic acid, molecular sieves and a variety of hydrophilic organic solvents. With the same purging efficiency, the use of methanol can reduce the concentration of sodium hydroxide by an order of magnitude. The purging efficiency with the addition of methanol was investigated by changing the proportion of the sample and sodium hydroxide in the purging bottle, the sample preparation method, purging time, and temperature of the system. The improved pretreatment system has greatly improved the detection limits of ammonia concentration in amino acid-containing samples up to 1.6 to 10 times less than previous systems.
中文摘要 I
英文摘要 II
致謝 III
目錄 IV
圖目錄 VI
表目錄 IX
第一章 前言 1
1.1 簡介 1
1.2 研究動機 2
第二章 文獻回顧 3
2.1 氨的基本物理化學特性 3
2.2 液相氨的分析方法 5
2.3 亨利定律 12
2.4 吹氣捕捉系統模式探討 14
2.5 吸水性物質 21
第三章 實驗方法 23
3.1 儀器設備 23
3.2 實驗藥品 25
3.3 前處理系統 27
3.4 前處理系統吹除效率的實驗流程 29
第四章 結果與討論 30
4.1 吸水性物質測試 30
4.1.1 矽膠乾燥劑 ( silica gel ) 30
4.1.2 分子篩 (molecular sieves ) 30
4.1.3 聚丙烯酸 ( polyacrylic acid, PAA ) 33
4.1.4 無水硫酸鎂 (MgSO4) 33
4.1.5 氧化鈣 (CaO) 34
4.1.6 親水性有機溶劑 34
4.2 效率參數之探討 37
4.2.1 溶劑含量之探討 37
4.2.2 樣品配製方法之探討 38
4.2.3 吹除瓶內樣品和氫氧化鈉比例之探討 40
4.2.4 吹除時間之探討 42
4.2.5 溫度之探討 46
4.3 檢量線、偵測極限、再現性 48
4.4 氨基酸樣品測定 51
第五章 結論 56
第六章 未來展望 56
參考文獻 57
附錄一 不同有機溶劑在不同氫氧化鈉濃度下之檢量線圖 64
附錄二 不同變因下之檢量線圖 67
附錄三 OPA / Na2SO3螢光衍生試劑最佳化條件探討 71

Amornthammarong, N.; Zhang, J.-Z. Shipboard Fluorometric Flow Analyzer for High-resolution Underway Measurement of Ammonium in Seawater. Anal. Chem. 2008, 80, 1019–1026.
Behera, S. N.; Betha, R.; Liu, P; Balasubramanian, R. A study of diurnal variations of PM2.5 acidity and related chemical species using a new thermodynamic equilibrium model. Sci. Total Environ. 2013, 452, 286–295.
Carrascona, V.; Onta˜nóna, I.; Buenob, M.; Ferreira, V. Gas chromatography-mass spectrometry strategies for the accurateand sensitive speciation of sulfur dioxide in wine. J. Chromatogr. A 2017, 1504 , 27–34.
Cournoyer, J. J.; O’Connor, P. B. Analysis of deamidation in proteins. In: Whitelegge, J., ed. Protein Mass Spectrometry Vol. 52. Amsterdam: Elsevier 2008, 375-410.
Daou, K.; Wang, R. Z.; Xia, Z. Z. Desiccant cooling air conditioning: a review. Renew. Sust. Energ. Rev. 2006, 10, 55–77.
Davis, M. L.; Masten, S. J., Principles of Environmental Engineering and Science McGraw-Hill Science: New York, 2004.
Dong, J. X.; Gao, Z. F.; Zhang,Y.; Li, B. L.; Li, N. B.; Luo, H. Q. A selective and sensitive optical sensor for dissolved ammonia detection via agglomeration of fluorescent Ag nanoclusters and temperature gradient headspace single drop microextraction. Biosens. Bioelectron. 2017, 91, 155–161.
Eddy, F. B. Ammonia in Estuaries and Effects on Fish. J. Fish Biol. 2005, 67, 1495–1513.
Erisman, J.W.; Domburg, N.; de Vries, W.; Kros, H.; de Haan, B.; Sanders, K. The DutchN-cascade in the European perspective. Sci. China. 2005, 48, 827–842.
Felixa, E. P.; Cardoso, A. A. A Method for Determination of Ammonia in Air using Oxalic Acid-Impregnated Cellulose Filters and Fluorimetric Detection. J. Braz. Chem. Soc. 2012, 23, 142–147.
Ferreira, F. N.; Afonso, J. C.; Pontes, F. V. M.; Carneiro, M. C.; Neto, A. A.; Junior, R. E.; Monteiro, M. I. C. Ultrasound-assisted purge-and-trap extraction for simultaneous determination of low-molecular weight amines and ammonium in high salinity waters by ion chromatography. Microchem. J. 2017, 133, 658–662.
Fredes, A.; Sales, C.; Barreda, M.; Valcárcel, M.; Roselló, S.; Beltrán, J. Quantification of prominent volatile compounds responsible for muskmelon and watermelon aroma by purge and trap extraction followed by gas chromatography–mass spectrometry determination. Food Chem. 2016, 190 , 689–700.
Galloway, J. N.; Aber, J. D.; Erisman, J. W.; Seitzinger, S. P.; Howarth, R. W.; Cowling, E. B.; Cosby, B. J. The nitrogen cascade. Bioscience 2003, 53, 341–356.
Genfa, Z.; Dasgupta, P. K. Fluorometric Measurement of Aqueous Ammonium Ion in a Flow Injection System. Anal. Chem. 1989, 61, 408–412.
Harbin, A.-M.; Berg, C. M. G. v. d., Determination of Ammonia in Seawater Using Catalytic Cathodic Stripping Voltammetry. Anal. Chem. 1993, 65, 3411–3416.
Horstkotte, B.; Duarte, C. M.; Cerdà, V. A miniature and field-applicable multipumping flow analyzer for ammonium monitoring in seawater with fluorescence detection. Talanta 2011, 85, 380–385.
Howard-Reed, C.; Corsi, R. L. Mass Transfer of Volatile Organic Compounds from Drinking Water to Indoor Air: The Role of Residential Dishwashers. Environ. Sci. Technol. 1999, 33, 2266–2272.

Huang, Y.; Mou, S.; Riviello, J. M., Determination of Ammonium in Seawater by Column-Switching Ion Chromatography. J. Chromatogr. A 2000, 868, 209–216.
Joachim, W.; Oleg, S. Handbook of Ion Chromatography, 3 Volume Set, 4th Edition., 2016.
Kołacińska, K.; Koncki, R. A novel optoelectronic detector and improved flow analysis procedure for ammonia determination with Nessler's reagent. Anal. Sci. 2014, 30, 1019–22.
Kuo, C.-T.; Wang, P.-Y.; Wu, C.-H. Fluorometric Determination of Ammonium Ion by Ion Chromatography Using Postcolumn Derivatization with o-Phthaldialdehyde. J. Chromatogr. A 2005, 1085, 91–97.
Lewis, W. K.; Whitman, W. G. Principles of Gas Absorption. Ind. Eng. Chem. 1924, 16, 1215–1220.
Liang, Y.; Yan, C.; Guo, Q.; Xu, J.; Hu, H. Spectrophotometric determination of ammonia nitrogen in water by flow injection analysis based on NH3- o-phthalaldehyde -Na2SO3 reaction. Anal. Chem. Res. 2016, 10, 1–8.
Lin, T.-Y.; Pan, Y.-T.; Lee, H.-Y.; Wang, P.-Y.; Wu, C.-H. Markedly Enhanced Purge-and-Trap Performance and Efficiency for the Determination of Ammonium Ion in High-Salinity Water Samples. J. Chin. Chem. Soc. 2012, 59, 718–726.
Meseguer-Lloret, S.; Molins-Legua, C.; Campins-Falco, P., Ammonium Determination in Water Samples by Using Opa–Nac Reagent: a Comparative Study with Nessler and Ammonium Selective Electrode Methods. Intern. J. Environ. Anal. Chem. 2002, 82, 475–489.
Meseguer-Lloret, S.; Molins-Legua, C.; Campíns-Falcó, P., Selective Determination of Ammonium in Water Based on HPLC and Chemiluminescence Detection. Anal. Chim. Acta 2005, 536, 121–127.
Moliner-Martinez, Y.; Campins-Falco, P.; Herraez-Hernandez, R. Influence of The Presence of Surfactants and Humic Acid in Waters on The Indophenol-Type Reaction Method for Ammonium Determination. Talanta 2006, 69, 1038–1045.
Moliner-Martinez, Y.; Herraez-Hernandez, R.; Campins-Falco, P. Improved Detection Limit for Ammonium/Ammonia Achieved by Berthelot’s Reaction by Use of Solid-Phase Extraction Coupled to Diffuse Reflectance Spectroscopy. Anal. Chim. Acta. 2005, 534, 327–334.
Molins-Legua, C.; Meseguer-Lloret, S.; Moliner-Martinez, Y.; Campı´ns-Falco, P. A Guide for Selecting the Most Appropriate Method for Ammonium Determination in Water Analysis. Trends Anal. Chem. 2006, 25, 282–290.
Monteny, G. J.; Erisman, J. W. Ammonia emission from dairy cow buildings: a review of measurement techniques, influencing factors and possibilities for reduction. Neth. J. Agric. Sci. 1998, 46, 225–247.
Nelson, L. H.; White, K. R.; Baker, D. V.; Hayden, A.; Bird, S. The effectiveness of commercial desiccants and uncooked rice in removing moisture from hearing aids. Int. J. Audiology 2017, 56, 226–232.
Ni, J. Mechanistic Models of Ammonia Release from Liquid Manure: a Review. J. Agric. Eng. Res. 1999, 72, 1–17.
Niedzielski, P.; Kurzyca, I.; Siepak, J. A New Tool for Inorganic Nitrogen Speciation Study: Simultaneous Determination of Ammonium Ion, Nitrite and Nitrate by Ion chromatography with Post-Column Ammonium Derivatization by Nessler Reagent and Diode-Array Detection in Rain Water Samples. Anal. Chim. Acta. 2006, 577, 220–224.
Pietilä, H.; Perämäki, P.; Piispanen, J.; Starr, M.; Nieminen, T.; Kantola, M.; Ukonmaanaho, L. Determination of low methylmercury concentrations in peat soil samples by isotope dilution GC-ICP-MS using distillation and solvent extraction methods. Chemosphere 2015, 124, 47–53.
Sahm, M.; Oprea, A.; Bˆarsan, N.; Weimar, U. Interdependence of ammonia and water sorption in polyacrylic acid layers. Sensors and Actuators B 2008, 130, 502–507.
Sander, R. Compilation of Henry’s law constants (version 4.0) for water as solvent. Atmos. Chem. Phys. 2015, 15, 4399–4981.
Shi, Q.; Jayne, P. D. T.; Worsnop, D. R.; Kolb, C. E. Uptake of Gas-Phase Ammonia. 1. Uptake by Aqueous Surfaces as A Function of pH. J. Phys. Chem. A 1999, 103, 8812–8823.
Shukla, S. P.; Sharma, M. Neutralization of rainwater acidity at Kanpur, India. Tellus B 2010, 62, 172–180.
Small, H.; Stevens, T. S.; Bauman, W. C. Novel Ion Exchange Chromatographic Method Using Conductimetric Detection. Anal. Chem. 1975, 47, 1801–1809.
Staudinger, J.; Roberts, P. V. A Critical Compilation of Henry's Law Constant Temperature Dependence Relations for Organic Compounds in Dilute Aqueous Solutions. Chemosphere 2001, 44, 561–576.
Stumm, W.; Morgan, J. J. Aquatic Chemistry Chemical Equilibra and Rates in Natural Water 3rd edition. Wiley-Interscience Publication: New York, 1996.
Trusell, F.; Diehl, H. Efficiency of Chemical Desiccants. Anal. Chem. 1963, 35, 674–677.
Tzollas, N. M.; Zachariadis, G. A.; Anthemidis, A. N.; Stratis, J. A. A new approach to indophenol blue method for determination of ammonium in geothermal waters with high mineral content. Intern. J. Environ. Anal. Chem. 2010, 90, 115–126.
Velthof, G. L.; Hou, Y.; Oenema, O. Nitrogen excretion factors of livestock in the European Union: a review. J. Sci. Food Agric. 2015, 95, 3004–3014.

Wang, P.-Y.; Wu, J.-Y.; Chen, H.-J.; Lin, T.-Y.; Wu, C.-H. Purge-and-Trap Ion Chromatography for the Determination of Trace Ammonium Ion in High-Salinity Water Samples. J. Chromatogr. A 2008, 1188, 69–74.
Williams, D. B. G.; Lawton, M. Drying of Organic Solvents: Quantitative Evaluation of the Efficiency of Several Desiccants. J. Org. Chem. 2010, 75, 8351–8354.
Xue, J.; Lau, A. K.; Yu, J. Z. A study of acidity on PM2.5 in Hong Kong using online ionic chemical composition measurements. Atmos. Environ. 2011, 45, 7081–7088.
Zhang, N.; Li, W.; Chen, C.; Zuo, J.; Weng, L. Molecular Dynamics Investigation of the Effects of Concentration on Hydrogen Bonding in Aqueous Solutions of Methanol, Ethylene Glycol and Glycerol. Bull. Korean Chem. Soc. 2013, 34, 2711–2718.
Zhang, N.; Shena, Z.; Chen, C.; He, G.; Hao, C. Effect of hydrogen bonding on self-diffusion in methanol/water liquid mixtures: A molecular dynamics simulation study. J. Mol. Liq. 2015, 203, 90–97.
Zhong, Z.; Li, G.; Luoa, Z.; Zhua, B. Multi-channel purge and trap system coupled with ion chromatography for the determination of alkylamines in cosmetics. Anal. Chim. Acta 2012, 715, 49– 56.
Zhu, Y.; Yuan, D.; Lin, H.; Zhou, T. Determination of Ammonium in Seawater by Purge-and-Trap and Flow Injection with Fluorescence Detection. Anal. Lett. 2016, 49, 665–675.
Zohuriaan-Mehr, M. J.; Kabiri, K. Superabsorbent Polymer Materials: A Review. Iranian Polymer Journal 2008, 17, 451–477.
吳靜宜. 水相中銅與胺基酸錯合物之光分解產物研究:氨的定量與分析. 碩士論文, 國立清華大學, 新竹, 2005.
陳鴻震. 改善吹氣捕捉系統搭配離子層析儀量測高鹽度樣品中的銨離子. 碩士論文, 國立清華大學, 新竹, 2007.
林宗儀. 進一步改良吹氣捕捉系統搭配離子層析儀測量高鹽度樣品中銨離子濃度. 國立清華大學, 新竹, 2008.
潘奕達, 以吹氣捕捉前處理系統量測寬濃度範圍的氨及其亨利常數. 國立清華大學, 新竹市, 2009.
(此全文未開放授權)
電子全文
中英文摘要
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *