帳號:guest(3.16.137.38)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):黃齡誼
作者(外文):Huang, Ling-Yi
論文名稱(中文):具自發性多重階段標靶與穿透的磁製藥物傳輸系統應用於腫瘤深處的協同治療
論文名稱(外文):Magneto-Actuated Spontaneous Multiple Stages of Targeted and Penetrated Drug Delivery Systems for Deep Tumor Synergistic Treatments
指導教授(中文):胡尚秀
指導教授(外文):Hu, Shang-Hsiu
口試委員(中文):姜文軒
黃振煌
黃郁棻
口試委員(外文):Chiang, Wen-Hsuan
Huang, Jen-Huang
Huang, Yu-Fen
學位類別:碩士
校院名稱:國立清華大學
系所名稱:生醫工程與環境科學系
學號:104012501
出版年(民國):107
畢業學年度:106
語文別:英文
論文頁數:108
中文關鍵詞:多孔隙奈米氧化鐵爾必得舒標靶治療腫瘤壞死因子樹枝狀聚合物歐洲紫杉醇化療磁導引生熱協同治療
外文關鍵詞:Mesoporous silica iron oxide nanoparticlesErbitux targeting therapyTumor necrosis factor αDendrimerDocetaxelChemotherapyHyperthermiaSynergistic therapeutic
相關次數:
  • 推薦推薦:0
  • 點閱點閱:526
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
目前臨床上利用奈米藥物輸送系統來提升化療藥物的治療效果與降低副作用,奈米藥物載體可藉由腫瘤血管通透效應達到累積效果以治療腫瘤,然而,載體於腫瘤的穿透能力依然有限,無法直接進入腫瘤深部的位置,使腫瘤局部無法到達藥物有效濃度,而導致深部腫瘤治療效果有限。所以在本研究中,我們結合了標靶 (targeting) 和磁導引 (magnetic guiding) 的特性,製備出「高均一性的多孔洞氧化矽包覆桿狀奈米氧化鐵」平台,攜帶載運大量疏水性藥物-歐洲紫杉醇(Docetaxel, DTX)的「次奈米藥物載體-樹枝狀聚合物 (dendrimer)」,利用外部磁場高週波的刺激操控藥物穿透,驅使次奈米藥物載體進入腫瘤,達到藥物腫瘤穿透及治療目的。並在於載體最外層包覆脂雙層(lipid bilayer),及修飾「標靶性蛋白藥物爾必得舒 (Erbitux®)」和「腫瘤壞死因子 (Tumor Necrosis Factor)」,以提升細胞的相容性和攝取量,和達到專一性標靶、破壞腫瘤的血管新生和緻密的細胞層,增加藥物的通透效果。此外,載體桿狀的設計,可以減少其在血液的流動中被巨噬細胞吞噬的機會,也有助於載體貼齊血管壁運動、載體上的抗體有效黏附在標靶細胞表面,進而累積至腫瘤位置。
論文第一部分為多孔磁性奈米載體的合成與特性的研究。首先,氯化鐵水解反應過程中,經由控制升溫速率、聚乙烯亞胺 (polyethyleneimine, PEI)的濃度,可得到不同粒徑的四方纖鐵礦 (β-FeOOH),外層再包覆二氧化矽 (mesoporous silica),通過還原氣氛中煅燒除去有機組分,產生中孔氧化鐵,具有高比表面積與孔洞體積、獨特的介孔結構、易於表面修飾,與優良的生物相容性等優點,利用比表面積分析儀(surface area and porosimetry analyser, ASAP/BET)分析MSIR的性質,得到表面積和總孔體積分別為523 m2/g 和1.119 cm3/g,透過電子顯微鏡 (SEM, TEM)、X 光繞射分析儀及超導量子干涉儀磁性分析可以得知該奈米粒子具有超順磁性,粒徑長度約160奈米及寬度約70奈米,可被磁場吸引並穩定分布於水相中。此外,多孔磁性奈米棒裝載化療藥物/次級載體的裝載量 (loading capacity, LC) 和包覆率 (encapsulation efficiency, EE) 分別為1.49 %和99.36 %,並且在高週波的刺激之下造成藥物釋放。
論文第二部分在細胞實驗、微流道生成腫瘤微球的平台、以及老鼠皮下腫瘤模式中,以A549 (人類肺癌細胞株) 做為模型,評估載體生物相容性、抑制癌細胞能力、穿透深部腫瘤與動物療效。在細胞實驗結果中可以發現相較於單獨磁場生熱及單獨化學治療的組別,結合標靶性、熱療與免疫化學協同治療的組別對於癌細胞的毒殺能力最佳;在微流道生成腫瘤微球的平台觀察腫瘤屏壁變化,結果顯示給予外部磁場高週波後,會驅使小於5奈米的次級藥物載體穿透至腫瘤微球內部,以增加腫瘤微球攝取藥物載體的量,達到階段性釋放的目的;然而,文獻指出腫瘤壞死因子會增強癌細胞對熱治療敏感程度,所以腫瘤壞死因子結合高週波後,更能使腫瘤微球瓦解,有效毒殺癌細胞;而在老鼠腫瘤模式中,有標靶性蛋白藥物Erbitux與腫瘤壞死因子修飾在脂雙層表面上的奈米載體,能有效累積於腫瘤位置,接著施加高頻磁場誘導攜帶化療藥物的次級載體釋放與穿透至腫瘤深部,同時磁場生熱溫度達攝氏 43 度以上,產生化療與熱療的協同治療效果,有效抑制腫瘤生長達20天以上,且沒有造成遠端器官的傷害。
因此,此多功能藥物標靶載體是一個有潛力的藥物傳輸平台,能有效提升腫瘤累積、藥物腫瘤穿透、有效毒殺癌細胞及抑制腫瘤生長,期許能在腫瘤治療或其他生醫領域有更多方面性的運用。
Nowadays delivery of drug within responsive carriers that with high stability during long circulation in the body and effectively target and accumulate in cancer cells is demanded in personalized medicine. However, the physiological barrier of the tumor restrict drug penetration delivery, and impedes drug carriers to release their therapeutic agents into cancerous cells at the center of tumors. Therefore, engineering particles that can transport therapeutic agents deep into tumors is a key factor for tumor therapy.
In this study, we report a mesoporous silica layer on iron rod that doubles as a magneto-thermal agent and high cargo payload platform, which releases a burst of drug-incorporated second-nanocarriers and intense heat upon high-frequency magnetic field (HFMF). To form this ultrasmall second-nanocarriers (less than 5 nm), docetaxel was loaded in the core of PAMAM dendrimers (DTX/Den), and then encapsulated into mesoporous silica to prolonged drug circulation in vivo and facilitating the penetration into the deep tumor tissue. Subsequent, coating lipid bilayers outside the mesoporous silica iron rods (MSIR) not only capable of concealing drug-incorporated second-nanocarriers but also improve biocompatibility and enhance the cell uptake.
Furthermore, targeting protein Erbitux® (Cetuximab) and tumor necrosis factor α (TNF α) were modified on Lipo-MSIR by Sulfo-SMCC linker (an amine-to-sulfhydryl crosslinker), could significantly enhance the accumulation of MSIR in A549 cells (2D monolayers and 3D spheroids) and successfully deliver drugs into targeted cancer cells. The experiment of in vitro, targeted chemo-thermal therapy by DTX/Den@Er-T-Lipo-MSIR +HFMF 10 min performs 1.4-fold and 1.3-fold higher therapeutic efficacy than single chemotherapy (DTX/Den@Er-T-Lipo-MSIR) and thermal therapy (MSIR +HFMF 10 min), respectively. The results in 3D spheroids show that delivery of dendrimer-FITC to the tumor site is actuated by HFMF, which ruptures the Liop-MSIR as well as releases nanosized dendrimer. This trigger also results in thermal damage to the tumor and increase the drug penetration into the deep tumor tissue far from blood vessels, as well as having good repression in tumor growth of the BALB/c female nude mice model with A549 tumor in 20 days without distal harm.
This sophisticated Lipo-MSIR is an excellent delivery platform for targeted and penetrated delivery of drugs to deep tumor, MF-responsive, and combined chemo-thermotherapy to facilitate tumor treatment and for use in other biological applications.
中文摘要 I
Abstract III
致謝 V
List of Figures IX
List of Schemes XVI
Chapter 1 Literature Review and Theory 1
1.1 Nanoparticles for Drug Delivery Systems 1
1.1.1 The particle size effect 3
1.1.2 The particle shape effect 5
1.1.3 The surface chemistry effect 8
1.2 Porous silica for drug delivery 10
1.3 Combination therapy of porous silica/IO 13
1.4 Nanocomposites for penetration drug delivery 17
1.4.1 Tumor-on-a-chip 19
1.4.2 Tumor necrosis factor  (TNF) 22
1.4.3 Dendrimer 25
Chapter 2 Experimental Section 29
2.1 Materials 29
2.2 Apparatus 32
2.3 Method 34
2.3.1 Synthesis of -FeOOH nanorods 34
2.3.2 Synthesis of mesoporous silica iron rods (MSIR) 35
2.3.3 Synthesis of DTX/Den@ MSIR 36
2.3.4 Synthesis of DTX/Den@Er-T-Lipo-MSIR 37
2.3.5 Characterizations 38
2.3.5 Magnetic Thermal Heating Effect of MSIR 39
2.3.6 Drug Loading Efficiency and Encapsulation Efficiency 40
2.3.7 In Vitro Release 40
2.3.8 Cell culture 41
2.3.9 Cellular Uptake 42
2.3.10 Cell viability assay 43
2.3.11 Targeting ability of the Den@Er-Lipo-MSIR was quantified by flow cytometry 44
2.3.12 Microfluidic device design and fabrication 45
2.3.13 Poly-HEMA coating process. 46
2.3.14 Cell loading for spheroid formation 47
2.3.15 Penetration of the nanoparticles in A549 spheroids 49
2.3.16 In vivo experiments 51
Chapter 3 Results and Discussions 52
3.1 Synthesis and morphology of -FeOOH, silica/-FeOOH, MSIR and Lipo-MSIR 54
3.2 Characterization of -FeOOH, silica/-FeOOH, MSIR and Lipo-MSIR 66
3.3 Thermal effect, drug loading capacity and HFMF-triggered drug release of MSIR 68
3.4 Cytotoxicity and cell uptake of MSIR 71
3.5 Characterization of polyHEMA-coated surface and sphere formation assays 78
3.6 A microfluidic platform for tumor penetration and drug-release testing of multicellular lung cancer spheroids 82
3.7 In vitro chemo-HFMF trigger therapy of MSIR and Er-T-Lipo-MSIR 85
3.8 In vivo animal experiment 86
Chapter 4 Conclusions 99
Reference 100

1. Kessel, S.; Cribbes, S.; Bonasu, S.; Rice, W.; Qiu, J.; Chan, L. L., Real-time viability and apoptosis kinetic detection method of 3D multicellular tumor spheroids using the Celigo Image Cytometer. Cytometry A 2017, 91 (9), 883-892.
2. Demetzos, C.; Pippa, N., Advanced drug delivery nanosystems (aDDnSs): a mini-review. Drug Deliv 2014, 21 (4), 250-7.
3. Sandeep Singh, V. K. P., Ravi Prakash Tewari and Vishnu Agarwal, Nanoparticle based drug delivery system: Advantages and applications. Indian Journal of Science and Technology 2011, 4 (3) 177-180.
4. Hughes, G. A., Nanostructure-mediated drug delivery. Nanomedicine 2005, 1 (1), 22-30.
5. Sahoo, S. K.; Labhasetwar, V., Nanotech approaches to drug delivery and imaging. Drug Discov Today 2003, 8 (24), 1112-20.
6. Chou, L. Y.; Ming, K.; Chan, W. C., Strategies for the intracellular delivery of nanoparticles. Chem Soc Rev 2011, 40 (1), 233-45.
7. Albanese, A.; Tang, P. S.; Chan, W. C., The effect of nanoparticle size, shape, and surface chemistry on biological systems. Annu Rev Biomed Eng 2012, 14, 1-16.
8. Champion, J. A.; Mitragotri, S., Role of target geometry in phagocytosis. Proc Natl Acad Sci U S A 2006, 103 (13), 4930-4.
9. Gratton, S. E.; Ropp, P. A.; Pohlhaus, P. D.; Luft, J. C.; Madden, V. J.; Napier, M. E.; DeSimone, J. M., The effect of particle design on cellular internalization pathways. Proc Natl Acad Sci U S A 2008, 105 (33), 11613-8.
10. Alexis, F.; Pridgen, E.; Molnar, L. K.; Farokhzad, O. C., Factors affecting the clearance and biodistribution of polymeric nanoparticles. Mol Pharm 2008, 5 (4), 505-15.
11. Huang, K.; Ma, H.; Liu, J.; Huo, S.; Kumar, A.; Wei, T.; Zhang, X.; Jin, S.; Gan, Y.; Wang, P. C.; He, S.; Zhang, X.; Liang, X. J., Size-dependent localization and penetration of ultrasmall gold nanoparticles in cancer cells, multicellular spheroids, and tumors in vivo. ACS Nano 2012, 6 (5), 4483-93.
12. Popovic, Z.; Liu, W.; Chauhan, V. P.; Lee, J.; Wong, C.; Greytak, A. B.; Insin, N.; Nocera, D. G.; Fukumura, D.; Jain, R. K.; Bawendi, M. G., A nanoparticle size series for in vivo fluorescence imaging. Angew Chem Int Ed Engl 2010, 49 (46), 8649-52.
13. Tang, L.; Fan, T. M.; Borst, L. B.; Cheng, J., Synthesis and biological response of size-specific, monodisperse drug-silica nanoconjugates. ACS Nano 2012, 6 (5), 3954-66.
14. Lazzari, G.; Couvreur, P.; Mura, S., Multicellular tumor spheroids: a relevant 3D model for the in vitro preclinical investigation of polymer nanomedicines. Polymer Chemistry 2017, 8 (34), 4947-4969.
15. Sen Gupta, A., Role of particle size, shape, and stiffness in design of intravascular drug delivery systems: insights from computations, experiments, and nature. Wiley Interdiscip Rev Nanomed Nanobiotechnol 2016, 8 (2), 255-70.
16. Mitragotri, S.; Lahann, J., Physical approaches to biomaterial design. Nat Mater 2009, 8 (1), 15-23.
17. Petros, R. A.; DeSimone, J. M., Strategies in the design of nanoparticles for therapeutic applications. Nat Rev Drug Discov 2010, 9 (8), 615-27.
18. Singh, R.; Lillard, J. W., Jr., Nanoparticle-based targeted drug delivery. Exp Mol Pathol 2009, 86 (3), 215-23.
19. Li, B.; Li, Q.; Mo, J.; Dai, H., Drug-Loaded Polymeric Nanoparticles for Cancer Stem Cell Targeting. Front Pharmacol 2017, 8, 51.
20. Sun, T.; Zhang, Y. S.; Pang, B.; Hyun, D. C.; Yang, M.; Xia, Y., Engineered nanoparticles for drug delivery in cancer therapy. Angew Chem Int Ed Engl 2014, 53 (46), 12320-64.
21. Geng, Y.; Dalhaimer, P.; Cai, S.; Tsai, R.; Tewari, M.; Minko, T.; Discher, D. E., Shape effects of filaments versus spherical particles in flow and drug delivery. Nat Nanotechnol 2007, 2 (4), 249-55.
22. Toy, R.; Peiris, P. M.; Ghaghada, K. B.; Karathanasis, E., Shaping cancer nanomedicine: the effect of particle shape on the in vivo journey of nanoparticles. Nanomedicine (Lond) 2014, 9 (1), 121-34.
23. Duan, X.; Li, Y., Physicochemical characteristics of nanoparticles affect circulation, biodistribution, cellular internalization, and trafficking. Small 2013, 9 (9-10), 1521-32.
24. Shah, S.; Liu, Y.; Hu, W.; Gao, J., Modeling particle shape-dependent dynamics in nanomedicine. J Nanosci Nanotechnol 2011, 11 (2), 919-28.
25. Champion, J. A.; Katare, Y. K.; Mitragotri, S., Particle shape: a new design parameter for micro- and nanoscale drug delivery carriers. J Control Release 2007, 121 (1-2), 3-9.
26. Mammen, M.; Choi, S. K.; Whitesides, G. M., Polyvalent Interactions in Biological Systems: Implications for Design and Use of Multivalent Ligands and Inhibitors. Angew Chem Int Ed Engl 1998, 37 (20), 2754-2794.
27. Park, J. H.; von Maltzahn, G.; Zhang, L.; Schwartz, M. P.; Ruoslahti, E.; Bhatia, S. N.; Sailor, M. J., Magnetic Iron Oxide Nanoworms for Tumor Targeting and Imaging. Adv Mater 2008, 20 (9), 1630-1635.
28. Barua, S.; Yoo, J. W.; Kolhar, P.; Wakankar, A.; Gokarn, Y. R.; Mitragotri, S., Particle shape enhances specificity of antibody-displaying nanoparticles. Proc Natl Acad Sci U S A 2013, 110 (9), 3270-5.
29. Chompoosor, A.; Saha, K.; Ghosh, P. S.; Macarthy, D. J.; Miranda, O. R.; Zhu, Z. J.; Arcaro, K. F.; Rotello, V. M., The role of surface functionality on acute cytotoxicity, ROS generation and DNA damage by cationic gold nanoparticles. Small 2010, 6 (20), 2246-9.
30. Hillaireau, H.; Couvreur, P., Nanocarriers’ entry into the cell: relevance to drug delivery. Cellular and Molecular Life Sciences 2009, 66 (17), 2873-2896.
31. Schipper, M. L.; Iyer, G.; Koh, A. L.; Cheng, Z.; Ebenstein, Y.; Aharoni, A.; Keren, S.; Bentolila, L. A.; Li, J.; Rao, J.; Chen, X.; Banin, U.; Wu, A. M.; Sinclair, R.; Weiss, S.; Gambhir, S. S., Particle size, surface coating, and PEGylation influence the biodistribution of quantum dots in living mice. Small 2009, 5 (1), 126-34.
32. Mout, R.; Moyano, D. F.; Rana, S.; Rotello, V. M., Surface functionalization of nanoparticles for nanomedicine. Chem Soc Rev 2012, 41 (7), 2539-44.
33. Honary, S.; Zahir, F., Effect of zeta potential on the properties of nano-drug delivery systems-a review (Part 2). Tropical Journal of Pharmaceutical Research 2013, 12 (2), 265-273.
34. Honary, S.; Zahir, F., Effect of zeta potential on the properties of nano-drug delivery systems-a review (Part 1). Tropical Journal of Pharmaceutical Research 2013, 12 (2), 255-264.
35. Kim, B.; Han, G.; Toley, B. J.; Kim, C. K.; Rotello, V. M.; Forbes, N. S., Tuning payload delivery in tumour cylindroids using gold nanoparticles. Nat Nanotechnol 2010, 5 (6), 465-72.
36. He, C.; Hu, Y.; Yin, L.; Tang, C.; Yin, C., Effects of particle size and surface charge on cellular uptake and biodistribution of polymeric nanoparticles. Biomaterials 2010, 31 (13), 3657-66.
37. Caban, S.; Aytekin, E.; Sahin, A.; Capan, Y., Nanosystems for drug delivery. OA Drug Des Deliv 2014, 18 (2), 1-7.
38. Nandiyanto, A. B. D.; Kim, S.-G.; Iskandar, F.; Okuyama, K., Synthesis of spherical mesoporous silica nanoparticles with nanometer-size controllable pores and outer diameters. Microporous and Mesoporous Materials 2009, 120 (3), 447-453.
39. Nandiyanto, A. B. D.; Iskandar, F.; Okuyama, K., Nanosized Polymer Particle-facilitated Preparation of Mesoporous Silica Particles Using a Spray Method. Chemistry Letters 2008, 37 (10), 1040-1041.
40. Douroumis, D.; Onyesom, I.; Maniruzzaman, M.; Mitchell, J., Mesoporous silica nanoparticles in nanotechnology. Crit Rev Biotechnol 2013, 33 (3), 229-45.
41. Rosenholm, J. M.; Mamaeva, V.; Sahlgren, C.; Linden, M., Nanoparticles in targeted cancer therapy: mesoporous silica nanoparticles entering preclinical development stage. Nanomedicine (Lond) 2012, 7 (1), 111-20.
42. Croissant, J. G.; Fatieiev, Y.; Khashab, N. M., Degradability and Clearance of Silicon, Organosilica, Silsesquioxane, Silica Mixed Oxide, and Mesoporous Silica Nanoparticles. Adv Mater 2017, 29 (9) 1706527.
43. Bunker, B. C. Molecular mechanisms for corrosion of silica and silicate glasses. Journal of Non-Crystalline Solids 1994, 179, 300-308.
44. Finnie, K. S.; Waller, D. J.; Perret, F. L.; Krause-Heuer, A. M.; Lin, H. Q.; Hanna, J. V.; Barbé, C. J., Biodegradability of sol–gel silica microparticles for drug delivery. Journal of Sol-Gel Science and Technology 2008, 49 (1), 12-18.
45. Ambrogio, M. W.; Thomas, C. R.; Zhao, Y. L.; Zink, J. I.; Stoddart, J. F., Mechanized silica nanoparticles: a new frontier in theranostic nanomedicine. Acc Chem Res 2011, 44 (10), 903-13.
46. Bharali, D. J.; Klejbor, I.; Stachowiak, E. K.; Dutta, P.; Roy, I.; Kaur, N.; Bergey, E. J.; Prasad, P. N.; Stachowiak, M. K., Organically modified silica nanoparticles: a nonviral vector for in vivo gene delivery and expression in the brain. Proc Natl Acad Sci U S A 2005, 102 (32), 11539-44.
47. Durfee, P. N.; Lin, Y. S.; Dunphy, D. R.; Muniz, A. J.; Butler, K. S.; Humphrey, K. R.; Lokke, A. J.; Agola, J. O.; Chou, S. S.; Chen, I. M.; Wharton, W.; Townson, J. L.; Willman, C. L.; Brinker, C. J., Mesoporous Silica Nanoparticle-Supported Lipid Bilayers (Protocells) for Active Targeting and Delivery to Individual Leukemia Cells. ACS Nano 2016, 10 (9), 8325-45.
48. Giri, S.; Trewyn, B. G.; Stellmaker, M. P.; Lin, V. S., Stimuli-responsive controlled-release delivery system based on mesoporous silica nanorods capped with magnetic nanoparticles. Angew Chem Int Ed Engl 2005, 44 (32), 5038-44.
49. Jain, T. K.; Richey, J.; Strand, M.; Leslie-Pelecky, D. L.; Flask, C. A.; Labhasetwar, V., Magnetic nanoparticles with dual functional properties: drug delivery and magnetic resonance imaging. Biomaterials 2008, 29 (29), 4012-21.
50. Mehrad Fard, S.; Farhadian, N.; Rohani Bastami, T.; Ebrahimi, M.; Karimi, M.; Allahyari, A., Synthesis, characterization and cellular cytotoxicity evaluation of a new magnetic nanoparticle carrier co-functionalized with amine and folic acid. Journal of Drug Delivery Science and Technology 2017, 38, 116-124.
51. Knežević, N. Ž.; Ruiz-Hernández, E.; Hennink, W. E.; Vallet-Regí, M., Magnetic mesoporous silica-based core/shell nanoparticles for biomedical applications. RSC Advances 2013, 3 (25), 9584-9593.
52. Badruddoza, A. Z.; Rahman, M. T.; Ghosh, S.; Hossain, M. Z.; Shi, J.; Hidajat, K.; Uddin, M. S., beta-Cyclodextrin conjugated magnetic, fluorescent silica core-shell nanoparticles for biomedical applications. Carbohydr Polym 2013, 95 (1), 449-57.
53. Zhang, L.; Wang, T.; Yang, L.; Liu, C.; Wang, C.; Liu, H.; Wang, Y. A.; Su, Z., General route to multifunctional uniform yolk/mesoporous silica shell nanocapsules: a platform for simultaneous cancer-targeted imaging and magnetically guided drug delivery. Chemistry 2012, 18 (39), 12512-21.
54. Zhao, W.; Gu, J.; Zhang, L.; Chen, H.; Shi, J., Fabrication of uniform magnetic nanocomposite spheres with a magnetic core/mesoporous silica shell structure. J Am Chem Soc 2005, 127 (25), 8916-7.
55. Kim, J.; Kim, H. S.; Lee, N.; Kim, T.; Kim, H.; Yu, T.; Song, I. C.; Moon, W. K.; Hyeon, T., Multifunctional uniform nanoparticles composed of a magnetite nanocrystal core and a mesoporous silica shell for magnetic resonance and fluorescence imaging and for drug delivery. Angew Chem Int Ed Engl 2008, 47 (44), 8438-41.
56. Fang, J.; Nakamura, H.; Maeda, H., The EPR effect: Unique features of tumor blood vessels for drug delivery, factors involved, and limitations and augmentation of the effect. Adv Drug Deliv Rev 2011, 63 (3), 136-51.
57. Chen, H.; Zhang, W.; Zhu, G.; Xie, J.; Chen, X., Rethinking cancer nanotheranostics. Nat Rev Mater 2017, 2 (7), 1702..
58. Kobayashi, H.; Watanabe, R.; Choyke, P. L., Improving conventional enhanced permeability and retention (EPR) effects; what is the appropriate target? Theranostics 2013, 4 (1), 81-9.
59. Wilhelm, S., Tavares, A. J., Dai, Q., Ohta, S., Audet, J., Dvorak, H. F., & Chan, W. C. Analysis of nanoparticle delivery to tumours. Nature Reviews Materials 2006,1(5), 16014.
60. Wang, S.; Huang, P.; Chen, X., Hierarchical Targeting Strategy for Enhanced Tumor Tissue Accumulation/Retention and Cellular Internalization. Adv Mater 2016, 28 (34), 7340-64.
61. Li, H. J.; Du, J. Z.; Liu, J.; Du, X. J.; Shen, S.; Zhu, Y. H.; Wang, X.; Ye, X.; Nie, S.; Wang, J., Smart Superstructures with Ultrahigh pH-Sensitivity for Targeting Acidic Tumor Microenvironment: Instantaneous Size Switching and Improved Tumor Penetration. ACS Nano 2016, 10 (7), 6753-61.
62. Wong, C.; Stylianopoulos, T.; Cui, J.; Martin, J.; Chauhan, V. P.; Jiang, W.; Popovic, Z.; Jain, R. K.; Bawendi, M. G.; Fukumura, D., Multistage nanoparticle delivery system for deep penetration into tumor tissue. Proc Natl Acad Sci U S A 2011, 108 (6), 2426-31.
63. Horsman, M. R.; Siemann, D. W., Pathophysiologic effects of vascular-targeting agents and the implications for combination with conventional therapies. Cancer Res 2006, 66 (24), 11520-39.
64. Tredan, O.; Galmarini, C. M.; Patel, K.; Tannock, I. F., Drug resistance and the solid tumor microenvironment. J Natl Cancer Inst 2007, 99 (19), 1441-54.
65. Zheng, M.; Yue, C.; Ma, Y.; Gong, P.; Zhao, P.; Zheng, C.; Sheng, Z.; Zhang, P.; Wang, Z.; Cai, L., Single-step assembly of DOX/ICG loaded lipid--polymer nanoparticles for highly effective chemo-photothermal combination therapy. ACS Nano 2013, 7 (3), 2056-67.
66. Wang, Y.; Xie, Y.; Li, J.; Peng, Z. H.; Sheinin, Y.; Zhou, J.; Oupicky, D., Tumor-Penetrating Nanoparticles for Enhanced Anticancer Activity of Combined Photodynamic and Hypoxia-Activated Therapy. ACS Nano 2017, 11 (2), 2227-2238.
67. Griffith, L. G.; Swartz, M. A., Capturing complex 3D tissue physiology in vitro. Nat Rev Mol Cell Biol 2006, 7 (3), 211-24.
68. Han, B.; Qu, C.; Park, K.; Konieczny, S. F.; Korc, M., Recapitulation of complex transport and action of drugs at the tumor microenvironment using tumor-microenvironment-on-chip. Cancer Lett 2016, 380 (1), 319-29.
69. Benien, P.; Swami, A., 3D tumor models: history, advances and future perspectives. Future Oncol 2014, 10 (7), 1311-27.
70. Jin, H. J.; Cho, Y. H.; Gu, J. M.; Kim, J.; Oh, Y. S., A multicellular spheroid formation and extraction chip using removable cell trapping barriers. Lab Chip 2011, 11 (1), 115-9.
71. Bhise, N. S.; Ribas, J.; Manoharan, V.; Zhang, Y. S.; Polini, A.; Massa, S.; Dokmeci, M. R.; Khademhosseini, A., Organ-on-a-chip platforms for studying drug delivery systems. J Control Release 2014, 190, 82-93.
72. Patra, B.; Peng, C. C.; Liao, W. H.; Lee, C. H.; Tung, Y. C., Drug testing and flow cytometry analysis on a large number of uniform sized tumor spheroids using a microfluidic device. Sci Rep 2016, 6, 21061.
73. Elliott, N. T.; Yuan, F., A microfluidic system for investigation of extravascular transport and cellular uptake of drugs in tumors. Biotechnol Bioeng 2012, 109 (5), 1326-35.
74. Liu, W.; Xu, J.; Li, T.; Zhao, L.; Ma, C.; Shen, S.; Wang, J., Monitoring tumor response to anticancer drugs using stable three-dimensional culture in a recyclable microfluidic platform. Anal Chem 2015, 87 (19), 9752-60.
75. Albanese, A.; Lam, A. K.; Sykes, E. A.; Rocheleau, J. V.; Chan, W. C., Tumour-on-a-chip provides an optical window into nanoparticle tissue transport. Nat Commun 2013, 4, 2718.
76. Chen, Y. C.; Ingram, P. N.; Fouladdel, S.; McDermott, S. P.; Azizi, E.; Wicha, M. S.; Yoon, E., High-Throughput Single-Cell Derived Sphere Formation for Cancer Stem-Like Cell Identification and Analysis. Sci Rep 2016, 6, 27301.
77. Chen, Y. C.; Lou, X.; Zhang, Z.; Ingram, P.; Yoon, E., High-Throughput Cancer Cell Sphere Formation for Characterizing the Efficacy of Photo Dynamic Therapy in 3D Cell Cultures. Sci Rep 2015, 5, 12175.
78. Gazitt, Y.; Shaughnessy, P.; Montgomery, W., Apoptosis-induced by TRAIL AND TNF-alpha in human multiple myeloma cells is not blocked by BCL-2. Cytokine 1999, 11 (12), 1010-9.
79. Bryde, S.; Grunwald, I.; Hammer, A.; Krippner-Heidenreich, A.; Schiestel, T.; Brunner, H.; Tovar, G. E.; Pfizenmaier, K.; Scheurich, P., Tumor necrosis factor (TNF)-functionalized nanostructured particles for the stimulation of membrane TNF-specific cell responses. Bioconjug Chem 2005, 16 (6), 1459-67.
80. Seynhaeve, A. L.; Hoving, S.; Schipper, D.; Vermeulen, C. E.; de Wiel-Ambagtsheer, G.; van Tiel, S. T.; Eggermont, A. M.; Ten Hagen, T. L., Tumor necrosis factor alpha mediates homogeneous distribution of liposomes in murine melanoma that contributes to a better tumor response. Cancer Res 2007, 67 (19), 9455-62.
81. Song, W.; Tang, Z.; Zhang, D.; Yu, H.; Chen, X., Coadministration of Vascular Disrupting Agents and Nanomedicines to Eradicate Tumors from Peripheral and Central Regions. Small 2015, 11 (31), 3755-61.
82. Folli, S.; Épèlegrin, A.; Chalandon, Y.; Yao, X.; Buchegger, F.; Lienard, D.; Lejeune, F.; Mach, J. P., Tumor‐necrosis factor can enhance radio‐antibody uptake in human colon carcinoma xenografts by increasing vascular permeability. International journal of cancer 1993, 53 (5), 829-836.
83. Kristensen, C. A.; Nozue, M.; Boucher, Y.; Jain, R. K., Reduction of interstitial fluid pressure after TNF-alpha treatment of three human melanoma xenografts. Br J Cancer 1996, 74 (4), 533-6.
84. Heldin, C. H.; Rubin, K.; Pietras, K.; Ostman, A., High interstitial fluid pressure - an obstacle in cancer therapy. Nat Rev Cancer 2004, 4 (10), 806-13.
85. Shenoi, M. M.; Iltis, I.; Choi, J.; Koonce, N. A.; Metzger, G. J.; Griffin, R. J.; Bischof, J. C., Nanoparticle delivered vascular disrupting agents (VDAs): use of TNF-alpha conjugated gold nanoparticles for multimodal cancer therapy. Mol Pharm 2013, 10 (5), 1683-94.
86. Curnis, F.; Sacchi, A.; Borgna, L.; Magni, F.; Gasparri, A.; Corti, A., Enhancement of tumor necrosis factor alpha antitumor immunotherapeutic properties by targeted delivery to aminopeptidase N (CD13). Nat Biotechnol 2000, 18 (11), 1185-90.
87. Lu, L.; Li, Z. J.; Li, L. F.; Wu, W. K.; Shen, J.; Zhang, L.; Chan, R. L.; Yu, L.; Liu, Y. W.; Ren, S. X.; Chan, K. M.; Cho, C. H., Vascular-targeted TNFalpha improves tumor blood vessel function and enhances antitumor immunity and chemotherapy in colorectal cancer. J Control Release 2015, 210, 134-46.
88. Curnis, F.; Sacchi, A.; Corti, A., Improving chemotherapeutic drug penetration in tumors by vascular targeting and barrier alteration. J Clin Invest 2002, 110 (4), 475-82.
89. Dondossola, E.; Dobroff, A. S.; Marchio, S.; Cardo-Vila, M.; Hosoya, H.; Libutti, S. K.; Corti, A.; Sidman, R. L.; Arap, W.; Pasqualini, R., Self-targeting of TNF-releasing cancer cells in preclinical models of primary and metastatic tumors. Proc Natl Acad Sci U S A 2016, 113 (8), 2223-8.
90. Jeon, H.; Kim, D.; Choi, M.; Kang, S.; Kim, J. Y.; Kim, S.; Jon, S., Targeted Cancer Therapy Using Fusion Protein of TNFalpha and Tumor-Associated Fibronectin-Specific Aptide. Mol Pharm 2017, 14 (11), 3772-3779.
91. Kesharwani, P.; Jain, K.; Jain, N. K., Dendrimer as nanocarrier for drug delivery. Progress in Polymer Science 2014, 39 (2), 268-307.
92. Xie, J.; Zhao, R.; Gu, S.; Dong, H.; Wang, J.; Lu, Y.; Sinko, P. J.; Yu, T.; Xie, F.; Wang, L.; Shao, J.; Jia, L., The architecture and biological function of dual antibody-coated dendrimers: enhanced control of circulating tumor cells and their hetero-adhesion to endothelial cells for metastasis prevention. Theranostics 2014, 4 (12), 1250-63.
93. Liu, C.; Shao, N.; Wang, Y.; Cheng, Y., Clustering Small Dendrimers into Nanoaggregates for Efficient DNA and siRNA Delivery with Minimal Toxicity. Adv Healthc Mater 2016, 5 (5), 584-92.
94. Aulenta, F.; Hayes, W.; Rannard, S., Dendrimers: a new class of nanoscopic containers and delivery devices. European Polymer Journal 2003, 39 (9), 1741-1771.
95. Devarakonda, B.; Hill, R. A.; Liebenberg, W.; Brits, M.; de Villiers, M. M., Comparison of the aqueous solubilization of practically insoluble niclosamide by polyamidoamine (PAMAM) dendrimers and cyclodextrins. Int J Pharm 2005, 304 (1-2), 193-209.
96. Bharali, D. J.; Khalil, M.; Gurbuz, M.; Simone, T. M.; Mousa, S. A., Nanoparticles and cancer therapy: a concise review with emphasis on dendrimers. Int J Nanomedicine 2009, 4, 1-7.
97. Ahmed, S.; Vepuri, S. B.; Kalhapure, R. S.; Govender, T., Interactions of dendrimers with biological drug targets: reality or mystery - a gap in drug delivery and development research. Biomater Sci 2016, 4 (7), 1032-50.
98. Xie, J.; Wang, J.; Chen, H.; Shen, W.; Sinko, P. J.; Dong, H.; Zhao, R.; Lu, Y.; Zhu, Y.; Jia, L., Multivalent conjugation of antibody to dendrimers for the enhanced capture and regulation on colon cancer cells. Sci Rep 2015, 5, 9445.
99. Wolinsky, J. B.; Grinstaff, M. W., Therapeutic and diagnostic applications of dendrimers for cancer treatment. Adv Drug Deliv Rev 2008, 60 (9), 1037-55.
100. Mohapatra, J.; Mitra, A.; Tyagi, H.; Bahadur, D.; Aslam, M., Iron oxide nanorods as high-performance magnetic resonance imaging contrast agents. Nanoscale 2015, 7 (20), 9174-9184.
101. Wei XJ, M. X., Zhou Y, Li Y, Shen WJ., Fabrication of rod-shaped β-FeOOH: the roles of polyethylene glycol and chlorine anion. . Chem Soc Rev 2016, 59, 895–902.
102. Nandiyanto, A. B. D. K., S. G.; Iskandar, F.; Okuyama, K., Synthesis of spherical mesoporous silica nanoparticles with nanometer-size controllable pores and outer diameters. Micropor Mesopor Mat 2009, 447-453.
103. Kulhari, H.; Pooja, D.; Shrivastava, S.; Kuncha, M.; Naidu, V. G.; Bansal, V.; Sistla, R.; Adams, D. J., Trastuzumab-grafted PAMAM dendrimers for the selective delivery of anticancer drugs to HER2-positive breast cancer. Sci Rep 2016, 6, 23179.
104. Graham, J.; Muhsin, M.; Kirkpatrick, P., Cetuximab. Nat Rev Drug Discov 2004, 3 (7), 549-50.
105. Imao, M.; Nagaki, M.; Moriwaki, H., Dual effects of heat stress on tumor necrosis factor-alpha-induced hepatocyte apoptosis in mice. Lab Invest 2006, 86 (9), 959-67.
106. Oyagbemi, A. A.; Omobowale, T. O.; Azeez, I. O.; Abiola, J. O.; Adedokun, R. A.; Nottidge, H. O., Toxicological evaluations of methanolic extract of Moringa oleifera leaves in liver and kidney of male Wistar rats. J Basic Clin Physiol Pharmacol 2013, 24 (4), 307-12.

(此全文未開放授權)
電子全文
中英文摘要
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top

相關論文

1. 具磁電操控表面電性之金奈米腦攜帶可穿透次級藥物載體應用於腦瘤深度治療
2. 具標靶功能紅血球膜包覆介孔性二氧化矽奈米粒子應用於藥物輸送與光熱治療
3. 具光熱應答性乳鐵蛋白修飾奈米豌豆應用於雷射刺激藥物釋放、腫瘤標靶與光熱/化學協同治療
4. 磁性奈米殼核膠囊特性改質應用於疏水性藥物控制釋放與增強腫瘤治療
5. 磷脂質修飾多孔碳矽複合奈米片經磁刺激 用於加強類神經細胞分化和腫瘤治療
6. 具藥物再填充之可注射型磁性多孔隙複合奈米載體應於腫瘤治療
7. 仿紅血球多孔磁性奈米粒子用於增強阿黴素- 高分子粒子釋放應用於轉移肺腫瘤治療
8. 多孔碳球/氧化石墨烯複合材料應用於高靈敏性偵測循環腫瘤細胞
9. 3D列印應用於具階段性藥物控制釋放磁性微針製備於雄性禿治療
10. 可躲避免疫系統偵測之外泌體修飾奈米氧化鐵應用於黑色素瘤轉移型之肺癌治療
11. 可注射型多孔金奈米腦/微米水膠球複合材料應用於創傷性腦損傷治療
12. 可注射式新月形水膠微球與具磁電操控表面電性之金奈米腦應用於腦創傷的修復
13. 外泌體修飾磁性奈米粒子透過對流增強遞送系統應用於腦瘤治療
14. 具光熱免疫療法之巨噬細胞外泌體裝飾金/銀殼核三角奈米板結合檢查點阻斷劑應用於抑制轉移性腫瘤
15. 石墨烯奈米複合材料之穿透藥物傳遞應用於深度腦部腫瘤治療
 
* *