帳號:guest(3.144.101.157)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):柏哈那
作者(外文):Laksana, Pradhana Jati Budhi
論文名稱(中文):光與電雙功能矽場效應電晶體分子感測器
論文名稱(外文):A Dual Function Electro-Optical Silicon Field-Effect Transistor Molecular Sensor
指導教授(中文):周家復
張廖貴術
指導教授(外文):Chen, Chii-Dong
Chang-Liao, Kuei-Shu
口試委員(中文):陳啟東
陳逸聰
蔡麗珠
口試委員(外文):Chou, Chia-Fu
Chen, Yit-Tsong
Tsai, Li-Chu
學位類別:博士
校院名稱:國立清華大學
系所名稱:工程與系統科學系
學號:104011865
出版年(民國):111
畢業學年度:111
語文別:英文
論文頁數:60
中文關鍵詞:分子吸收光譜分子電荷奈米矽線生物感測器場效應晶體管ELISANGAL比色法金屬配合物
外文關鍵詞:Molecular chargemolecular absorptionsilicon nanowirebiosensorfield-effect transistorELISANGALcolorimetricmetal complexes
相關次數:
  • 推薦推薦:0
  • 點閱點閱:27
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
近年來,以場效應電晶體(bio-FETs)為基礎的生物傳感器因其獨特的特性、高靈敏度、良好的選擇性以及易於應用於便攜式電子設備中而受到人們矚目及興趣。在本實驗中,我們設計並展示了一種利用 FET 即時檢測分子之間相互作用的方法。在此方法中,利用 FET 傳感器電訊號和光訊號高靈敏度的獨特功能。使用場效應電晶體來檢測與抗體和抗原分子結合前後,分子電荷和光子吸收的訊號變化。採用固定在 FET 表面的酵素免疫分析法(ELISA) 夾層結構來檢測嗜中性白血球明膠酶相關脂質運載蛋白(NGAL)。利用這種實驗技術,對NGAL靈敏度定量檢測,電訊號的檢測靈敏度達到0.1 pg/mL,氧化 TMB 光吸收檢測具有 < 1 pg/mL 的靈敏度。接著我們研究了矽奈米線場效應電晶體 (bio-NW FET) 的生物感測器作為分子光吸收感測器的潛力。以槲皮素和銅 (Cu2+) 離子為例,使用 opto-FET 方法檢測分子的相互作用,研究顯示波長為 450 nm 的光會被化合物所吸收,吸收量則取決於 Cu2+ 的濃度。對介於 0.1 μM 和 100 μM 之間的 Cu2+ 濃度進行化合物分子吸收的定量檢測,在優化後的系統電位參數下,分子對光的吸收量與銅離子濃度呈線性正比關係,結果顯示本研究使用的opto-FET 方法所檢測到的光吸收度不亞於市面上常見的紫外-可見光分光光度法,此外,我們證明此量測平台在生物傳感器的臨床應用中表現出色。
The biosensor based on field-effect transistors (bio-FETs) has have attracted great interest in recent years owing to their unique properties, high sensitivity, good selectivity, and easy integration into portable electronic devices. In this work, we propose and demonstrate a method that utilizes FETs for real-time detection of interactions between molecules. In this method, FET based sensors employ two unique functions, high charge sensitivity and high photon responsivity. We use the transistors to detect changes in molecular charge and photon absorption related with the binding of antibody and antigen molecules. We adopt an Enzyme-Linked Immunosorbent Assay (ELISA) sandwich structure immobilized on the FET surface to detect neutrophil gelatinase associated lipocalin (NGAL). Using this technique, we detect NGAL quantitatively with a sensitivity of 0.1 pg/mL and < 1 pg/mL based on charge sensing and oxidized TMB absorption detection, respectively.
Next, we explored the potential of applying biosensors based on silicon nanowire field-effect transistors (bio–NW FETs) as molecular absorption sensors. Using quercetin and Copper (Cu2+) ion as an example, we demonstrated the use of an opto–FET approach for the detection of molecular interactions. We found that photons with wavelengths of 450 nm were absorbed by the molecular complex, with the absorbance level depending on the Cu2+ concentration. Quantitative detection of the molecular absorption of metal complexes was performed for Cu2+ concentrations ranging between 0.1 μM and 100 μM, in which the photon response increased linearly with the copper concentration under optimized bias parameters. Our opto–FET approach showed a comparable absorbance with that of a commercial ultraviolet-visible spectrophotometry. Furthermore, we show that this platform performs great for diagnostic applications of biosensors.
摘要 i
Abstract ii
Acknowledgement iv
Table of Contents vi
List of Figures viii
List of Table xiii
Chapter 1 Introduction 1
Chapter 2 Background, Principles, and Concepts 4
2.1. Biosensor 4
2.2. Silicon Nanowire Field-Effect Transistor 5
2.2.1. Working Principle of Silicon Nanowire-based Device 7
2.2.2. Si-NW Bio-FET 9
2.2.3. Photosensitive Si-NW Bio-FET 13
2.3. Debye Length Screening 14
2.4. Surface Modification and Functionalization of Silicon Oxide 15
2.5. Enzyme-linked Immunosorbent Assay (ELISA) and NGAL 17
Chapter 3 Device Fabrication and Measurement Technique 21
3.1. Fabrication of Si-NW Bio-FET 21
3.2. Fluidic Channel 23
3.3. Measurement System 25
3.4. Procedure of Surface Modification and Functionalization of Silicon Oxide 27
3.5. Procedure of Molecular Charge Detection 29
3.6. Procedure of Molecular Absorption Detection 29
3.7. Materials 31
Chapter 4 Detection of Molecular Charge and Molecular Absorption 32
4.1. Absorption Spectra of HRP Redox Reaction with TMB 32
4.2. Device Characteristics of Si-NW Bio-FET 33
4.3. Photosensitive Si-NW Bio-FET 34
4.4. Surface Modification of Si-NW Bio-FET 37
4.5. Detection of Molecular Charge 40
4.6. Detection of Molecular Absorption 43
4.7. Detection of Quercetin - Cu2+ complexes using bio-FET as photodetector 45
Chapter 5 Conclusions 52
References 53
Appendix 60
Chen, K.-I.; Li, B.-R.; Chen, Y.-T. Silicon nanowire field-effect transistor-based biosensors for biomedical diagnosis and cellular recording investigation. Nano Today 2011, 6, 131-154.
2. Baraban, L.; Ibarlucea, B.; Baek, E.; Cuniberti, G. Hybrid silicon nanowire devices and their functional diversity. Adv Sci (Weinh) 2019, 6, 1900522.
3. Seo, G.; Lee, G.; Kim, M.J.; Baek, S.H.; Choi, M.; Ku, K.B.; Lee, C.S.; Jun, S.; Park, D.; Kim, H.G., et al. Rapid detection of covid-19 causative virus (sars-cov-2) in human nasopharyngeal swab specimens using field-effect transistor-based biosensor. ACS Nano 2020, 14, 5135-5142.
4. Pritiraj Mohantya, Y.C., Xihua Wanga,Mi K. Honga,Carol L. Rosenbergb,David T. Weaverc,Shyamsunder Erramillia. Field effect transistor nanosensor for breast cancer diagnostics. 2014.
5. Chu, C.J.; Yeh, C.S.; Liao, C.K.; Tsai, L.C.; Huang, C.M.; Lin, H.Y.; Shyue, J.J.; Chen, Y.T.; Chen, C.D. Improving nanowire sensing capability by electrical field alignment of surface probing molecules. Nano letters 2013, 13, 2564-2569.
6. Lorenzelli, L.; Margesin, B.; Martinoia, S.; Tedesco, M.T.; Valle, M. Bioelectrochemical signal monitoring of in-vitro cultured cells by means of an automated microsystem based on solid state sensor-array. Biosensors and Bioelectronics 2003, 18, 621-626.
7. Martinoia, S.; Rosso, N.; Grattarola, M.; Lorenzelli, L.; Margesin, B.; Zen, M. Development of isfet array-based microsystems for bioelectrochemical measurements of cell populations. Biosensors and Bioelectronics 2001, 16, 1043-1050.
8. Yang, F.; Zhang, G.-J. Silicon nanowire-transistor biosensor for study of molecule-molecule interactions. Reviews in Analytical Chemistry 2014, 33.
9. Duan, X.; Li, Y.; Rajan, N.K.; Routenberg, D.A.; Modis, Y.; Reed, M.A. Quantification of the affinities and kinetics of protein interactions using silicon nanowire biosensors. Nat Nanotechnol 2012, 7, 401-407.
10. Ibarlucea, B.; Rim, T.; Baek, C.K.; de Visser, J.; Baraban, L.; Cuniberti, G. Nanowire sensors monitor bacterial growth kinetics and response to antibiotics. Lab Chip 2017, 17, 4283-4293.
11. Vacic, A.; Criscione, J.M.; Rajan, N.K.; Stern, E.; Fahmy, T.M.; Reed, M.A. Determination of molecular configuration by debye length modulation. J Am Chem Soc 2011, 133, 13886-13889.
12. Zhang, A.; Lieber, C.M. Nano-bioelectronics. Chem Rev 2016, 116, 215-257.
13. Chu, C.H.; Sarangadharan, I.; Regmi, A.; Chen, Y.W.; Hsu, C.P.; Chang, W.H.; Lee, G.Y.; Chyi, J.I.; Chen, C.C.; Shiesh, S.C., et al. Beyond the debye length in high ionic strength solution: Direct protein detection with field-effect transistors (fets) in human serum. Sci Rep 2017, 7, 5256.
14. Nakatsuka, N.; Yang, K.-A.; Abendroth, J.M.; Cheung, K.M.; Xu, X.; Yang, H.; Zhao, C.; Zhu, B.; Rim, Y.S.; Yang, Y., et al. Aptamer–field-effect transistors overcome debye length limitations for small-molecule sensing. Science 2018, 362, 319-324.
15. Tarasov, A.; Wipf, M.; Stoop, R.L.; Bedner, K.; Fu, W.; Guzenko, V.A.; Knopfmacher, O.; Calame, M.; Schönenberger, C. Understanding the electrolyte background for biochemical sensing with ion-sensitive field-effect transistors. ACS Nano 2012, 6, 9291-9298.
16. Lin, S.-P.; Pan, C.-Y.; Tseng, K.-C.; Lin, M.-C.; Chen, C.-D.; Tsai, C.-C.; Yu, S.-H.; Sun, Y.-C.; Lin, T.-W.; Chen, Y.-T. A reversible surface functionalized nanowire transistor to study protein–protein interactions. Nano Today 2009, 4, 235-243.
17. Baek, E.; Pregl, S.; Shaygan, M.; Römhildt, L.; Weber, W.M.; Mikolajick, T.; Ryndyk, D.A.; Baraban, L.; Cuniberti, G. Optoelectronic switching of nanowire-based hybrid organic/oxide/semiconductor field-effect transistors. Nano Research 2014, 8, 1229-1240.
18. Laksana, P.J.B.; Tsai, L.-C.; Wei, T.-Y.; Lan, P.-C.; Chang-Liao, K.-S.; Moodley, M.K.; Chen, C.-D. A dual function electro-optical silicon field-effect transistor molecular sensor. Journal of Materials Chemistry C 2021, 9, 14286-14293.
19. Makris, K.; Markou, N.; Evodia, E.; Dimopoulou, E.; Drakopoulos, I.; Ntetsika, K.; Rizos, D.; Baltopoulos, G.; Haliassos, A. Urinary neutrophil gelatinase-associated lipocalin (ngal) as an early marker of acute kidney injury in critically ill multiple trauma patients. Clin Chem Lab Med 2009, 47, 79-82.
20. Laksana, P.J.B.; Tsai, L.-C.; Lin, C.-C.; Chang-Liao, K.-S.; Moodley, M.K.; Chen, C.-D. Opto field-effect transistors for detecting quercetin–cu2+ complex. Sensors 2022, 22, 7219.
21. Nagel, B.; Dellweg, H.; Gierasch, L.M. Glossary for chemists of terms used in biotechnology (iupac recommendations 1992). Pure and Applied Chemistry 1992, 64, 143-168.
22. Udugama, B.; Kadhiresan, P.; Kozlowski, H.N.; Malekjahani, A.; Osborne, M.; Li, V.Y.C.; Chen, H.; Mubareka, S.; Gubbay, J.B.; Chan, W.C.W. Diagnosing covid-19: The disease and tools for detection. ACS Nano 2020, 14, 3822-3835.
23. Xiaoyan Zhanga, d., Qige Qia, Qiushi Jinga, Shen Aoa,b, Zhihong Zhangc, Mingchao Dingc, Muhong Wuc, Kaihui Liuc, Weipeng Wangb, Yunhan Lingb, Zhengjun Zhangb, Wangyang Fua,b,*. Electrical probing of covid-19 spike protein receptor binding domain via a graphene field effect transistor. 2020.
24. Koike, K.; Sasaki, T.; Hiraki, K.; Ike, K.; Hirofuji, Y.; Yano, M. Characteristics of an extended gate field-effect transistor for glucose sensing using an enzyme-containing silk fibroin membrane as the bio-chemical component. Biosensors 2020, 10, 57.
25. Council, N.R. Expanding the vision of sensor materials. The National Academies Press: Washington, DC, 1995; p 146.
26. Rani, D.; Pachauri, V.; Madaboosi, N.; Jolly, P.; Vu, X.-T.; Estrela, P.; Chu, V.; Conde, J.P.; Ingebrandt, S. Top-down fabricated silicon nanowire arrays for field-effect detection of prostate-specific antigen. ACS Omega 2018, 3, 8471-8482.
27. Arjmand, T.; Legallais, M.; Nguyen, T.T.T.; Serre, P.; Vallejo-Perez, M.; Morisot, F.; Salem, B.; Ternon, C. Functional devices from bottom-up silicon nanowires: A review. Nanomaterials 2022, 12, 1043.
28. Gao, X.P.A.; Zheng, G.; Lieber, C.M. Subthreshold regime has the optimal sensitivity for nanowire fet biosensors. Nano letters 2010, 10, 547-552.
29. Cui, Y.; Zhong, Z.; Wang, D.; Wang, W.U.; Lieber, C.M. High performance silicon nanowire field effect transistors. Nano letters 2003, 3, 149-152.
30. Penner, R.M. Chemical sensing with nanowires. Annual Review of Analytical Chemistry 2012, 5, 461-485.
31. Shehada, N.; Cancilla, J.C.; Torrecilla, J.S.; Pariente, E.S.; Bronstrup, G.; Christiansen, S.; Johnson, D.W.; Leja, M.; Davies, M.P.; Liran, O., et al. Silicon nanowire sensors enable diagnosis of patients via exhaled breath. ACS Nano 2016, 10, 7047-7057.
32. Waleed Shinwari, M.; Jamal Deen, M.; Landheer, D. Study of the electrolyte-insulator-semiconductor field-effect transistor (eisfet) with applications in biosensor design. Microelectronics Reliability 2007, 47, 2025-2057.
33. Cui, Y.; Lieber, C.M. Functional nanoscale electronic devices assembled using silicon nanowire building blocks. Science 2001, 291, 851-853.
34. Sinha, S.; Pal, T. A comprehensive review of fet-based ph sensors: Materials, fabrication technologies, and modeling. Electrochemical Science Advances 2022, 2, e2100147.
35. Sorgenfrei, S.; Chiu, C.-y.; Johnston, M.; Nuckolls, C.; Shepard, K.L. Debye screening in single-molecule carbon nanotube field-effect sensors. Nano letters 2011, 11, 3739-3743.
36. Stern, E.; Wagner, R.; Sigworth, F.J.; Breaker, R.; Fahmy, T.M.; Reed, M.A. Importance of the debye screening length on nanowire field effect transistor sensors. Nano letters 2007, 7, 3405-3409.
37. Howarter, J.A.; Youngblood, J.P. Surface modification of polymers with 3-aminopropyltriethoxysilane as a general pretreatment for controlled wettability. Macromolecules 2007, 40, 1128-1132.
38. Pursch, M.; Vanderhart, D.L.; Sander, L.C.; Gu, X.; Nguyen, T.; Wise, S.A.; Gajewski, D.A. C30 self-assembled monolayers on silica, titania, and zirconia:  Hplc performance, atomic force microscopy, ellipsometry, and nmr studies of molecular dynamics and uniformity of coverage. Journal of the American Chemical Society 2000, 122, 6997-7011.
39. Xiang, J.; Zhu, P.; Masuda, Y.; Koumoto, K. Fabrication of self-assembled monolayers (sams) and inorganic micropattern on flexible polymer substrate. Langmuir 2004, 20, 3278-3283.
40. Fadeev, A.Y.; McCarthy, T.J. Self-assembly is not the only reaction possible between alkyltrichlorosilanes and surfaces:  Monomolecular and oligomeric covalently attached layers of dichloro- and trichloroalkylsilanes on silicon. Langmuir 2000, 16, 7268-7274.
41. Engvall, E.; Perlmann, P. Enzyme-linked immunosorbent assay (elisa) quantitative assay of immunoglobulin g. Immunochemistry 1971, 8, 871-874.
42. Thiha, A.; Ibrahim, F. A colorimetric enzyme-linked immunosorbent assay (elisa) detection platform for a point-of-care dengue detection system on a lab-on-compact-disc. Sensors 2015, 15, 11431-11441.
43. Cerda-Kipper, A.S.; Montiel, B.E.; Hosseini, S. Immunoassays | radioimmunoassays and enzyme-linked immunosorbent assay☆. In Encyclopedia of analytical science (third edition), Worsfold, P.; Poole, C.; Townshend, A.; Miró, M., Eds. Academic Press: Oxford, 2019; pp 55-75.
44. Voller, A.; Bartlett, A.; Bidwell, D.E. Enzyme immunoassays with special reference to elisa techniques. Journal of Clinical Pathology 1978, 31, 507.
45. Hosoda, H.; Takasaki, W.; Oe, T.; Tsukamoto, R.; Nambara, T. A comparison of chromogenic substrates for horseradish peroxidase as a label in steroid enzyme immunoassay. CHEMICAL & PHARMACEUTICAL BULLETIN 1986, 34, 4177-4182.
46. Porstmann, B.; Porstmann, T.; Nugel, E. Comparison of chromogens for the determination of horseradish peroxidase as a marker in enzyme immunoassay. 1981, 19, 435-440.
47. Soni, S.S.; Cruz, D.; Bobek, I.; Chionh, C.Y.; Nalesso, F.; Lentini, P.; de Cal, M.; Corradi, V.; Virzi, G.; Ronco, C. Ngal: A biomarker of acute kidney injury and other systemic conditions. International Urology and Nephrology 2010, 42, 141-150.
48. Forster, C.S.; Johnson, K.; Patel, V.; Wax, R.; Rodig, N.; Barasch, J.; Bachur, R.; Lee, R.S. Urinary ngal deficiency in recurrent urinary tract infections. Pediatr Nephrol 2017, 32, 1077-1080.
49. Sariki, A.; Venkata Rao, K.; Chandrasekar, L.; Shaik, R.R.; Pradhan, K.P. Is accumulation or inversion mode dielectric modulated fet better for label-free biosensing?: A comparative investigation. AEU - International Journal of Electronics and Communications 2021, 137, 153791.
50. Sheng-Lyang Jang *, S.-S.L. A novel approach for modeling accumulation-mode soi mosfets. 1998
51. Baek, D.J.; Duarte, J.P.; Moon, D.-I.; Kim, C.-H.; Ahn, J.-H.; Choi, Y.-K. Accumulation mode field-effect transistors for improved sensitivity in nanowire-based biosensors. Applied Physics Letters 2012, 100, 213703.
52. Baek, E.; Rim, T.; Schutt, J.; Baek, C.K.; Kim, K.; Baraban, L.; Cuniberti, G. Negative photoconductance in heavily doped si nanowire field-effect transistors. Nano letters 2017, 17, 6727-6734.
53. Moniaux, N.; Chakraborty, S.; Yalniz, M.; Gonzalez, J.; Shostrom, V.K.; Standop, J.; Lele, S.M.; Ouellette, M.; Pour, P.M.; Sasson, A.R., et al. Early diagnosis of pancreatic cancer: Neutrophil gelatinase-associated lipocalin as a marker of pancreatic intraepithelial neoplasia. Br J Cancer 2008, 98, 1540-1547.
54. Helle, M.; Boeije, L.; de Groot, E.; de Vos, A.; Aarden, L. Sensitive elisa for interleukin-6: Detection of il-6 in biological fluids: Synovial fluids and sera. Journal of Immunological Methods 1991, 138, 47-56.
55. Vashist, S.K.; Marion Schneider, E.; Lam, E.; Hrapovic, S.; Luong, J.H. One-step antibody immobilization-based rapid and highly-sensitive sandwich elisa procedure for potential in vitro diagnostics. Sci Rep 2014, 4, 4407.
56. Kannan, P.; Tiong, H.Y.; Kim, D.H. Highly sensitive electrochemical determination of neutrophil gelatinase-associated lipocalin for acute kidney injury. Biosens Bioelectron 2012, 31, 32-36.
57. Vashist, S.K. Graphene-based immunoassay for human lipocalin-2. Anal Biochem 2014, 446, 96-101.
58. Vashist, S.K.; Luong, J.H.T. A rapid and highly sensitive immunoassay format for human lipocalin-2 using multiwalled carbon nanotubes. Biosens Bioelectron 2017, 93, 198-204.
59. Yukird, J.; Wongtangprasert, T.; Rangkupan, R.; Chailapakul, O.; Pisitkun, T.; Rodthongkum, N. Label-free immunosensor based on graphene/polyaniline nanocomposite for neutrophil gelatinase-associated lipocalin detection. Biosens Bioelectron 2017, 87, 249-255.
60. World Health, O.; International Atomic Energy, A.; Food; Agriculture Organization of the United, N. Trace elements in human nutrition and health. World Health Organization: Geneva, 1996.
61. Liu, Y.; Guo, M. Studies on transition metal-quercetin complexes using electrospray ionization tandem mass spectrometry. Molecules 2015, 20, 8583-8594.
62. Jiang, W.; Yang, S.; Lu, W.; Gao, B.; Xu, L.; Sun, X.; Jiang, D.; Xu, H.-J.; Ma, M.; Cao, F. A novel fluorescence “turn off-on” nano-sensor for detecting cu2+ and cysteine in living cells. Journal of Photochemistry and Photobiology A: Chemistry 2018, 362, 14-20.
63. da Silva, W.M.B.; de Oliveira Pinheiro, S.; Alves, D.R.; de Menezes, J.; Magalhaes, F.E.A.; Silva, F.C.O.; Silva, J.; Marinho, E.S.; de Morais, S.M. Synthesis of quercetin-metal complexes, in vitro and in silico anticholinesterase and antioxidant evaluation, and in vivo toxicological and anxiolitic activities. Neurotox Res 2020, 37, 893-903.
64. Zhang, L.; Liu, Y.; Wang, Y.; Xu, M.; Hu, X. Uv-vis spectroscopy combined with chemometric study on the interactions of three dietary flavonoids with copper ions. Food Chem 2018, 263, 208-215.
65. Pekal, A.; Biesaga, M.; Pyrzynska, K. Interaction of quercetin with copper ions: Complexation, oxidation and reactivity towards radicals. Biometals 2011, 24, 41-49.
66. Tapiero, H.; Townsend, D.M.; Tew, K.D. Trace elements in human physiology and pathology. Copper. Biomed Pharmacother 2003, 57, 386-398.
67. Kalinowska, M.; Lewandowska, H.; Pruszyński, M.; Świderski, G.; Gołębiewska, E.; Gryko, K.; Braun, J.; Borkowska, M.; Konieczna, M.; Lewandowski, W. Co(ii) complex of quercetin–spectral, anti-/pro-oxidant and cytotoxic activity in hacat cell lines. Applied Sciences 2021, 11, 9244.
68. Malesev, D.; Kuntic, V. Investigation of metal-flavonoid chelates and the determination of flavonoids via metal-flavonoid complexing reactions. Journal of the Serbian Chemical Society 2007, 72, 921-939.
69. Ravichandran, R.; Rajendran, M.; Devapiriam, D. Antioxidant study of quercetin and their metal complex and determination of stability constant by spectrophotometry method. Food Chem 2014, 146, 472-478.
70. de Castilho, T.S.; Matias, T.B.; Nicolini, K.P.; Nicolini, J. Study of interaction between metal ions and quercetin. Food Science and Human Wellness 2018, 7, 215-219.
71. Lewis, T.; Wallace, W.; Peterson, F.D.; Rafferty, S.; Martic, S. Reactivities of quercetin and metallo‐quercetin with superoxide anion radical and molecular oxygen. Electrochemical Science Advances 2021, 2.
72. Dai, P.; Gao, A.; Lu, N.; Li, T.; Wang, Y. A back-gate controlled silicon nanowire sensor with sensitivity improvement for DNA and ph detection. Japanese Journal of Applied Physics 2013, 52, 121301.
73. Wu, T.; Alharbi, A.; You, K.D.; Kisslinger, K.; Stach, E.A.; Shahrjerdi, D. Experimental study of the detection limit in dual-gate biosensors using ultrathin silicon transistors. ACS Nano 2017, 11, 7142-7147.
74. Alharbi, A.G.; Shafi, N. Liquid gate and back gate capacitive coupling effects in ph sensing performance of finfets. Silicon 2022.
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *