帳號:guest(18.116.89.38)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):周川普
作者(外文):Chou, Chuan-Pu
論文名稱(中文):多晶鍺錫化合物無接面薄膜式電晶體之缺陷工程及其在神經型態運算之應用
論文名稱(外文):Defect Engineering of Poly-GeSn Junctionless Thin Film Transistors and Its Applications for Neuromorphic Computing
指導教授(中文):巫勇賢
指導教授(外文):Wu, Yung-Hsien
口試委員(中文):張廖貴術
吳永俊
李耀仁
吳添立
口試委員(外文):ChangLiao, Kuei-Shu
Wu, Yung-Chun
Lee, Yao-Jen
Wu, Tian-Li
學位類別:博士
校院名稱:國立清華大學
系所名稱:工程與系統科學系
學號:104011806
出版年(民國):109
畢業學年度:109
語文別:英文
論文頁數:167
中文關鍵詞:多晶鍺錫化合物氬氣退火氨氣電漿鐵電氧化鉭神經型態運算
外文關鍵詞:Poly-GeSnAr annealingNH3 plasmaFerroelectricTa2O5Neuromorphic Computing
相關次數:
  • 推薦推薦:0
  • 點閱點閱:110
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
本論文主要研究多晶GeSn無接面薄膜式電晶體的元件特性及可靠度之研究與探討。同時建立相關理論及製程手法來改善元件特性及可靠度。首先在第二章中,第一部份針對Sn濃度為5.1%的多晶GeSn薄膜結晶性與退火溫度的相依性進行分析,同時也討論SiO2覆蓋層對於多晶GeSn薄膜的影響。探討完最佳之薄膜結晶性後,第二部份探討多晶GeSn薄膜厚度對於無接面薄膜式電晶體的元件特性影響。在第三章中,為再進一步提高薄膜的結晶性,利用各種不同的退火氣體環境來探討對於多晶GeSn薄膜結晶性的影響,同時並探討無接面電晶體的元件特性、晶粒尺寸和通道缺陷密度之相依性。在第四章中,採用Ar氣體退火的多晶GeSn 無接面薄膜式電晶體作為基礎,再進一步探討電漿處理對於元件特性與可靠度的影響。其中Ar氣體退火搭配NH3電漿處理提高了最多的多晶GeSn無接面薄膜式電晶體之元件特性,這主要歸因於較低的介面缺陷密度和通道缺陷密度。在第五章中,基於改善的元件性能,多晶GeSn無接面薄膜式電晶體結合HfZrOx鐵電材料來進行研究與探討。其中鐵電材料的可靠度可以透過NH3電漿處理處理和插入Ta2O5介面層來進行改善。在改善了HfZrOx鐵電材料的可靠度之後,對多晶GeSn無接面薄膜式鐵電記憶體進行了突觸行為應用與評估,包括短期增強作用、長期增強作用、長期抑制作用和脈衝時序依賴可塑性行為。在第六章中,我們通過金屬-鐵電-半導體結構來探討鐵電材料在多晶GeSn薄膜和磊晶GeSn薄膜上之鐵電特性與可靠度之差異。其中通過矽(111)基板上的磊晶之GeSn薄膜與鐵電材料具有更好的介面品質,而使其具有較佳的鐵電特性及可靠度。
This thesis focuses on the investigation of device and reliability performance for poly-GeSn thin film transistors (TFTs). We develop theories and processes to reinforce device performance and reliability. After the introduction in Chapter 1, the effect of annealing temperature and SiO2 capping layer on the crystallinity of poly-GeSn film with Sn concentration of 5.1% is investigated by various physical analyses in Chapter 2. Based on the best crystallinity, the impact of channel thickness on JL TFTs devices performance is explored by electrical analyses. To further improve the crystallinity of poly-GeSn film, the effects of annealing gas ambient on grain size, channel defect density and consequent device electrical characteristics are studied in Chapter 3. In Chapter 4, poly-GeSn JL TFTs with Ar gas annealing are employed as the vehicle to explore how plasma treatments affect device performance and reliability. NH3 plasma treatment is found to be effective in improving poly-GeSn device performance, mainly resulting from lower defect density of bulk and channel defect density. In Chapter 5, based on the enhanced device performance, poly-GeSn JL TFTs gated with ferroelectric HfZrOx materials are well investigated. The reliability of ferroelectric TFTs (Fe-TFTs) can be achieved by using NH3 plasma treatment and inserting an interfacial layer of Ta2O5. Then the Fe-TFTs are evaluated for synaptic device applications including STP, LTP, LTD and STDP behaviors. In Chapter 6, by using metal-ferroelectric-semiconductor (M-F-S) structure as the platform, the correlation between substrate crystallinity (polycrystalline GeSn or epitaxial GeSn) and the quality of ferroelectric HfZrOx film is explored. Finally, conclusions of this work and further recommendations to improve the device performance are made.
Contents
摘要 i
Abstract ii
Acknowledgement iii
Contents iv
Table Lists xviii
Chapter 1 Introduction 1
1-1 Background and Motivation 1
1-2 Three-Dimensional Integrated Circuits (3D-IC) 2
1-3 Junctionless Structure 4
1-4 Advantages of GeSn materials 5
1-5 Ferroelectric Materials 6
1-6 Organization of the Thesis 7
1-7 References 10
Chapter 2 Investigation of Layer Thickness and Capping Layer on Characteristics of Poly-GeSn Junctionless P-Channel Thin Film Transistors 21
2-1 Introduction 21
2-2 Experiment 23
2-3 Results and Discussion 25
2-3-1 Effect of GeSn Layer Thickness on Device Performance 25
2-3-2 Impact of Capping Layer for Films Crystallinity 26
2-3-3 Impact of Capping Layer for Film Concentration 27
2-3-4 Effect of Capping Layer on Device Performance 28
2-3-5 Effect of Global and Local Capping Layer on Device Performance 28
2-3-6 Impact of Capping Layer on Surface Roughness 29
2-3-7 Impact of Capping Layer on Contact Resistivity 30
2-3-8 Effect of Global and Local Capping Layer on Mobility 32
2-4 Summary 32
2-5 References 34
Chapter 3 Implementing P-channel Junctionless Thin Film Transistor on Poly-Ge0.95Sn0.05 Film Formed by Amorphous GeSn Deposition and Annealing 48
3-1 Introduction 48
3-2 Experiment 49
3-3 Results and Discussion 50
3-3-1 Effect of annealing ambient on crystallinity 50
3-3-2 Effect of annealing ambient on device performance 52
3-3-3 Raman analysis for poly-GeSn film 54
3-3-4 Bulk defect density of poly-GeSn film 55
3-3-5 SEM and AFM analysis for poly-GeSn film 56
3-3-6 Effect of different annealing ambient of mobility 58
3-4 Summary 59
3-5 References 60
Chapter 4 Poly-GeSn Junctionless P-TFTs Featuring Record High ION/IOFF Ratio Hole Mobility by Defect Engineering 73
4-1 Introduction 73
4-2 Experiment 75
4-3 Results and Discussion 76
4-3-1 Impact of plasma for device performance 76
4-3-2 Mechanism of device improvement 77
4-3-3 Reliability analysis 80
4-4 Summary 81
4-5 References 82
Chapter 5 Junctionless Poly-GeSn Ferroelectric TFTs with Improved Reliability by Interface Engineering for Neuromorphic Computing 92
5-1 Introduction 92
5-2 Experiment 95
5-3 Results and Discussion 97
5-3-1 Impact of channel material on ferroelectric performance 97
5-3-2 Physical Analysis 99
5-3-3 Plasma treatment effect on reliability of GeSn FE-TFTs 101
5-3-4 IL effect on reliability of plasma-treated GeSn FE-TFTs 102
5-3-5 Short term plasticity 105
5-3-6 Long term plasticity 108
5-3-7 Pattern recognition accuracy 110
5-3-8 Spike-timing-dependent plasticity 111
5-4 Summary 112
5-5 References 113
Chapter 6 Impact of GeSn Crystallinity on Reliability of Ferroelectric HfZrOx for Devices with Metal-Ferroelectric-Semiconductor Structure 137
6-1 Introduction 137
6-2 Experiment 139
6-3 Results and Discussion 140
6-3-1 Single crystal-GeSn fabrication by solid phase epitaxy 140
6-3-2 Metal-Ferroelectric-Semiconductor physical analysis 142
6-3-3 Ferroelectricity of HZO on single- or poly-GeSn substrate 143
6-3-4 Reliability of HZO on single- or poly-GeSn substrate 145
6-4 Summary 147
6-5 References 148
Chapter 7 Conclusions and Further Recommendations 161
7-1 Conclusions 161
7-2 Further Recommendations 164
Publication List 165
Journal 165
Conference 166  
Figure Captions
Chapter 1
Fig. 1.1 Schematic view of devices cross-section for 3D-IC applications with package level, wafer level and monolithic 3D-IC [1.14]. 16
Fig. 1.2 Schematic view of inversion-mode, accumulation-mode and junctionless FET [1.24]. 16
Fig. 1.3 Location of conduction path in different devices. Subthreshold conduction path in (a) inversion, (b)accumulation and (c)junctionless devices. Conduction channels above threshold in (d)inversion, (e)accumulation and (f)junctionless devices [1.24]. 17
Fig. 1.4 Schematic band structure of Ge and GeSn alloy. GeSn alloy is expected to become direct gap with Sn about 8% [1.6]. 17
Fig. 1.5 Relative different valley occupancy for Ge channel with nMOSFETs [1.6]. 18
Fig. 1.6 Relative different valley occupancy for GeSn (10% Sn) channel with nMOSFETs. Reduction of L-Γ energy gap in GeSn causes increased population of Γ valley. Alloying with Sn also increases L-Δ energy gap, inhibiting Δ valley occupancy at high fields [1.6]. 18
Fig. 1.7 Comparison of injection velocity (Vinj) in nMOSFETs with Ge and GeSn (10% Sn) as channel. Improvement in Vinj is expected with direct band gap GeSn (10% Sn) [1.6]. 19
Fig. 1.8 Effective masses, degeneracy (g) in direction along the channel (||), perpendicular to the channel (⊥) and along confinement axis (z) [1.6]. 19
Fig. 1.9 Due to the high scalability of FE-HfO2 the manufacturability of the gate stack is still given at the 28 nm node [1.37]. 20
Fig. 1.10 Qualitative illustration of two causes of why HfO2-based ferroelectric has longer retention (1) Edep/Ec in HfO2-based ferroelectric is less significant, leading to less sever initial retention loss due to depolarization field, and (2) trap concentration in HfO2 is much lower than its PZT and SBT counterparts, leading to much less retention loss due to trapping [1.38]. 20
Chapter 2
Fig. 2.1 Brief process flow, schematic of global and local SiO2 capping and final device structure of poly-GeSn JL P-TFTs. 38
Fig. 2.2 XRD patterns of poly-GeSn film annealed with different temperature and time in N2 ambient. 39
Fig. 2.3 ID-VG transfer curves for devices with poly-GeSn film of various thicknesses for VD biased at -0.05 V. 39
Fig. 2.4 Capacitance versus voltage for poly-GeSn MOS structure with various layer thickness measured at 100 kHz. 40
Fig. 2.5 XRD patterns of -GeSn film annealed at different temperatures for 30 sec with global SiO2 capping layer. 40
Fig. 2.6 XRD patterns of -GeSn film annealed at different temperatures for 30 sec without global SiO2 capping layer. 41
Fig. 2.7 Hole concentration of poly-GeSn film formed at different annealing temperatures for 30 sec with global SiO2 capping layer by Hall effect measurement. 41
Fig. 2.8 Hole concentration of poly-GeSn film formed at different annealing temperatures for 30 sec without global SiO2 capping layer by Hall effect measurement. 42
Fig. 2.9 ID-VG transfer curves for devices with poly-GeSn film formed with global SiO2 capping layer biased at VD of -0.05 V and -1 V. 42
Fig. 2.10 ID-VG transfer curves for devices with poly-GeSn film formed without global SiO2 capping layer biased at VD of -0.05 V and -1 V. 43
Fig. 2.11 ID-VG transfer curves for JL P-TFTs with and without local SiO2 capping layer on the S/D region. 43
Fig. 2.12 ID-VD output curves for JL P-TFTs with and without local SiO2 capping layer on the S/D region. 44
Fig. 2.13 AFM surface roughness for poly-GeSn film with and without SiO2 capping layer. 44
Fig. 2.14 3D image for poly-GeSn film with and without SiO2 capping layer. 45
Fig. 2.15 I-V curves between the contact metal (Ni) and S/D region with and without local SiO2 capping layer. 45
Fig. 2.16 Specific contact resistivity for poly-GeSn films with and without SiO2 capping layer. 46
Fig. 2.17 Field-effect hole mobility for JL P-TFTs with and without the capping layer on the S/D region. 46
Chapter 3
Fig. 3.1 Process flow and device structure of poly-GeSn JL P-TFT. 65
Fig. 3.2 XRD patterns for GeSn film with different annealing ambient at 500 oC for 30 sec. 65
Fig. 3.3 XRD enlarged pattern between 25o and 30o with different annealing ambient at 500 oC for 30 sec. 66
Fig. 3.4 ID-VG transfer curves for devices with different annealing ambient for VD biased at -0.05 V. 66
Fig. 3.5 ID-VD output curves for devices with different annealing ambient and biased at VG-Vt of -5 V. 67
Fig. 3.6 Capacitance versus voltage for devices with various annealing ambient measured at 1 and 100 kHz. 67
Fig. 3.7 Hole concentration for poly-GeSn film with different gas annealing. N2-annealed poly-GeSn film corresponds to a higher hole concentration. 68
Fig. 3.8 Raman spectra for GeSn film annealed by N2 and Ar gas. Spectrum for bulk Ge is also shown for reference. 68
Fig. 3.9 ln[ID/(VG–VFB)] versus 1/(VG–VFB)2 for Ar-, N2- and N2O-annealed devices for Nbulk extraction. 69
Fig. 3.10 The device structure and Sn precipitation analysis region (red frame) by EDS and SEM. 69
Fig. 3.11 EDS images of devices and no Sn precipitation are observed. 70
Fig. 3.12 AFM surface roughness for GeSn film annealed by various annealing gases. 70
Fig. 3.13 3D images for GeSn film as-deposited and annealed by various annealing gases. 71
Fig. 3.14 Field-effect hole mobility for devices with various annealing ambient. 71
Fig. 3.15 Hole mobility by Hall effect measurement for GeSn film annealed by various gases. 72
Chapter 4
Fig. 4.1 Process flow of high-performance poly-GeSn JL P-TFTs with defect engineering. Process conditions of each stage and the final structure of the devices are also presented. 85
Fig. 4.2 Bi-directional ID-VG transfer curves for Ar-gas-annealed devices with additional plasma treatments. NH3 plasma shows the best ION/IOFF ratio and drive current. 85
Fig. 4.3 ID-VG hysteresis for 10 devices with various plasma treatments. 86
Fig. 4.4 Gate leakage for devices with various plasma treatments. 86
Fig. 4.5 Bi-directional ID-VD output curves for devices with different plasma treatment under the same overdrive voltage. NH3 plasma outperforms other plasma treatments. 87
Fig. 4.6 Capacitance for devices with various plasma treatments. Tiny frequency dispersion in the depletion region for NH3 and N2 plasma implies good interfacial quality. 87
Fig. 4.7 Field-effect hole mobility vs. E-field for devices with various plasma treatments. A record high peak mobility of 162.2 cm2/Vs is obtained by NH3 plasma. 88
Fig. 4.8 XRD patterns for GeSn film annealed by Ar gas with additional plasma treatment. 88
Fig. 4.9 ln[ID/(VG–VFB)] vs. 1/(VG–VFB)2 for Ar-gas annealed devices with additional plasma treatments for Nbulk extraction. 89
Fig. 4.10 Gate current for Ar-gas-annealed devices with additional plasma treatments. Data for devices with only Ar annealing is also shown for comparison. 89
Fig. 4.11 SILC as a function of stress time under the gate stress field of -10 MV/cm for devices with different treatments. 90
Fig. 4.12 Vt shift as a function of stress time under the gate stress field of -10 MV/cm for devices with different treatments. Additional plasma treatment greatly suppresses Vt shift. 90
Chapter 5
Fig. 5.1 Process flow of 2-stage investigation on high-performance poly-Ge and poly-GeSn junctionless TFT devices based on Fe-HZO. Process condition of each stage and the final structure of the devices are also presented. 121
Fig. 5.2 XRD patterns for Fe-HZO with poly-Ge and poly-GeSn channel. 122
Fig. 5.3 I-V characteristics for Fe-TFTs with poly-Ge and poly-GeSn channel. 122
Fig. 5.4 P-V curves for Fe-TFTs with poly-Ge and poly-GeSn channel. 123
Fig. 5.5 Endurance performance for Fe-TFTs with poly-Ge and poly-GeSn channel. 123
Fig. 5.6 SS and OS retention performance at 85 oC for Fe-TFTs with poly-Ge and poly-GeSn channel. 124
Fig. 5.7 Cross-sectional TEM image of JL poly-GeSn Fe-TFTs. 124
Fig. 5.8 Top view SEM image of poly-GeSn channel and Ni S/D region. The inset shows the EDS elemental mapping of Sn for poly-GeSn channel. 125
Fig. 5.9 AFM surface morphology for poly-GeSn film. 125
Fig. 5.10 PFM image of HZO with and without GeSn channel capping. 126
Fig. 5.11 Impact of NH3 plasma treatment of poly-GeSn channel on P-V characteristics for Fe-TFTs. 126
Fig. 5.12 Impact of NH3 plasma treatment of poly-GeSn channel on gate leakage I-V curves for Fe-TFTs. 127
Fig. 5.13 Impact of NH3 plasma treatment of poly-GeSn channel on endurance performance and for Fe-TFTs. 127
Fig. 5.14 Impact of NH3 plasma treatment of poly-GeSn channel on SS and OS retention at 85 oC for Fe-TFTs. 128
Fig. 5.15 Dependence of various IL on gate leakage I-V curves for Fe-TFTs with plasma-treated poly-GeSn channel. 128
Fig. 5.16 Dependence of various IL on XRD patterns for Fe-TFTs with plasma-treated poly-GeSn channel. 129
Fig. 5.17 Dependence of various IL on P-V characteristics for Fe-TFTs with plasma-treated poly-GeSn channel. 129
Fig. 5.18 Dependence of various IL on endurance performance for Fe-TFTs with plasma-treated poly-GeSn channel. 130
Fig. 5.19 Dependence of various IL on SS and OS retention at 85 oC for Fe-TFTs with plasma-treated poly-GeSn channel. 130
Fig. 5.20 Dependence of various IL on ID-VG transfer curves for Fe-TFTs with plasma-treated poly-GeSn channel. 131
Fig. 5.21 PPD behaviors of short-term plasticity imitated on poly-GeSn Fe-TFTs. Waveform of the paired pulse applied at gate terminal and corresponding waveform of the drain current. 131
Fig. 5.22 PPD behaviors of short-term plasticity imitated on poly-GeSn Fe-TFTs. Dipole switching characteristic with different pulse width. 132
Fig. 5.23 PPD behaviors of short-term plasticity imitated on poly-GeSn Fe-TFTs. Dependence of pulse width on PPD current index. 132
Fig. 5.24 Two training pulse schemes (Scheme A: pulse width modulation, Scheme B: pulse amplitude modulation) for potentiation/depression. 133
Fig. 5.25 Channel conductance (G) as a function of pulse number for Scheme A (LTP) for plasma-treated GeSn Fe-TFTs with Ta2O5 IL. 133
Fig. 5.26 Channel conductance (G) as a function of pulse number for Scheme A (LTD) for plasma-treated GeSn Fe-TFTs with Ta2O5 IL. 134
Fig. 5.27 Channel conductance (G) as a function of pulse number for Scheme B (LTD) for plasma-treated GeSn Fe-TFTs with Ta2O5 IL. 134
Fig. 5.28 Channel conductance (G) as a function of pulse number for Scheme B (LTD) for plasma-treated GeSn Fe-TFTs with Ta2O5 IL. 135
Fig. 5.29 Evolution of pattern recognition accuracy with training epochs for scheme A and scheme B on MNIST dataset. 135
Fig. 5.30 Waveform of pulse at pre-synaptic neuron and post-synaptic neuron. Voltage drop across pre-synaptic and post-synaptic neuron is also shown. 136
Fig. 5.31 STDP behaviors imitated on poly-GeSn Fe-TFTs by showing conductance change (ΔG) as a function of interval time (Δt). 136
Chapter 6
Fig. 6.1 Process flow of M-F-S devices on poly-crystal or single-crystal GeSn substrate by solid phase epitaxy and capping layer effect. 152
Fig. 6.2 XRD patterns and for single-crystalline GeSn film with and without SiO2 capping layer. 152
Fig. 6.3 AFM surface roughness for single-crystalline GeSn film with and without SiO2 capping layer. 153
Fig. 6.4 TEM image for single-crystalline GeSn film after removing SiO2 capping layer 153
Fig. 6.5 TEM and FFT image for the whole semiconductor materials including Si substrate, SiGeSn interface layer and single-crystalline GeSn film. 154
Fig. 6.6 EDS image of single-crystalline GeSn film (Sn of 5.1%) on Si (111) substrate after removing SiO2 capping layer. 154
Fig. 6.7 XRD patterns for HZO on single- or poly-crystalline GeSn film. 155
Fig. 6.8 TEM image of HZO on single-crystalline GeSn film 155
Fig. 6.9 TEM image of HZO on poly-crystalline GeSn film 156
Fig. 6.10 I-E hysteresis loops of HZO on single- or poly-crystalline GeSn films. 156
Fig. 6.11 P-E hysteresis loops of HZO on single- or poly-crystalline GeSn films. 157
Fig. 6.12 Dipole switched speed of HZO on poly-crystalline GeSn films at different electric field. 157
Fig. 6.13 Dipole switched speed of HZO on single-crystalline GeSn films at different electric field. 158
Fig. 6.14 AFM surface roughness for poly- and single-crystalline GeSn film with SiO2 capping layer. 158
Fig. 6.15 Endurance of HZO on poly- and single-crystalline GeSn films at 3.3 MV/cm for 106 cycles. 159
Fig. 6.16 SS retention of HZO on poly- and single-crystalline GeSn films for 104 sec. 159
Fig. 6.17 OS retention of HZO on poly- and single-crystalline GeSn films for 104 sec. 160
Fig. 6.18 OS retention of positive coercive voltage shift for 104 sec. 160






Table Lists
Chapter 2
Table I. Comparison of ION/IOFF, peak mobility and several parameters for poly-Ge and poly-GeSn P-TFTs devices. 47
Chapter 3
Table I. Comparison of major device parameters for group IV P-TFTs. 72
Chapter 4
Table I. Comparison of ION/IOFF, peak mobility and several parameters for poly-Ge and poly-GeSn P-TFTs devices. 91

1.1 C. Fenouillet-Beranger, B. Mathieu, B. Previtali, M.-P. Samson, N. Rambal, V. Benevent, S. Kerdiles, J.-P. Barnes, D. Barge, P. Besson, R. Kachtouli, M. Cassé, X. Garros, A. Laurent, F. Nemouchi, K. Huet, I. Toqué-Trésonne, D. Lafond, H. Dansas, F. Aussenac, G. Druais, P. Perreau, E. Richard, S. Chhun, E. Petitprez, N. Guillot, F. Deprat, L. Pasini, L. Brunet, V. Lu, C. Reita, P. Batude, and M. Vinet, “New insights on bottom layer thermal stability and laser annealing promises for high performance 3D VLSI”, IEDM Tech. Dig., pp.642-645, 2014.
1.2 Y. Kamata, Y. Kamimuta, K. Ikeda, K. Furuse, M. Ono, M. Oda, Y. Moriyama, K. Usuda, M. Koike, T. Irisawa, E. Kurosawa, and T. Tezuka, “Superior cut-off characteristics of Lg=40nm Wfin=7nm poly Ge junctionless tri-gate FET for stacked 3D circuits integration, Symp. VLSI Technol., pp. 94-95, 2013.
1.3 K. Usuda, Y. Kamata, Y. Kamimuta, T. Mori, M. Koike, and T. Tezuka, “High-performance tri-gate Poly-Ge junction-less P- and N-MOSFETs fabricated by flash lamp annealing process”, IEDM Tech. Dig., pp. 422-425, 2014.
1.4 H. Haesslein, R. Sielemann, and C. Zistl, “Vacancies and self-interstitials in germanium observed by perturbed angular correlation spectroscopy”, Phys. Rev. Lett., vol. 80, no. 12, pp. 2626-2629, 1998.
1.5 R. Sielemanna, H. H.assleina, C. Zistla, M. M. ullera, L. Stadlera, and V. V. Emtsev, “Vacancies and self-interstitials in germanium:a picture derived from radioactive probes”, J. Appl. Phys. Physica B, vol. 308, pp. 529-534, 2001.
1.6 S. Gupta, R. Chen, B. M. Kope, H. Lin, B. Yang, A. Nainani, Y. Nishi, J. S. Harris, and K. C. Saraswat, “GeSn technology: Extending the Ge electronics roadmap”, IEDM Tech. Dig., pp. 398-401, 2011.
1.7 R. Kotlyar, U. E. Avci, S. Cea, R. Rios, T. D. Linton, K. J. Kuhn, and I. A. Young, “Bandgap engineering of group IV materials for complementary n and p tunneling field effect transistors”, Appl. Phys. Lett., vol. 102, no. 11, p. 113106, 2013.
1.8 S. Gupta, B. Magyari-Kope, Y. Nishi, and K. C. Saraswat, “Achieving direct band gap in germanium through integration of Sn alloying and external strain”, Jpn. J. Appl. Phys., vol. 113, no. 7, p. 073707, 2013.
1.9 J. Werner, M. Oehme, M. Schmid, M. Kaschel, A. Schirmer, E. Kasper, and J. Schulze, “Germanium-tin pin photodetectors integrated on silicon grown by molecular beam epitaxy”, Appl. Phys. Lett., vol. 98, no. 6, p. 061108, 2011.
1.10 M. Jerry, P.-Y. Chen, J. Zhang, P. Sharma, K. Ni, S. Yu, and S. Datta, “Ferroelectric FET analog synapse for acceleration of deep neural network training”, IEDM Tech. Dig., pp. 139-142, 2017.
1.11 W. Chung, M. Si, and P. D. Ye, “First demonstration of Ge ferroelectric nanowire FET as synaptic device for online learning in neural network with high number of conductance state and Gmax/Gmin”, IEDM Tech. Dig., pp. 344-347, 2018.
1.12 M. Seo, M.-H. Kang, S.-B. Jeon, H. Bae, J. Hur, B. C. Jang, S. Yun, S. Cho, W.-K. Kim, M.-S. Kim, K.-M. Hwang, S. Hong, S.-Y. Choi, and Y.-K. Choi, “First demonstration of a logic-process compatible junctionless ferroelectric FinFET synapse for neuromorphic applications”, IEEE Electron Device Lett., vol. 39, no. 9, pp. 1445-1148, 2018.
1.13 H. Mulaosmanovic, J. Ocker, S. Muller, M. Noack, J. Muller, P. Polakowski, T. Mikolajick, and S. Slesazeck, “Novel ferroelectric FET based synapse for neuromorphic systems”, Symp. VLSI Technol., pp. T176-T177, 2017.
1.14 晶圓級(wafer level)三維晶粒堆疊封裝之近況發展, 世界材料網 (2007).
1.15 J. H. Lau, “TSV manufacturing yield and hidden costs for 3D IC integration”, 60th Electron. Components and Technol. Conference (ECTC), pp. 1031-1042, 2010.
1.16 T. Whipple, T. Kukal, K. Felton, and V. Gerousis, “IC-Package Co-design and Analysis for 3D-IC Designs”, IEEE Int. Conference on 3D Syst. Integration, pp. 1-6, 2009.
1.17 R. Chaware, G. Hariharan, J. Lin, I. Singh, G. O'Rourke, K. Ng, S. Y. Pai, C.-C. Li, Z. Huang, and S. K. Cheng, “Assembly Challenges in Developing 3D IC Package with Ultra High Yield and High Reliability”, Electron. Components and Tech. Conference, pp. 1447-1451, 2015.
1.18 M.-F. Lai, S.-W. Li, J.-Y. Shih, and K.-N. Chen, "Wafer-level three-dimensional integrated circuits (3D IC): Schemes and key technologies", Microelectron. Eng., vol. 88, no. 11, pp. 3282-3286, 2011.
1.19 J. H. Lau, and T. G. Yue, "Thermal Management of 3D IC Integration with TSV (Through Silicon Via)", 59th Electron. Components and Tech. Conference, pp. 635-640, 2009.
1.20 S. Panth, K. Samadi, K. Y. Du, and K. Sung Kyu Lim, “High-Density Integration of Functional Modules Using Monolithic 3D-IC Technology”, 18th Asia and South Pacific Des. Autom. Conference (ASP-DAC), pp. 681-686, 2013.
1.21 M. M. Shulaker, T. F. Wu, A. Pal, L. Zhao, Y. Nishi, K. Saraswat, H.-S. P. Wong, and S. Mitra, "Monolithic 3D Integration of Logic and Memory: Carbon Nanotube FETs, Resistive RAM, and Silicon FETs", IEDM Tech. Dig., pp. 638-641, 2014.
1.22 K. Chang, K. Acharya, S. Sinha, B. Cline, G. Yeric, and S. K. Lim, "Power Benefit Study of Monolithic 3D IC at the 7nm Technology Node", IEEE/ACM Int. Symp. on Low Power Electron. and Des. (ISLPED), pp. 201-206, 2015.
1.23 C. Edwards, “European chip technology to use IoT in bid to recapture ground”, Engineering and Technology Magazine, 10, 2015.
1.24 C.-W. Lee, A. Borne, I. Ferain, A. Afzalian, R. Yan, N. D. Akhavan, P. Razavi, and J.-P. Colinge, “High-temperature performance of silicon junctionless MOSFETs”, IEEE Trans. Electron Devices, vol. 57, no. 3, pp. 620-625, 2010.
1.25 D. Hisamoto, W. C. Lee, J. Kedzierski, H. Takeuchi, K. Asano, C. Kuo, E. Anderson, T. J. King, J. Bokoe, and C. Hu, “FinFET-a self-aligned double-gate MOSFET scalable to 20 nm”, IEEE Trans. Electron Devices, vol. 47, no. 12, pp. 2320-2325, 2000.
1.26 N. Singh, A. Agarwal, L. K. Bera, T. Y. Liow, R. Yang, S. C. Rustagi, C. H. Tung, R. Kumar, G. Q. Lo, N. Balasubramanian, and D. L. Kwong, “High-performance fully depleted silicon nanowire diameter/spl les/5 nm) gate-all-around CMOS devices”, IEEE Electron Device Lett., vol. 27, no. 5, pp. 383-386, 2006.
1.27 C. W. Lee, A. Afzalian, N. D. Akhavan, R. Yan, I. Ferain, and J. P. Colinge, “Junctionless multigate field-effect transistor”, Appl. Phys. Lett., vol. 94, no. 5, p. 053511, 2009.
1.28 J. P. Colinge, C. W. Lee, A. Afzalian, N. D. Akhavan, R. Yan, I. Ferain, P. Razavi, B. ONeill, A. Blake, M. White, A. M. Kelleher, B. McCarthy, and R. Murphy, “Nanowire transistors without junctions”, Nat. Nanotechnol., vol. 5, no. 3, pp. 225-229, 2010.
1.29 J. D. Sau, and M. L. Cohen, “Possibility of increased mobility in Ge-Sn alloy system”, Phys. Rev. B., vol. 75, no. 4, p. 045208, 2007.
1.30 M. H. Lee, S.-T. Fan, C.-H. Tang, P.-G. Chen, Y.-C. Chou, H.-H. Chen, J.-Y. Kuo, M.-J. Xie, S.-N. Liu, M.-H. Liao, C.-A. Jong, K.-S. Li, M.-C. Chen, and C. W. Liu, “Physical thickness 1.x nm ferroelectric HfZrOx negative capacitance FETs”, IEDM Tech. Dig., pp. 306-309, 2016.
1.31 T. S. Boscke, J. Muller, D. Brauhaus, U. Schroder, and U. Bottger, “Ferroelectricity in hafnium oxide: CMOS compatible ferroelectric field effect transistors”, IEDM Tech. Dig., pp. 547-550, 2011.
1.32 D.A. Buck, Ferroelectrics for Digital Information and Switching, 1952.
1.33 S.S. Eaton, D.B. Butler, M. Parris et al., “A Ferroelectric Nonvolatile Memory”, IEEE International Solid-State Circuits Conference (ISSCC), p. 130, 1988.
1.34 D. J. Jung, F. D. Morrison, M. Dawber, H. H. Kim, K. Kim, and J. F. Scott, “Effect of microgeometry on switching and transport in lead zirconate titanate capacitors: Implications for etching of nano-ferroelectrics,” J. Appl. Phys., vol. 95, no. 9, pp. 4968-4975, 2004.
1.35 L. Van Hai, M. Takahashi, and S. Sakai, “Downsizing of ferroelectric-gate field-effect-transistors for ferroelectric-NAND flash memory cells,” IEEE Int. Mem. Work. (IMW), pp. 1-4, 2011.
1.36 A. M. Ionescu, “Nanoelectronics: Ferroelectric devices show potential,” Nat. Nanotechnol., vol. 7, no. 2, pp. 83-85, 2012.
1.37 J. Muller, E. Yurchuk, T. Schlosser, J. Paul, R. Hoffmann, S. Muller, D. Martin, S. Slesazeck, P. Polakowski, J. Sundqvist, M. Czernohorsky, K. Seidel, P. Kucher, R. Boschke, M. Trentzsch, K. Gebauer, U. Schroder, and T. Mikolajick, "Ferroelectricity in HfO2 enables nonvolatile data storage in 28 nm HKMG", Symp. VLSI Technol., pp. 25-26, 2012.
1.38 N. Gong, and T.-P. Ma, “Why Is FE-HfO2 More Suitable Than PZT or SBT for Scaled Nonvolatile 1-T Memory Cell? A Retention Perspective”, IEEE Electron Device Lett., vol. 37, no. 9, pp. 1123-1126, 2016.
1.39 J. Muller, T. S. Boscke, S. Muller, E. Yurchuk, P. Polakowski, J. Paul, D. Martin, T. Schenk, K. Khullar, A. Kersch, W. Weinreich, S. Riedel, K. Seidel, A. Kumar, T. M. Arruda, S. V. Kalinin, T. Schlosser, R. Boschke, R. van Bentum, U. Schroder, and T. Mikolajick, “Ferroelectric hafnium oxide: A CMOS-compatible and highly scalable approach to future ferroelectric memories”, IEDM Tech. Dig., pp. 280-283, 2013.
2.1 C. Fenouillet-Beranger, B. Mathieu, B. Previtali, M.-P. Samson, N. Rambal, V. Benevent, S. Kerdiles, J.-P. Barnes, D. Barge, P. Besson, R. Kachtouli, M. Cassé, X. Garros, A. Laurent, F. Nemouchi, K. Huet, I. Toqué-Trésonne, D. Lafond, H. Dansas, F. Aussenac, G. Druais, P. Perreau, E. Richard, S. Chhun, E. Petitprez, N. Guillot, F. Deprat, L. Pasini, L. Brunet, V. Lu, C. Reita, P. Batude, and M. Vinet, “New insights on bottom layer thermal stability and laser annealing promises for high performance 3D VLSI”, IEDM Tech. Dig., pp.642-645, 2014.
2.2 Y. Kamata, Y. Kamimuta, K. Ikeda, K. Furuse, M. Ono, M. Oda, Y. Moriyama, K. Usuda, M. Koike, T. Irisawa, E. Kurosawa, and T. Tezuka, “Superior cut-off characteristics of Lg=40nm Wfin=7nm poly Ge junctionless tri-gate FET for stacked 3D circuits integration, Symp. VLSI Technol., pp. 94-95, 2013.
2.3 K. Usuda, Y. Kamata, Y. Kamimuta, T. Mori, M. Koike, and T. Tezuka, “High-performance tri-gate Poly-Ge junction-less P- and N-MOSFETs fabricated by flash lamp annealing process”, IEDM Tech. Dig., pp. 422-425, 2014.
2.4 H. Haesslein, R. Sielemann, and C. Zistl, “Vacancies and self-interstitials in germanium observed by perturbed angular correlation spectroscopy”, Phys. Rev. Lett., vol. 80, no. 12, pp. 2626-2629, 1998.
2.5 R. Sielemanna, H. H.assleina, C. Zistla, M. M. ullera, L. Stadlera, and V. V. Emtsev, “Vacancies and self-interstitials in germanium:a picture derived from radioactive probes”, J. Appl. Phys. Physica B, vol. 308, pp. 529-534, 2001.
2.6 S. Gupta, R. Chen, B. M. Kope, H. Lin, B. Yang, A. Nainani, Y. Nishi, J. S. Harris, and K. C. Saraswat, “GeSn technology: Extending the Ge electronics roadmap”, IEDM Tech. Dig., pp. 398-401, 2011.
2.7 R. Kotlyar, U. E. Avci, S. Cea, R. Rios, T. D. Linton, K. J. Kuhn, and I. A. Young, “Bandgap engineering of group IV materials for complementary n and p tunneling field effect transistors”, Appl. Phys. Lett., vol. 102, no. 11, p. 113106, 2013.
2.8 S. Gupta, B. Magyari-Kope, Y. Nishi, and K. C. Saraswat, “Achieving direct band gap in germanium through integration of Sn alloying and external strain”, J. Appl. Phys., vol. 113, no. 7, p. 073707, 2013.
2.9 J. Werner, M. Oehme, M. Schmid, M. Kaschel, A. Schirmer, E. Kasper, and J. Schulze, “Germanium-tin pin photodetectors integrated on silicon grown by molecular beam epitaxy”, Appl. Phys. Lett., vol. 98, no. 6, p. 061108, 2011.
2.10 A. Hara, Y. Nishimura, and H. Ohsawa, “Self-aligned metal double-gate junctionless p-channel low-temperature polycrystalline-germanium thin-film transistor with thin germanium film on glass substrate”, J. Appl. Phys., vol. 56, p. 03BB01, 2016.
2.11 H. Oka, M. Koyama, T. Tomita, T. Amamoto, K. Tominaga, S. Tanaka, T. Hosoi, T. Shimura, and H. Watanabe, “High-mobility TFT and enhanced luminescence utilizing nucleation-controlled GeSn growth on transparent substrate for monolithic optoelectronic integration”, IEDM Tech. Dig., pp. 580-583, 2016.
2.12 K. K. Ng, and W. T. Lynch, “The impact of intrinsic series resistance on MOSFET scaling”, IEEE Trans. Electron Devices, vol. 34, no. 3, pp. 503-511, 1987.
2.13 H. Oka, T. Amamotom, M. Koyama, Y. Imai, S. Kimura, T. Hosoi, T. Shimura, and H. Watanabe, “Fabrication of tensile-strained single-crystalline GeSn on transparent substrate by nucleation-controlled liquid-phase crystallization”, Appl. Phys. Lett., vol. 110, no. 3, p. 032104, 2017.
2.14 A. Monshi, M. R. Foroughi, and M. R. Monshi, “Modified scherrer equation to estimate more accurately nano-crystallite size using XRD”, World J. Nano. Sci. Eng., vol. 2, no. 3, pp.154-160, 2012.
2.15 Y. J. Cho, C. H. Kim, H. S. Im, Y. Myung, H. S. Kim, S. H. Back, Y. R. Lim, C. S. Jung, D. M. Jang, J. Park, S. H. Lim, E. H. Cha, K. Y. Bae, M. S. Song, and W. I. Cho, “Germanium-tin alloy nanocrystals for high-performance lithium ion batteries”, Phys. Chem. Chem. Phys, vol. 15, no. 28, p. 11691, 2013.
2.16 J. Y. Lee, B. Song, J. Kim, C.-W. Lee, S. Han, C.-W. Baik, H. Jeong, Y. Kim, and C. S. Lee, “Nanofabrication of low extinction coefficient and high-aspect-ratio Si structures for metaphotonic applications”, Proc. SPIE, vol. 9927, p. 992708, 2016.
2.17 S. Kabuyanagi, T. Nishimura, K. Nagashio, and A. Toriumi, “Impacts of oxygen passivation on poly-crystalline germanium thin film transistor”, Thin Solid Films, vol. 557, pp. 334-337, 2014.
2.18 K. Toko, I. Nakao, T. Sadoh, T. Noguchi, and M. Miyao, “Electrical properties of poly-Ge on glass substrate grown by two-step solid-phase crystallization”, Solid-State Electronics, vol. 53, no. 11, pp. 1159-1164, 2009.
2.19 R. R. Lieten, T. Maeda, W. Jevasuwan, H. Hattori, N. Uchida, S. Miura, M. Tanaka, and J. P. Locquet, “Tensile-strained GeSn metal-oxide-semiconductor field-effect transistor devices on Si (111) using solid phase epitaxy”, Appl. Phys. Exp., vol. 6, no. 10, p. 101301, 2013.
2.20 H. Oka, M. Koyama, T. Tomita, T. Amamoto, K. Tominaga, S. Tanaka, T. Hosoi, T. Shimura, and H. Watanabe, “High-mobility TFT and enhanced luminescence utilizing nucleation-controlled GeSn growth on transparent substrate for monolithic optoelectronic integration”, IEDM Tech. Dig., pp. 580-583, 2016.
2.21 S. Fujii, S.-I. Kuroki, M. Numata, K. Kotani, and T. Ito, Roughness reduction in polycrystalline silicon thin films formed by continuous-wave laser lateral crystallization with cap SiO2 Thin Films, J. Appl. Phys., vol. 48, no. 4, p. 04C129, 2009.
2.22 M. Shayesteh, K. Huet, I. Toqué-Tresonne, R. Negru, C. L. M. Daunt, N. Kelly, D. O’Connell, R. Yu, V. Djara, P. B. Carolan, N. Petkov, and R. Duffy, “Atomically flat low-resistive germanide contacts formed by laser thermal anneal”, IEEE Trans. Electron Devices, vol. 60, no. 7, pp. 2178-2185, 2013.
2.23 Z. Liliental, R. W. Carpenter, and R. Tuenge, “How epitaxial are Pd2Si-Si interfaces?”, Thin Solid Films, vol. 104, pp. 17-29, 1983.
2.24 V. K. Dugaev, and V. I. Litvinov, “Electric-current transmission through the contact of two metals”, Phys. Rev. B, vol. 52, no. 7, pp. 5306-5312, 1995.
2.25 D. A. Neamen, Semiconductor Physics and Devices. 4th ed., McGraw-Hill, New York, 2012, 349.
3.1. C. Fenouillet-Beranger, B.Mathieu, B. Previtali, M-P. Samson, N.Rambal, V. Benevent, S. Kerdiles, J-P. Barnes, D. Barge, P. Besson, R. Kachtouli, M. Cassé, X. Garros, A. Laurent, F. Nemouchi, K. Huet, I. Toqué-Trésonne, D.Lafond, H. Dansas, F. Aussenac, G. Druais, P. Perreau, E. Richard, S. Chhun, E. Petitprez, N. Guillot, F. Deprat, L. Pasini, L. Brunet, V. Lu, C. Reita, P. Batude, and M. Vinet, “New insights on bottom layer thermal stability and laser annealing promises for high performance 3D VLSI”, in IEDM Tech. Dig., pp.642-645, 2014.
3.2. Y. Kamata, Y. Kamimuta, K. Ikeda, K. Furuse, M. Ono, M. Oda, Y. Moriyama, K. Usuda, M. Koike, T. Irisawa, E. Kurosawa, and T. Tezuka, “Superior cut-off characteristics of Lg=40nm Wfin=7nm poly Ge junctionless tri-gate FET for stacked 3D circuits integration”, in Symp. VLSI Tech. Dig., pp. 94-95, 2013.
3.3. K. Usuda, Y. Kamata, Y. Kamimuta, T. Mori, M. Koike, and T. Tezuka, “High-performance tri-gate poly-Ge junction-less p- and n-MOSFETs fabricated by flash lamp annealing process”, in IEDM Tech. Dig., pp. 422-425, 2014.
3.4. C. Sun, R. Liang, L. Liu, J. Wang, and J. Xu, “Leakage current of germanium-on-insulator-based junctionless nanowire transistors”, Appl. Phys. Lett., vol. 107, no. 13, p. 132105, 2015.
3.5. S. Gupta, R. Chen, B. M. Kope, H. Lin, B. Yang, A. Nainani, Y. Nishi, J. S. Harris, and K. C. Saraswat, “GeSn technology: extending the Ge electronics roadmap”, in IEDM Tech. Dig., pp. 398-401, 2011.
3.6. H. Oka, T. Amamotom M. Koyama, Y. Imai, S. Kimura, T. Hosoi, T. Shimura, and H. Watanabe, “Fabrication of tensile-strained single-crystalline GeSn on transparent substrate by nucleation-controlled liquid-phase crystallization”, Appl. Phys. Lett., vol. 110, no. 3, p. 032104, 2017.
3.7. Z. Liu, J. Wen, X. Zhang, C. Li, C. Xue, Y. Zuo, B. Cheng, and Q. Wang, “High hole mobility GeSn on insulator formed by self-organized seeding lateral growth”, J. Phys. D Appl. Phys., vol. 48, no. 44, p. 445103, 2015.
3.8. H. Oka, M. Koyama, T. Tomita, T. Amamoto, K. Tominaga, S. Tanaka, T. Hosoi, T. Shimura, and H. Watanabe, “High-mobility TFT and enhanced luminescence utilizing nucleation-controlled GeSn growth on transparent substrate for monolithic optoelectronic integration”, in IEDM Tech. Dig., pp.580-583, 2016.
3.9. A. Monshi, M. R. Foroughi, and M. R. Monshi, “Modified scherrer equation to estimate more accurately nano-crystallite size using XRD”, World J. Nano. Sci. Eng., vol. 2, no. 3, pp.154-160, 2012.
3.10. S. Kabuyanagi, T. Nishimura, K. Nagashio, and A. Toriumi, “Impacts of oxygen passivation on poly-crystalline germanium thin film transistor”, Thin Solid Films, vol. 557, pp. 334-337, 2014.
3.11. A. Marmorstein, A. T. Voutsas, and R. Solanki, “A systematic study and optimization of parameters affecting grain size and surface roughness in excimer laser annealed polysilicon thin films”, Journal of Appl. Phys., vol. 82, no. 9, pp. 4303-4309, 1997.
3.12. M. Konsolakis, “Recent advances on nitrous oxide (N2O) decomposition over nonnoble-metal oxide catalysts: catalytic performance, mechanistic considerations, and surface chemistry aspects”, ACS Catal., vol. 5, no. 11, pp. 6397-6421, 2015.
3.13. V. K. Bhat, K. N. Bhat, and A. Subrahmanyam, “Growth of ultrathin oxides of silicon by wet oxidation at very low (0.04 atm) water vapour pressure”, Semicond. Sci. Tech., vol. 16, no. 11, pp. 925-929, 2001.
3.14. M. V. Fischetti, and S. E. Laux, “Band structure, deformation potentials, and carrier mobility in strained Si, Ge, and SiGe alloys”, J. Appl. Phys., vol. 80, no. 4, pp. 2234-2252, 1996.
3.15. R. R. Lieten, T. Maeda, W. Jevasuwan, H. Hattori, N. Uchida, S. Miura, M. Tanaka, and J. P. Locquet, “Tensile-strained GeSn metal-oxide-semiconductor field-effect transistor devices on Si (111) using solid phase epitaxy”, Appl. Phys. Exp., vol. 6, no. 10, p. 101301, 2013.
3.16. S. Pidin, T. Mori, K. Inoue, S. Fukuta, N. Itoh, E. Mutoh, K. Ohkoshi, R. Nakamura, K. Kobayashi, K. Kawamura, T. Saiki, S. Fukuyama, S. Satoh, M. Kase, and K. Hashimoto, “A novel strain enhanced CMOS architecture using selectively deposited high tensile and high compressive silicon nitride films”, IEDM Tech. Dig., pp. 213-216, 2004.
3.17. C. H. Chen, T. L. Lee, T. H. Hou, C. L. Chen, C. C. Chen, J. W. Hsu, K. L. Cheng, Y. H. Chiu, H. J. Tao, Y. Jin, C. H. Diaz, S. C. Chen, and M. S. Liang, “Stress memorization technique (SMT) by selectively strained-nitride capping for sub-65nm high-performance strained-Si device application”, Symp. VLSI Technol., pp. 56-57, 2004.
3.18. K. W. Ang, K. J. Chui, V. Blimetsov, A. Du, N. Balasubramanian, M. F. Li, G. Samudra, and Y. C. Yeo, “Enhanced performance in 50 nm N-MOSFETs with silicon-carbon source/drain regions”, IEDM Tech. Dig., pp. 1069-1071, 2004.
3.19. C. Y. Cheng, Y. K. Fang, J. C. Hsieh, H. Hsia, Y. M. Sheu, W. T. Lu, W. M. Chen, and S. S. Lin, “Investigation and localization of the SiGe source/drain (S/D) strain-induced defects in PMOSFET with 45-nm CMOS technology”, IEEE Electron Device Lett., vol. 28, no.5, pp. 408-411, 2007.
3.20. Y. S. Huang, Y. J. Tsou, C. H. Huang, C. H. Huang, H. S. Lan, C. W. Liu, Y. C. Huang, H. Chung, and C. P. Chang, “High-mobility CVD-grown Ge/strained Ge0.9Sn0.1/Ge quantum-well pMOSFETs on Si by optimizing Ge cap thickness”, IEEE Trans. Electron Devices, vol. 64, no. 6, pp. 2498-2504, 2017.
3.21. K. J. Lee, H. Ahn, M. J. Motala, R. G. Nuzzo, E. Menard, and J. A. Rogers, “Fabrication of microstructured silicon (µs-Si) from a bulk Si wafer and its use in the printing of high-performance thin-film transistors on plastic substrates”, J. Micromech. Microeng., vol. 20, no. 7, p. 075018, 2010.
3.22. A. Marmorstein, A. T. Voutsas, and R. Solanki, “A systematic study and optimization of parameters affecting grain size and surface roughness in excimer laser annealed polysilicon thin films”, J. Appl. Phys., vol. 82, no. 9, pp. 4303-4309, 1997.
3.23. N. Yamauchit, J. J. Hajjar, and R. Reif, “Drastically improved performance in poly-Si TFTs with channel dimensions comparable to grain size”, IEDM Tech. Dig., pp. 353-356, 1989.
3.24. D. Palumbo, S. Masala, P. Tassini, A. Rubino, and D. D. Sala, “Electrical stress degradation of small-grain polysilicon thin-film transistors”, Trans. Electron Devices, vol. 54, no. 3, pp. 476-482, 2007.
3.25. W. C. Y. Ma, K. Chang, Y. C. Lin, and T. H. Wu, “Plasma-induced interfacial layer impacts on TFETs with poly-Si channel film by oxygen plasma surface treatment”, Trans. Plasma Sci., vol. 44, no. 12, pp.3214-3218, 2016.
3.26. M. Kurosawa, Y. Kamata, H. Ikenoue, N. Taoka, O. Nakatsuka, T. Tezuka, and S. Zaima, “Sub-300oC fabrication of poly-GeSn junctionless tri-gate p-FETs enabling sequential 3D integration of CMOS circuits”, SSDM, pp.684-685, 2014.
4.1. C. Fenouillet-Beranger, B.Mathieu, B. Previtali, M-P. Samson, N.Rambal, V. Benevent, S. Kerdiles, J-P. Barnes, D. Barge, P. Besson, R. Kachtouli, M. Cassé, X. Garros, A. Laurent, F. Nemouchi, K. Huet, I. Toqué-Trésonne, D.Lafond, H. Dansas, F. Aussenac, G. Druais, P. Perreau, E. Richard, S. Chhun, E. Petitprez, N. Guillot, F. Deprat, L. Pasini, L. Brunet, V. Lu, C. Reita, P. Batude, and M. Vinet, “New insights on bottom layer thermal stability and laser annealing promises for high performance 3D VLSI”, in IEDM Tech. Dig., pp.642-645, 2014.
4.2. Y. Kamata, Y. Kamimuta, K. Ikeda, K. Furuse, M. Ono, M. Oda, Y. Moriyama, K. Usuda, M. Koike, T. Irisawa, E. Kurosawa, and T. Tezuka, “Superior cut-off characteristics of Lg=40nm Wfin=7nm poly Ge junctionless tri-gate FET for stacked 3D circuits integration, Symp. VLSI Technol., pp. 94-95, 2013.
4.3. K. Usuda, Y. Kamata, Y. Kamimuta, T. Mori, M. Koike, and T. Tezuka, “High-performance tri-gate Poly-Ge junction-less P- and N-MOSFETs fabricated by flash lamp annealing process”, IEDM Tech. Dig., pp. 422-425, 2014.
4.4. C. Sun, R. Liang, L. Liu, J. Wang, and J. Xu, “Leakage current of germanium-on-insulator-based junctionless nanowire transistors”, Appl. Phys. Lett., vol. 107, no. 13, p. 132105, 2015.
4.5. J. D. Sau, and M. L. Cohen, “Possibility of increased mobility in Ge-Sn alloy system”, Phys. Rev. B., vol. 75, no. 4, p. 045208, 2007.
4.6. S. Gupta, R. Chen, B. M. Kope, H. Lin, B. Yang, A. Nainani, Y. Nishi, J. S. Harris, and K. C. Saraswat, “GeSn technology: Extending the Ge electronics roadmap”, IEDM Tech. Dig., pp. 398-401, 2011.
4.7. H. Oka, T. Amamotom, M. Koyama, Y. Imai, S. Kimura, T. Hosoi, T. Shimura, and H. Watanabe, “Fabrication of tensile-strained single-crystalline GeSn on transparent substrate by nucleation-controlled liquid-phase crystallization”, Appl. Phys. Lett., vol. 110, no. 3, p. 032104, 2017.
4.8. M. Kurosawa, Y. Kamata, H. Ikenoue, N. Taoka, O. Nakatsuka, T. Tezuka, and S. Zaima, “Sub-300oC fabrication of poly-GeSn junctionless tri-gate p-FETs enabling sequential 3D integration of CMOS circuits”, SSDM, pp.684-685, 2014.
4.9. Z. Liu, J. Wen, X. Zhang, C. Li, C. Xue, Y. Zuo, B. Cheng, and Q. Wang, “High hole mobility GeSn on insulator formed by self-organized seeding lateral growth”, J. Phys. D Appl. Phys., vol. 48, no. 44, p. 445103, 2015.
4.10. H. Oka, M. Koyama, T. Tomita, T. Amamoto, K. Tominaga, S. Tanaka, T. Hosoi, T. Shimura, and H. Watanabe, “High-mobility TFT and enhanced luminescence utilizing nucleation-controlled GeSn growth on transparent substrate for monolithic optoelectronic integration”, IEDM Tech. Dig., pp. 580-583, 2016.
4.11. R. R. Lieten, T. Maeda, W. Jevasuwan, H. Hattori, N. Uchida, S. Miura, M. Tanaka, and J. P. Locquet, “Tensile-strained GeSn metal-oxide-semiconductor field-effect transistor devices on Si (111) using solid phase epitaxy”, Appl. Phys. Exp., vol. 6, no. 10, p. 101301, 2013.
4.12. G. Han, S. Su, C. Zhan, Q. Zhou, Y. Yang, L. Wang, P. Guo, W. Wei, C. P. Wong, Z. X. Shen, B. Cheng, and Y.-C. Yeo, “High-mobility germanium-tin (GeSn) P-channel MOSFETs featuring metallic source/drain and sub-370 °C process modules”, IEDM Tech. Dig., pp. 402-404, 2011.
4.13. R. R. Lieten, T. Maeda, J. W. Seo, W. Jevasuwan, H. Hattori, N. Uchida, S. Miura, M. Tanaka, C. Fleischmann, A. Vantomme, B. C. Johnson, and J. P. Locquet, “Solid phase epitaxy of GeSn alloys on silicon and integration in MOSFET devices, ECS Trans., vol. 64, no. 11, pp. 149-160, 2014.
4.14. Y. C. Fang, K. Y. Chen, C. H. Hsieh, C. C. Su, and Y. H. Wu, “N-MOSFETs formed on solid phase epitaxially grown GeSn film with passivation by oxygen plasma featuring high mobility, ACS Appl. Mater. Interfaces, vol. 7, no. 48, pp. 26374-26380, 2015.
4.15. W. C. Y. Ma, T. Y. Chiang, J. W. Lin, and T. S. Chao, “Oxide thinning and structure scaling down effect of low-temperature poly-Si thin-film transistors”, J. Display Technol., vol. 8, no. 1, pp. 12-17, 2012.
4.16. W. C. Y. Ma, K. Chang, Y. C. Lin, and T. H. Wu, “Plasma-induced interfacial layer impacts on TFETs with poly-Si channel film by oxygen plasma surface treatment”, IEEE Trans. Plasma Sci., vol. 44, no. 12, pp. 3214-3218, 2016.
5.1. C. Fenouillet-Beranger, B. Mathieu, B. Previtali, M.-P. Samson, N. Rambal, V. Benevent, S. Kerdiles, J.-P. Barnes, D. Barge, P. Besson, R. Kachtouli, M. Cassé, X. Garros, A. Laurent, F. Nemouchi, K. Huet, I. Toqué-Trésonne, D. Lafond, H. Dansas, F. Aussenac, G. Druais, P. Perreau, E. Richard, S. Chhun, E. Petitprez, N. Guillot, F. Deprat, L. Pasini, L. Brunet, V. Lu, C. Reita, P. Batude, and M. Vinet, “New insights on bottom layer thermal stability and laser annealing promises for high performance 3D VLSI”, IEDM Tech. Dig., pp. 642-645, 2014.
5.2. J. S. Lee, S. Chang, S.-M. Koo, and S. Y. Lee “High-performance a-IGZO TFT with ZrO2 gate dielectric fabricated at room temperature”, IEEE Electron Device Lett., vol. 31, no. 3, pp. 225-227, 2010.
5.3. J.-S. Seo, and B.-S. Bae, “Improved electrical performance and bias stability of solution processed active bilayer structure of indium zinc oxide based TFT”, ACS Appl. Mater. Interfaces, vol. 6, no. 17, pp. 15335-15343, 2014.
5.4. K. Usuda, Y. Kamata, Y. Kamimuta, T. Mori, M. Koike, and T. Tezuka, “High-performance tri-gate Poly-Ge junction-less P- and N-MOSFETs fabricated by flash lamp annealing process”, IEDM Tech. Dig., pp. 422-425, 2014.
5.5. C.-P. Chou, Y.-X. Lin, and Y.-H. Wu, “Implementing P-channel junctionless thin-film transistor on Poly-Ge0.95Sn0.05 film formed by amorphous GeSn deposition and annealing”, IEEE Electron Device Lett., vol. 39, no. 8, pp. 1187-1190, 2018.
5.6. H. Oka, M. Koyama, T. Tomita, T. Amamoto, K. Tominaga, S. Tanaka, T. Hosoi, T. Shimura, and H. Watanabe, “High-mobility TFT and enhanced luminescence utilizing nucleation-controlled GeSn growth on transparent substrate for monolithic optoelectronic integration”, IEDM Tech. Dig., pp. 580-583, 2016.
5.7. M. Jerry, P.-Y. Chen, J. Zhang, P. Sharma, K. Ni, S. Yu, and S. Datta, “Ferroelectric FET analog synapse for acceleration of deep neural network training”, IEDM Tech. Dig., pp. 139-142, 2017.
5.8. W. Chung, M. Si, and P. D. Ye, “First demonstration of Ge ferroelectric nanowire FET as synaptic device for online learning in neural network with high number of conductance state and Gmax/Gmin”, IEDM Tech. Dig., pp. 15.2.1-15.2.4.
5.9. M. Seo, M.-H. Kang, S.-B. Jeon, H. Bae, J. Hur, B. C. Jang, S. Yun, S. Cho, W.-K. Kim, M.-S. Kim, K.-M. Hwang, S. Hong, S.-Y. Choi, and Y.-K. Choi, “First demonstration of a logic-process compatible junctionless ferroelectric FinFET synapse for neuromorphic applications”, IEEE Electron Device Lett., vol. 39, no. 9, pp. 1445-1148, 2018.
5.10. H. Mulaosmanovic, J. Ocker, S. Muller, M. Noack, J. Muller, P. Polakowski, T. Mikolajick, and S. Slesazeck, “Novel ferroelectric FET based synapse for neuromorphic systems” Symp. VLSI Technol., pp. T176-T177, 2017.
5.11. K.-T. Chen, C.-Y. Liao, C. Lo, H.-Y. Chen, G.-Y. Siang, S. Liu, S.-C. Chang, M.-H. Liao, S.-T. Chang, and M. H. Lee, “Improvement on ferroelectricity and endurance of ultra-thin HfZrO2 capacitor with molybdenum capping electrode”, Electron Devices Tech. and Manufacturing Conference, pp. 62-64, 2019.
5.12. A. Chernikova, M. Kozodaev, A. Markeev, D. Negrov, M. Spiridonov, S. Zarubin, O. Bak, P. Buragohain, H. Lu, E. Suvorova, A. Gruverman, and A. Zenkevich, “Ultrathin Hf0.5Zr0.5O2 ferroelectric films on Si”, ACS Appl. Mater. Interfaces, vol. 8, no.11, pp. 7232-7237, 2016.
5.13. J. Müller, T. S. Böscke, U. Schröder, S. Mueller, D. Bräuhaus, U. Böttger, L. Frey, and T. Mikolajick, “Ferroelectricity in simple binary ZrO2 and HfO2”, Nano Lett., vol. 12, no. 8, pp. 4318-4323, 2012.
5.14. M.-K. Kim, and J.-S. Lee, “Ferroelectric analog synaptic transistors”, Nano Lett., vol. 19, no. 3, pp. 2044-2050, 2019.
5.15. Y. Li, R. Liang, J. Wang, Y. Zhang, H. Tian, H. Liu, S. Li, W. Mao, Y. Pang, Y. Li, Y. Yang, and T.-L. Ren, “A ferroelectric thin film transistor based on annealing-free HfZrO film”, IEEE J. Electron Devices Soc., vol. 5, no. 5, pp. 378-383, 2017.
5.16. K. Moto, R. Yoshimine, T. Suemasu, and K. Toko, “Improving carrier mobility of polycrystalline Ge by Sn doping”, Scientific Reports, vol. 8, no. 1, p. 14832, 2018.
5.17. H. Li, J. Brouillet, A. Salas, X. Wang, and J. Liu, “Low temperature growth of high crystallinity GeSn on amorphous layers for advanced optoelectronics”, Opt. Mater. Express, vol. 3, no. 9, pp. 1385-1396, 2013.
5.18. H. Pérez Ladrón de Guevara, H. Navarro-Contreras, and M. A. Vidal, “Growth and characterization of Ge1-xSnx alloys grown by magnetron sputter deposition”, Superficies y Vacio, vol. 16, pp. 21-24, 2003.
5.19. Y. Goh, and S. Jeon, “The effect of the bottom electrode on ferroelectric tunnel junctions based on CMOS-compatible HfO2”, Nanotechnology, vol. 29, no. 33, p. 335201, 2018.
5.20. Y. S. Chai, Y. S. Oh, L. J. Wang, N. Manivannan, S. M. Feng, Y. S. Yang, L. Q. Yan, C. Q. Jin, and K. H. Kim, “Intrinsic ferroelectric polarization of orthorhombic manganites with E -type spin order”, Phys. Rev. B, vol. 85, no. 18, p. 184406, 2012.
5.21. S. Oh, T. Kim, M. Kwak, J. Song, J. Woo, S. Jeon, I. K. Yoo, and H. Hwang, “HfZrOx-based ferroelectric synapse device with 32 levels of conductance states for neuromorphic applications”, IEEE Electron Device Lett., vol. 38, no. 6, pp. 732-735, 2017.
5.22. K.-Y. Chen, P.-H. Chen, R.-W. Kao, Y.-X. Lin, and Y.-H. Wu, “Impact of plasma treatment on reliability performance for HfZrOx-based metal-ferroelectric-metal capacitors”, IEEE Electron Device Lett., vol. 39, no. 1, pp. 87-90, 2018.
5.23. K.-Y. Chen, Y.-H. Huang, R.-W. Kao, Y.-X. Lin, K.-Y. Hsieh, and Y.-H. Wu, “Enhanced Reliability of Ferroelectric HfZrOx on Semiconductor by Using Epitaxial SiGe as Substrate”, IEEE Trans. Electron Devices, vol. 66, no. 8, pp. 3636-3639, 2019.
5.24. N. Gong, and T.-P. Ma, “Why ss FE-HfO2 more suitable than PZT or SBT for scaled nonvolatile 1-T memory cell? a retention perspective”, IEEE Electron Device Lett., vol. 37, no. 9, pp. 1123-1126, 2016.
5.25. P. J. Schorn, U. Böttger, and R. Waser, “Monte carlo simulations of imprint behavior in ferroelectrics”, Appl. Phys. Lett., vol. 87, no. 24, p. 242902, 2005.
5.26. J. Aubin, J.M. Hartmann, A. Gassenq, L. Milord, N. Pauc, V. Reboud, and V. Calvo, “Impact of thickness on the structural properties of high tin content GeSn layer”, J. Cryst. Growth, vol. 473, pp. 20-27, 2017.
5.27. R. Loo, Y. Shimura, S. Ike, A. Vohra, T. Stoica, D. Stange, D. Buca, D. Kohen, J. Margetis, and J. Tolle, “Epitaxial GeSn: impact of process conditions on material quality”, Semicond. Sci. Technol., vol. 33, no. 11, pp. 114010, 2018.
5.28. P. Panda, R. Ramaseshan, N. Ravi, G. Mangamma, F. Jose, S. Dash, K. Suzuki, and H. Suematsu, “Reduction of residual stress in AlN thin films synthesized by magnetron sputtering technique”, Mater. Chem. Phys., vol. 200, pp. 78-84, 2017.
5.29. D. D. Zhao, T. Nishimura, C. H. Lee, K. Nagashio, K. Kita, and A. Toriumi, “Junctionless Ge p-Channel metal-oxide-semiconductor field-effect transistors fabricated on ultrathin Ge-on-insulator substrate”, Appl. Phys. Express, vol. 4, no. 3, p. 031302, 2011.
5.30. C.-P. Chou, Y.-X. Lin, K.-Y. Hsieh, and Y.-H. Wu, “Poly-GeSn junctionless P-TFTs featuring a record high ION/IOFF ratio and hole mobility by defect engineering”, J. Mater. Chem. C, vol. 7, no. 17, pp. 5201-5208, 2019.
5.31. W. C.-Y. Ma, S.-W. Yuan, T.-C. Chan, and C.-Y. Huang, “Threshold voltage reduction and mobility improvement of LTPS-TFTs with NH3 plasma treatment”, IEEE Trans. on Plasma Sci., vol. 42, no. 12, pp. 3722-3725, 2014.
5.32. Y. Kamata, Y. Kamimuta, T. Ino, and A. Nishiyama, “Direct comparison of ZrO2 and HfO2 on Ge substrate in terms of the realization of ultrathin high-k gate stacks”, Jpn. J. Appl. Phys., vol. 44, pp. 2323-2329, 2005.
5.33. C.-Y. Sze, and J. Y.-M. Lee, “Electrical characteristics of metal-ferroelectric (PbZrxTi1-xO3)-insulator (Ta2O5)-silicon structure for nonvolatile memory applications”, J. Vac. Sci. Technol. B, vol. 18, no. 6, pp. 2848-2850, 2000.
5.34. R. Srinivasan, B. H. Davis, O. B. Cavin, and C. R. Hubbard, “Crystallization and phase transformation process in zirconia: an in situ high-temperature X-ray diffraction study”, J. Am. Ceram. Soc., vol. 75, no. 5, pp. 1217-1222, 1992.
5.35. C. Joseph, P. Bourson, and M. D. Fontana,“Amorphous to crystalline transformation in Ta2O5 studied by Raman spectroscopy”, J. Raman Spectrosc., vol. 43, no. 8, pp. 1146-1150, 2012.
5.36. M. Tang, X. Xu, Z. Ye, Y. Sugiyama, and H. Ishiwara, “Impact of HfTaO buffer layer on data retention characteristics of ferroelectric-gate FET for nonvolatile memory applications”, IEEE Trans. Electron Devices, vol. 58, no. 2, pp. 370-375, 2011.
5.37. J. Zhou, G. Han, Q. Li, Y. Peng, X. Lu, C. Zhang, J. Zhang, Q.-Q. Sun, D. W. Zhang, and Y. Hao, Ferroelectric HfZrOx Ge and GeSn PMOSFETs with sub-60 mV/decade subthreshold swing, negligible hysteresis, and improved Ids, IEDM Tech. Dig., pp. 310-313, 2016.
5.38. M.-K. Kim, and J.-S. Lee, “Ferroelectric analog synaptic transistors”, Nano Lett., vol. 19, no. 3, pp. 2044-2050, 2019.
5.39. A. J. Arnold, A. Razavieh, J. R. Nasr, D. S. Schulman, C. M. Eichfeld, and S. Das, “Mimicking neurotransmitter release in chemical synapses via hysteresis engineering in MoS2 transistors, ACS Nano, vol. 11, no. 3, pp. 3110-3118, 2017.
5.40. T. Moraitis, A. Sebastian, and E. Eleftheriou, “The role of short-term plasticity in neuromorphic learning: learning from the timing of rate-varying events with fatiguing spike-timing-dependent plasticity”, IEEE Nanotechnology Magazine, vol. 12, no. 3, pp. 45-53, 2018.
5.41. P.-Y. Chen, X. Peng, and S. Yu, “NeuroSim: A circuit-level macro model for benchmarking neuro-inspired architectures in online learning”, IEEE Trans. Comput.-Aided Design Integr. Circuits Syst., vol. 37, no. 12, pp. 3067-3080, 2018.
5.42. P.-Y. Chen, X. Peng, and S. Yu, “NeuroSim+: an integrated device-to-algorithm framework for benchmarking synaptic devices and array architectures”, IEDM Tech. Dig., pp. 135-138, 2017.
5.43. P.-Y. Chen, and S. Yu, “Technological benchmark of analog synaptic devices for neuroinspired architectures”, IEEE Design & Test, vol. 36, no.3, pp. 31-38, 2019.
5.44. A. H. Jaafar, R. J. Gray, E. Verrelli, M. O'Neill, S. M. Kelly, and N. T. Kemp, “Reversible optical switching memristors with tunable STDP synaptic plasticity: a route to hierarchical control in artificial intelligent systems”, Nanoscale, vol. 9, no. 43, pp. 17091-17098, 2017.
5.45. S. Yu, Y. Wu, R. Jeyasingh, D. Kuzum, and H.-S. P.Wong, “An electronic synapse device based on metal oxide resistive switching memory for neuromorphic computation”, IEEE Trans. Electron Devices, vol. 58, no. 8, pp. 2729-2737, 2011.
6.1. M. H. Lee, S.-T. Fan, C.-H. Tang, P.-G. Chen, Y.-C. Chou, H.-H. Chen, J.-Y. Kuo, M.-J. Xie, S.-N. Liu, M.-H. Liao, C.-A. Jong, K.-S. Li, M.-C. Chen, and C. W. Liu, “Physical thickness 1.x nm ferroelectric HfZrOx negative capacitance FETs”, IEDM Tech. Dig., pp. 306-309, 2016.
6.2. T. S. Boscke, J. Muller, D. Brauhaus, U. Schroder, and U. Bottger, “Ferroelectricity in hafnium oxide: CMOS compatible ferroelectric field effect transistors”, IEDM Tech. Dig., pp. 547-550, 2011.
6.3. K.-Y. Chen, Y.-H. Huang, R-W. Kao, Y.-X. Lin, and Y.-H. Wu, “Dependence of reliability of ferroelectric HfZrOx on epitaxial SiGe film with various Ge content”, Symp. VLSI Technol., pp. 119-120, 2018.
6.4. C.-J. Su, T.-C. Hong, Y.-C. Tsou, F.-J. Hou, P.-J. Sung, M.-S. Yeh, C.-C. Wan, K.-H. Kao, Y.-T. Tang, C.-H. Chiu, C.-J. Wang, S.-T. Chung, T.-Y. You, Y.-C. Huang, C.-T. Wu, K.-L. Lin, G.-L. Luo, K.-P. Huang, Y.-J. Lee, T.-S. Chao, W.-F. Wu, G.-W. Huang, J.-M. Shieh, W.-K. Yeh, and Y.-H. Wang, “Ge nanowire FETs with HfZrOx ferroelectric gate stack exhibiting SS of Sub-60 mV/dec and biasing effects on ferroelectric reliability”, IEDM Tech. Dig., pp. 369-372, 2017.
6.5. P. D. Lomenzo, Q. Takmeel, C. M. Fancher, C. Zhou, N. G. Rudawski, S. Moghaddam, J. L. Jones, and T. Nishida, “Ferroelectric Si-doped HfO2 device properties on highly doped germanium”, IEEE Electron Device Lett., vol. 36, no. 8, pp. 766-768, 2015.
6.6. T.-T. Wu, W.-H. Huang, C.-C. Yang, H.-C. Chen, T.-Y. Hsieh, W.-S. Lin, M.-H. Kao, C.-H. Chen, J.-Y Yao, Y.-L. Jian, C.-C. Hsu, K.-L. Lin, C.-H. Shen, Y.-L. Chueh, and J.-M. Shieh, “High performance and low power monolithic three-dimensional sub-50 nm Poly Si thin film transistor (TFTs) circuits”, Sci. Rep., vol. 7, no. 1, p. 1368, 2017.
6.7. Y.-S. Li, C.-Y. Wu, C.-Y. Liao, J.-D. Luo, K.-C. Chuang, W.-S. Li, and H.-C. Cheng, “Effects of crystallinity on the electrical characteristics of counter-doped polycrystalline germanium thin-film transistor via continuous-wave laser crystallization”, J. Electron Devices Soc., vol. 7, pp. 544-550, 2019.
6.8. Y.-C. Fang, K.-Y. Chen, C.-H. Hsieh, C.-C. Su, and Y.-H. Wu, “N-MOSFETs formed on solid phase epitaxially grown GeSn film with passivation by oxygen plasma featuring high mobility”, ACS Appl. Mater. Interfaces., vol. 7, no. 48, pp. 26374-26380, 2015.
6.9. D. Lei, K. H. Lee, S. Bao, W. Wang, S. Masudy-Panah, S. Yadav, A. Kumar, Y. Dong, Y. Kang, S. Xu, Y. Wu, Y.-C. Huang, H. Chung, S. S. Chu, S Kuppurao, C. S. Tan, X. Gong, and Y.-C. Yeo, “The first GeSn FinFET on a novel GeSnOI substrate achieving lowest S of 79 mV/decade and record high Gm, int of 807 μS/μm for GeSn P-FETs”, Symp. VLSI Technol., pp. T198-T199, 2017.
6.10. Y.-S. Huang, F.-L. Lu , Y.-J. Tsou, H.-Y. Ye, S.-Y. Lin, W.-H. Huang, and C. W. Liu, “Vertically stacked strained 3-GeSn-nanosheet pGAAFETs on Si using GeSn/Ge CVD epitaxial growth and the optimum selective channel release process”, IEEE Electron Device Lett., vol. 39, no. 9, pp. 1274-1277, 2018.
6.11. R. R. Lieten, T. Maeda, W. Jevasuwan, H. Hattori, N. Uchida, S. Miura, M. Tanaka, and J. P. Locquet, “Tensile-strained GeSn metal-oxide-semiconductor field-effect transistor devices on Si (111) using solid phase epitaxy”, Appl. Phys. Exp., vol. 6, no. 10, p. 101301, 2013.
6.12. Y. H. Wu, W. J. Chen, A. Chin, and C. Tsai, “The effect of native oxide on epitaxial SiGe from deposited amorphous Ge on Si”, Appl. Phys. Lett., vol. 74, no. 4, pp. 528-530, 1999.
6.13. Y. Suzuki, Y. Oniki, Y. Iwazaki, and T. Ueno, “Bulk and interface engineering of GeO2/Ge for High-κ/Germanium gate stack”, ECS Trans., vol. 41, no. 3, p. 29, 2011.
6.14. K. Kita, C. H. Lee, T. Nishimura, K. Nagashio, and A. Toriumi, “Control of properties of GeO2 films and Ge/GeO2 interfaces by the suppression of GeO volatilization”, ECS Trans., vol. 19, no. 2, pp. 101-116, 2009.
6.15. C.-W. Lee, Y.-H. Wu, C.-H. Hsieh, and C.-C. Lin, “Epitaxial GeSn film formed by solid phase epitaxy and its application to Yb2O3-gated GeSn metal-oxide-semiconductor capacitors with sub-nm equivalent oxide thickness”, Appl. Phys. Lett., vol. 105, no. 20, p. 203508, 2014.
6.16. C.-P. Chou, Y.-X. Lin, and Y.-H. Wu, “Implementing P-channel junctionless thin-film transistor on Poly-Ge0.95Sn0.05 film formed by amorphous GeSn deposition and annealing”, IEEE Electron Device Lett., vol. 39, no. 8, pp. 1187-1190, 2018.
6.17. K.-Y. Chen, Y.-H. Huang, R.-W. Kao, Y.-X. Lin, K.-Y. Hsieh, and Y.-H. Wu, “Enhanced reliability of ferroelectric HfZrOx on semiconductor by using epitaxial SiGe as substrate”, IEEE Trans. Electron Devices, vol. 66, no. 8, pp. 3636-3639, 2019.
6.18. K.-Y. Chen, P.-H. Chen, and Y.-H. Wu, “Excellent reliability of ferroelectric HfZrOx free from wake-up and fatigue effects by NH3 plasma treatment”, Symp. VLSI Technol., pp. T84-T85, 2017.
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *