帳號:guest(18.118.140.79)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):周宸葳
作者(外文):Chou, Chen-Wei.
論文名稱(中文):癲癇患者腦電高頻震盪自動偵測演算法之研究
論文名稱(外文):Automated Detection Algorithms for High Frequency Oscillations in Patients with Epilepsy
指導教授(中文):吳順吉
指導教授(外文):Wu, Shun-Chi.
口試委員(中文):葉秩光
劉奕汶
學位類別:碩士
校院名稱:國立清華大學
系所名稱:工程與系統科學系
學號:104011561
出版年(民國):106
畢業學年度:105
語文別:中文
論文頁數:52
中文關鍵詞:癲癇高頻震盪偵測分類多通道
外文關鍵詞:epilepsyHFOdetectionclassificationmulti-channel
相關次數:
  • 推薦推薦:0
  • 點閱點閱:216
  • 評分評分:*****
  • 下載下載:12
  • 收藏收藏:0
癲癇為一常見的神經系統疾病,根據我國2000至2003年的健保資料顯示,台灣地區每千人的癲癇患病數為5.58人,每十萬人的發病數則有97人。然而,當中有近30%的患者無法藉由藥物控制癲癇的發作,面對這種情況,需以手術的方式進行治療。近來研究顯示,由顱內腦電波圖量測的高頻震盪(HFO)與癲癇發作源起區有顯著的關聯,且被認可為一個可行的生理標記。為了促進HFO於癲癇術前/後評估使用,HFO的偵測與分類成了首要的課題,在本研究中建立了一套HFO自動化偵測演算法。在偵測處理時,先計算多通道統計值以保留通道的結構與防止資訊的遺失,隨後利用雙成分高斯混合模型設定閥值,避免閥值設定過高的問題。偵測到之可能HFO事件(plausible, pHFO)接著進行種類分類。依據原始數據、濾波數據和時頻圖的資訊將其分為(1)HFO、(2)癲癇棘波以及(3)癲癇棘波伴隨HFO三種事件種類,藉此與因濾波癲癇棘波產生的偽震盪區分。運用模擬數據來進行驗證的結果顯示,我們所提出的演算法能達到良好的靈敏度與陽性預測值表現。此外,我們也將這些演算法應用於3位患者的顱內腦電波數據,來試驗多通道偵測演算法的實行性。
Epilepsy is the most common neurological disease that affects people of all ages. For around 30% of epileptic patients, seizures are poorly controlled only with medication, and removing the brain region responsible for seizure onset is an alternative option. Recent researches indicate that high-frequency oscillations (HFOs) between 80 and 500 Hz are clearly linked to the seizure onset zone, which suggests HFO be a promising biomarker of epileptic tissue. To propel the clinical practice of HFOs, it is essential to detect them on intracranial electroencephalogram. In this study, several multi-channel algorithms for HFO determination are proposed. The detection process in the proposed scheme starts by calculating multi-channel statistics that allow the interrelations among the electrodes to be retained. On which, the detection thresholds are set epoch by epoch through a two-component Gaussian mixture model to avoid the threshold over-estimation problem. The events detected to be plausible HFOs (pHFOs) are subjected to a further classification such that the oscillations caused by filtering sharp transients can be isolated. By simultaneously considering the information of the raw data, filtered data and their time-frequency maps, all the pHFO events are ultimately categorized to be the events of HFOs, spikes, and spikes with HFOs. Experimental results using simulated iEEG recordings indicate that the proposed scheme achieves promising sensitivity and precision under various noise levels. Finally, the records from three epileptic patients are included to demonstrate their practicality.
摘要 I
ABSTRACT II
誌謝 III
目錄 IV
表目錄 VI
圖目錄 VII
第一章 緒論 1
1.1 癲癇 1
1.2 高頻震盪 1
1.3 研究動機 2
1.4 研究概要 5
第二章 研究數據及前處理 7
2.1 病患及臨床數據 7
2.2 數據前處理 8
2.2.1 電力線干擾消弭 8
2.2.2 濾波處理 10
第三章 自動化偵測演算法 12
3.1 單通道偵測器回顧 12
3.1.1 方均根偵測演算法 12
3.1.2 線長偵測演算法 13
3.2 pHFO偵測 15
3.2.1 多通道統計值 15
3.2.2 自適性閥值設定方法 17
3.3 pHFO分類 19
3.3.1 是否有癲癇棘波 21
3.3.2 濾波數據上是否有適當的震盪數量 21
3.3.3 癲癇棘波上是否有震盪 22
3.3.4 時頻圖上是否有高頻獨立成分 23
第四章 演算法性能評比 28
4.1 模擬數據 28
4.2 臨床數據目視檢測 31
4.3 評比指標 33
第五章 研究結果與討論 36
5.1 模擬數據偵測結果 36
5.2 臨床數據偵測結果 42
第六章 結論 47
參考文獻 48
[1] N. Senanayake and G. C. Román, "Epidemiology of epilepsy in developing countries," Bull. W.H.O., vol. 71, p. 247, 1993.
[2] P. Kwan and M. J. Brodie, "Early identification of refractory epilepsy," New Engl. J. Med., vol. 342, pp. 314-319, 2000.
[3] P. N. Banerjee, D. Filippi, and W. A. Hauser, "The descriptive epidemiology of epilepsy—a review," Epilepsy Res., vol. 85, pp. 31-45, 2009.
[4] C. C. Chen, L. S. Chen, M. F. Yen, H. H. Chen, and H. H. Liou, "Geographic variation in the age‐and gender‐specific prevalence and incidence of epilepsy: Analysis of Taiwanese National Health Insurance–based data," Epilepsia, vol. 53, pp. 283-290, 2012.
[5] J. Jacobs, R. Staba, E. Asano, H. Otsubo, J. Wu, M. Zijlmans, I. Mohamed, P. Kahane, F. Dubeau, and V. Navarro, "High-frequency oscillations (HFOs) in clinical epilepsy," Prog. Neurobiol., vol. 98, pp. 302-315, 2012.
[6] D. Chadwick, "Diagnosis of epilepsy," The Lancet, vol. 336, pp. 291-295, 1990.
[7] C. Panayiotopoulos, "Clinical aspects of the diagnosis of epileptic seizures and epileptic syndromes," 2005.
[8] J. Dauwels, E. Eskandar, and S. Cash, "Localization of seizure onset area from intracranial non-seizure EEG by exploiting locally enhanced synchrony," in Engineering in Medicine and Biology Society, 2009. EMBC 2009. Annual International Conference of the IEEE, 2009, pp. 2180-2183.
[9] 施養性,癲癇之外科手術治療. Available: http://homepage.vghtpe.gov.tw/~nc/contents /5.htm.
[10] J. Jirsch, E. Urrestarazu, P. LeVan, A. Olivier, F. Dubeau, and J. Gotman, "High-frequency oscillations during human focal seizures," Brain, vol. 129, pp. 1593-1608, 2006.
[11] J. Y. Wu, S. Koh, R. Sankar, and G. W. Mathern, "Paroxysmal fast activity: an interictal scalp EEG marker of epileptogenesis in children," Epilepsy Res., vol. 82, pp. 99-106, 2008.
[12] J. Wu, R. Sankar, J. Lerner, J. Matsumoto, H. Vinters, and G. Mathern, "Removing interictal fast ripples on electrocorticography linked with seizure freedom in children," Neurology, vol. 75, pp. 1686-1694, 2010.
[13] C. Haegelen, P. Perucca, C. E. Châtillon, L. Andrade‐Valença, R. Zelmann, J. Jacobs, D. L. Collins, F. Dubeau, A. Olivier, and J. Gotman, "High‐frequency oscillations, extent of surgical resection, and surgical outcome in drug‐resistant focal epilepsy," Epilepsia, vol. 54, pp. 848-857, 2013.
[14] A. Matsumoto, B. H. Brinkmann, S. M. Stead, J. Matsumoto, M. T. Kucewicz, W. R. Marsh, F. Meyer, and G. Worrell, "Pathological and physiological high-frequency oscillations in focal human epilepsy," J. Neurophysiol., vol. 110, pp. 1958-1964, 2013.
[15] S. A. Weiss, G. P. Banks, G. M. McKhann Jr, R. R. Goodman, R. G. Emerson, A. J. Trevelyan, and C. A. Schevon, "Ictal high frequency oscillations distinguish two types of seizure territories in humans," Brain, vol. 136, pp. 3796-3808, 2013.
[16] G. A. Worrell, K. Jerbi, K. Kobayashi, J.-M. Lina, R. Zelmann, and M. Le Van Quyen, "Recording and analysis techniques for high-frequency oscillations," Prog. Neurobiol., vol. 98, pp. 265-278, 2012.
[17] T. Akiyama, H. Otsubo, A. Ochi, T. Ishiguro, G. Kadokura, R. RamachandranNair, S. K. Weiss, J. T. Rutka, and O. C. Snead, "Focal cortical high-frequency oscillations trigger epileptic spasms: confirmation by digital video subdural EEG," Clin. Neurophysiol., vol. 116, pp. 2819-2825, 2005.
[18] L. Andrade-Valenca, F. Dubeau, F. Mari, R. Zelmann, and J. Gotman, "Interictal scalp fast oscillations as a marker of the seizure onset zone," Neurology, vol. 77, pp. 524-531, 2011.
[19] M. Pail, J. Halámek, P. Daniel, R. Kuba, I. Tyrlíková, J. Chrastina, P. Jurák, I. Rektor, and M. Brázdil, "Intracerebrally recorded high frequency oscillations: simple visual assessment versus automated detection," Clin. Neurophysiol., vol. 124, pp. 1935-1942, 2013.
[20] R. Zelmann, F. Mari, J. Jacobs, M. Zijlmans, F. Dubeau, and J. Gotman, "A comparison between detectors of high frequency oscillations," Clin. Neurophysiol., vol. 123, pp. 106-116, 2012.
[21] S. Chaibi, Z. Sakka, T. Lajnef, M. Samet, and A. Kachouri, "Automated detection and classification of high frequency oscillations (HFOs) in human intracereberal EEG," Biomedical Signal Processing and Control, vol. 8, pp. 927-934, 2013.
[22] R. J. Staba, C. L. Wilson, A. Bragin, I. Fried, and J. Engel, "Quantitative analysis of high-frequency oscillations (80–500 Hz) recorded in human epileptic hippocampus and entorhinal cortex," J. Neurophysiol., vol. 88, pp. 1743-1752, 2002.
[23] A. B. Gardner, G. A. Worrell, E. Marsh, D. Dlugos, and B. Litt, "Human and automated detection of high-frequency oscillations in clinical intracranial EEG recordings," Clin. Neurophysiol., vol. 118, pp. 1134-1143, 2007.
[24] I. Khalilov, M. Le Van Quyen, H. Gozlan, and Y. Ben-Ari, "Epileptogenic actions of GABA and fast oscillations in the developing hippocampus," Neuron, vol. 48, pp. 787-796, 2005.
[25] S. Chaibi, T. Lajnef, Z. Sakka, M. Samet, and A. Kachouri, "A comparaison of methods for detection of high frequency oscillations (HFOs) in human intacerberal EEG recordings," American Journal of Signal Processing, vol. 3, pp. 25-34, 2013.
[26] M. Dümpelmann, J. Jacobs, K. Kerber, and A. Schulze-Bonhage, "Automatic 80–250Hz “ripple” high frequency oscillation detection in invasive subdural grid and strip recordings in epilepsy by a radial basis function neural network," Clin. Neurophysiol., vol. 123, pp. 1721-1731, 2012.
[27] A. López-Cuevas, B. Castillo-Toledo, L. Medina-Ceja, C. Ventura-Mejía, and K. Pardo-Peña, "An algorithm for on-line detection of high frequency oscillations related to epilepsy," Comput. Methods Programs Biomed., vol. 110, pp. 354-360, 2013.
[28] B. Crépon, V. Navarro, D. Hasboun, S. Clemenceau, J. Martinerie, M. Baulac, C. Adam, and M. Le Van Quyen, "Mapping interictal oscillations greater than 200 Hz recorded with intracranial macroelectrodes in human epilepsy," Brain, vol. 133, pp. 33-45, 2009.
[29] S. Burnos, P. Hilfiker, O. Sürücü, F. Scholkmann, N. Krayenbühl, T. Grunwald, and J. Sarnthein, "Human intracranial high frequency oscillations (HFOs) detected by automatic time-frequency analysis," PLoS One, vol. 9, p. e94381, 2014.
[30] S. Liu, Z. Sha, A. Sencer, A. Aydoseli, N. Bebek, A. Abosch, T. Henry, C. Gurses, and N. F. Ince, "Exploring the time–frequency content of high frequency oscillations for automated identification of seizure onset zone in epilepsy," Journal of neural engineering, vol. 13, p. 026026, 2016.
[31] S. Chaibi, T. Lajnef, Z. Sakka, M. Samet, and A. Kachouri, "A reliable approach to distinguish between transient with and without HFOs using TQWT and MCA," J. Neurosci. Methods, vol. 232, pp. 36-46, 2014.
[32] M. Amiri, J.-M. Lina, F. Pizzo, and J. Gotman, "High frequency oscillations and spikes: separating real HFOs from false oscillations," Clin. Neurophysiol., vol. 127, pp. 187-196, 2016.
[33] C.-G. Bénar, L. Chauvière, F. Bartolomei, and F. Wendling, "Pitfalls of high-pass filtering for detecting epileptic oscillations: a technical note on “false” ripples," Clin. Neurophysiol., vol. 121, pp. 301-310, 2010.
[34] J. G. Jefferys, L. M. de La Prida, F. Wendling, A. Bragin, M. Avoli, I. Timofeev, and F. H. L. da Silva, "Mechanisms of physiological and epileptic HFO generation," Prog. Neurobiol., vol. 98, pp. 250-264, 2012.
[35] C. A. Schevon, A. Trevelyan, C. Schroeder, R. Goodman, G. McKhann Jr, and R. Emerson, "Spatial characterization of interictal high frequency oscillations in epileptic neocortex," Brain, vol. 132, pp. 3047-3059, 2009.
[36] S. Wang, I. Z. Wang, J. C. Bulacio, J. C. Mosher, J. Gonzalez‐Martinez, A. V. Alexopoulos, I. M. Najm, and N. K. So, "Ripple classification helps to localize the seizure‐onset zone in neocortical epilepsy," Epilepsia, vol. 54, pp. 370-376, 2013.
[37] V. Sagi and M. S. Evans, "Relationship between high-frequency oscillations and spikes in a case of temporal lobe epilepsy," Epilepsy & behavior case reports, vol. 6, pp. 10-12, 2016.
[38] J. W. Leis, Digital signal processing using MATLAB for students and researchers: John Wiley & Sons, 2011.
[39] N. Roehri, J.-M. Lina, J. C. Mosher, F. Bartolomei, and C.-G. Bénar, "Time-Frequency strategies for increasing high-frequency oscillation detectability in intracerebral EEG," IEEE Trans. Biomed. Eng., vol. 63, pp. 2595-2606, 2016.
[40] A. Widmann, E. Schröger, and B. Maess, "Digital filter design for electrophysiological data–a practical approach," J. Neurosci. Methods, vol. 250, pp. 34-46, 2015.
[41] I. N. Bankman, K. O. Johnson, and W. Schneider, "Optimal detection, classification, and superposition resolution in neural waveform recordings," IEEE Trans. Biomed. Eng., vol. 40, pp. 836-841, 1993.
[42] G. McLachlan and T. Krishnan, The EM algorithm and extensions vol. 382: John Wiley & Sons, 2007.
[43] S. Mukhopadhyay and G. Ray, "A new interpretation of nonlinear energy operator and its efficacy in spike detection," IEEE Trans. Biomed. Eng., vol. 45, pp. 180-187, 1998.
[44] M. Navarrete, J. Pyrzowski, J. Corlier, M. Valderrama, and M. Le Van Quyen, "Automated detection of high-frequency oscillations in electrophysiological signals: Methodological advances," Journal of Physiology-Paris, 2017.
[45] N. Otsu, "A threshold selection method from gray-level histograms," IEEE transactions on systems, man, and cybernetics, vol. 9, pp. 62-66, 1979.
[46] D. Yao, "Electric potential produced by a dipole in a homogeneous conducting sphere," IEEE Trans. Biomed. Eng., vol. 47, pp. 964-966, 2000.
[47] N. Van Klink, B. Frauscher, M. Zijlmans, and J. Gotman, "Relationships between interictal epileptic spikes and ripples in surface EEG," Clin. Neurophysiol., vol. 127, pp. 143-149, 2016.
[48] M. Sokolova and G. Lapalme, "A systematic analysis of performance measures for classification tasks," Inf. Process. Manag., vol. 45, pp. 427-437, 2009.
[49] V. Van Asch, "Macro-and micro-averaged evaluation measures [[basic draft]]," ed, 2013.

 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *