|
1. M. M. Maye, "Volatile Metal Alkylamides Serve as Precursors for Vapor Deposition of High-Dielectric-Constant Gate Insulator Materials". MRS Bulletin 26(9) (2011), 660-661. 2. J.-W. Lim, H.-S. Park, and S.-W. Kang, "Analysis of a transient region during the initial stage of atomic layer deposition". Journal of Applied Physics 88(11) (2000), 6327-6331. 3. J.-W. Lim, H.-S. Park, and S.-W. Kang, "Kinetic modeling of film growth rate in atomic layer deposition". Journal of The Electrochemical Society 148(6) (2001), C403-C408. 4. R. L. Puurunen, "Surface chemistry of atomic layer deposition: A case study for the trimethylaluminum/water process". Journal of Applied Physics 97(12) (2005). 5. J. A. T. Suntola, "U.S. Patent US 4 058 430". (1977). 6. M. Putkonen, Precursors for ALD Processes, in Atomic Layer Deposition of Nanostructured Materials. 2011, Wiley-VCH Verlag GmbH & Co. KGaA. p. 41-59. 7. A. C. Jones and M. L. Hitchman, Chemical Vapour Deposition: Precursors, Processes and Applications. 2009: Royal Society of Chemistry. 8. H. Van Bui, F. Grillo, and J. R. van Ommen, "Atomic and molecular layer deposition: off the beaten track". Chemical Communications 53(1) (2017), 45-71. 9. S. M. George, "Atomic Layer Deposition: An Overview". Chemical Reviews 110(1) (2010), 111-131. 10. M. Karg, et al., "Atomic Layer Deposition of Silica on Carbon Nanotubes". Chemistry of Materials 29(11) (2017), 4920-4931. 11. D. Braga, et al., "Quantitative Determination of the Band Gap of WS2 with Ambipolar Ionic Liquid-Gated Transistors". Nano Letters 12(10) (2012), 5218-5223. 12. W. Zhao, et al., "Evolution of Electronic Structure in Atomically Thin Sheets of WS2 and WSe2". ACS Nano 7(1) (2013), 791-797. 13. F. Gustavsson, et al., "Nanoparticle based and sputtered WS2 low-friction coatings — Differences and similarities with respect to friction mechanisms and tribofilm formation". Surface and Coatings Technology 232 (2013), 616-626. 14. A. Splendiani, et al., "Emerging Photoluminescence in Monolayer MoS2". Nano Letters 10(4) (2010), 1271-1275. 15. K. Pedersen, "Quantum size effects in nanostructures ". Lecture notes: Organic and Inorganic Nanostructures (2006). 16. A. Chernikov, et al., "Exciton Binding Energy and Nonhydrogenic Rydberg Series in Monolayer WS2. Physical Review Letters 113(7) (2014), 076802. 17. A. T. Hanbicki, et al., "Measurement of high exciton binding energy in the monolayer transition-metal dichalcogenides WS2 and WSe2". Solid State Communications 203 (2015), 16-20. 18. H.-C. Kim, et al., "Engineering Optical and Electronic Properties of WS2 by Varying the Number of Layers". ACS Nano 9(7) (2015), 6854-6860. 19. H. Shi, et al., "Quasiparticle band structures and optical properties of strained monolayer MoS2 and WS2". Physical Review B 87(15) (2013), 155304. 20. Z. Ye, et al., "Probing excitonic dark states in single-layer tungsten disulphide". Nature 513 (2014), 214. 21. V. C. dos Santos, et al., "A new application for transition metal chalcogenides: WS2 catalysed esterification of carboxylic acids". Catalysis Communications 91 (2017), 16-20. 22. C. W. Spicer, "Synthesis, characterization and chemical vapor deposition of transition metal di(tert-butyl)amido compounds". (2001). 23. D. H. You, et al., "WNx Film Prepared by Atomic Layer Deposition using F-Free BTBMW and NH3 Plasma Radical for ULSI Applications". ECS Transactions 3(15) (2007), 147-152. 24. S. Balasubramanyam, et al., "Plasma-enhanced atomic layer deposition of tungsten oxide thin films using ((BuN)-Bu-t)(2)(Me2N)(2)W and O-2 plasma". J. Vac. Sci. Technol. A 36(1) (2018), 7. 25. Q. Cao, et al., "Realizing Stable p-Type Transporting in Two-Dimensional WS2 Films". ACS Applied Materials & Interfaces 9(21) (2017), 18215-18221. 26. R. Liu, et al., "Water Splitting by Tungsten Oxide Prepared by Atomic Layer Deposition and Decorated with an Oxygen-Evolving Catalyst". Angewandte Chemie-International Edition 50(2) (2011), 499-502. 27. Y.-W. Yang, et al., Thermal decomposition mechanisms of tungsten nitride CVD precursors on Cu(1 1 1). Vol. 600. 2006: Surface Science. 743-754. 28. J. C. F. Rodríguez-Reyes and A. V. Teplyakov, "Mechanisms of adsorption and decomposition of metal alkylamide precursors for ultrathin film growth". Journal of Applied Physics 104(8) (2008), 084907. 29. C. Li, et al., "Large single-domain growth of monolayer WS2 by rapid-cooling chemical vapor deposition". Applied Physics Express 10 (2017), 075201. 30. K. M. McCreary, et al., "Synthesis of Large-Area WS2 monolayers with Exceptional Photoluminescence". Scientific Reports 6 (2016), 19159. 31. A. L. Elías, et al., "Controlled Synthesis and Transfer of Large-Area WS2 Sheets: From Single Layer to Few Layers". ACS Nano 7(6) (2013), 5235-5242. 32. D. Xu, et al., "High Yield Exfoliation of WS2 Crystals into 1–2 Layer Semiconducting Nanosheets and Efficient Photocatalytic Hydrogen Evolution from WS2/CdS Nanorod Composites". ACS Applied Materials & Interfaces 10(3) (2018), 2810-2818. 33. J. Bachmann, "Atomic layer deposition, a unique method for the preparation of energy conversion devices". Beilstein Journal of Nanotechnology 5 (2014), 245-248. 34. C. Marichy, M. Bechelany, and N. Pinna, "Atomic Layer Deposition of Nanostructured Materials for Energy and Environmental Applications". Advanced Materials 24(8) (2012), 1017-1032. 35. Y. Wu, et al., "Antimony sulfide as a light absorber in highly ordered, coaxial nanocylindrical arrays: preparation and integration into a photovoltaic device". Journal of Materials Chemistry A 3(11) (2015), 5971-5981. 36. D. K. Nandi, et al., "Intercalation based tungsten disulfide (WS2) Li-ion battery anode grown by atomic layer deposition". RSC Adv. 6(44) (2016), 38024-38032. 37. M. Juppo, et al., "Deposition of molybdenum thin films by an alternate supply of MoCl5 and Zn". J. Vac. Sci. Technol. A 16(5) (1998), 2845-2850. 38. M. Ritala, et al., "Effects of intermediate zinc pulses on properties of TiN and NbN films deposited by atomic layer epitaxy". Applied Surface Science 120(3) (1997), 199-212. 39. T. W. Scharf, et al., "Atomic layer deposition of tungsten disulphide solid lubricant thin films". Journal of Materials Research 19(12) (2004), 3443-3446. 40. K.-M. Chang, et al., "Characteristics of Selective Chemical Vapor Deposition of Tungsten on Aluminum with a Vapor Phase Precleaning Technology". Journal of the Electrochemical Society 1997 144: 251-259 144 (1997), 251-259. 41. S. Manzeli, et al., "2D transition metal dichalcogenides". Nature Reviews Materials 2 (2017), 17033. 42. D. J. Morgan, "Core-level spectra of powdered tungsten disulfide, WS2". Surface Science Spectra 25(1) (2018), 014002. 43. J. L. Jordan, et al., "High-resolution photoemission study of the interfacial reaction of Cr with polyimide and model polymers". Physical Review B 36(3) (1987), 1369-1377. 44. H. B. u. D. Sellmann, "Röntgen-photoelektronenspektroskopische Untersuchungen an Pentacarbonyl-Chrom- und -Wolfram-Komplexen mit Stickstoffliganden". Z. Naturforsch. 33 b(Verlag Zeitschrift für Naturforschung) (1977), 173-179. 45. F. Wang, et al., Strain-induced phonon shifts in tungsten disulfide nanoplatelets and nanotubes. Vol. 4. 2016. 46. X. Xu, et al., "Microstructure and Elastic Constants of Transition Metal Dichalcogenide Monolayers from Friction and Shear Force Microscopy". Advanced Materials 30(39) (2018), 1803748. 47. S. Bai, et al., "Synthesis mechanism and gas-sensing application of nanosheet-assembled tungsten oxide microspheres". Journal of Materials Chemistry A 2(21) (2014), 7927-7934. 48. L. Xu, M.-L. Yin, and S. Liu, "Agx@WO3 core-shell nanostructure for LSP enhanced chemical sensors". Scientific Reports 4 (2014), 6745. 49. H. Yoon, et al., Electrostatic spray deposition of transparent tungsten oxide thin-film photoanodes for solar water splitting. 2015. 50. Z. Zhang, et al., Gasochromic properties of novel tungsten oxide thin films compounded with methyltrimethoxysilane (MTMS). Vol. 7. 2017. 41289-41296. 51. A. Hammouda, et al., "Improving the sensitivity of Raman signal of ZnO thin films deposited on silicon substrate". Vibrational Spectroscopy 62 (2012), 217-221. 52. M. J. Sowa, et al., "Plasma-enhanced atomic layer deposition of tungsten nitride". J. Vac. Sci. Technol. A 34(5) (2016), 051516. 53. O. V. Kharissova and B. I. Kharisov, "Variations of interlayer spacing in carbon nanotubes". RSC Adv. 4(58) (2014), 30807-30815. 54. A. Saravanan, et al., Efficiency of Transition Metals in Combustion Catalyst for High Yield Helical Multi-Walled Carbon Nanotubes. Vol. 6. 2014.
|