帳號:guest(18.221.96.100)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):許家瑋
作者(外文):Hsu, Chia-Wei
論文名稱(中文):以微波退火處理改善鍺金氧半電晶體之介面層研究
論文名稱(外文):Improved Interfacial Layer in Ge MOSFETs by Microwave Annealing Treatment
指導教授(中文):張廖貴術
指導教授(外文):ChangLiao, Kuei-Shu
口試委員(中文):趙天生
吳文發
口試委員(外文):Chao, Tien-Sheng
Wu, Wen-Fa
學位類別:碩士
校院名稱:國立清華大學
系所名稱:工程與系統科學系
學號:104011557
出版年(民國):106
畢業學年度:106
語文別:中文
論文頁數:93
中文關鍵詞:鍺金氧半電晶體微波退火介面工程
外文關鍵詞:Ge MOSFETsMicrowave AnnealingInterface Engineering
相關次數:
  • 推薦推薦:0
  • 點閱點閱:134
  • 評分評分:*****
  • 下載下載:6
  • 收藏收藏:0
純鍺基板是下一代MOSFETs的前瞻通道材料,然而鍺半導體材料製程也存在許多困難,在高溫製程下鍺氧化層容易揮發及水解。因此介面工程一直是鍺金氧半電晶體製程中的關鍵問題,得到一層品質良好的介面層相當重要。本論文研究以ALD水氣電漿做為沉積介面層主要製程,為了增加其GeO2介面層Ge4+的含量,改變製程腔體溫度,探討介面層成長溫度之影響。接著透過有無氫氣電漿對介面層進行處理,搭配低溫微波系統或爐管FGA下退火,找出較佳的退火處理,降低製程熱預算,提升mobility。最後,希望得到較低的閘極漏電流,分別使用NH3、N2、CF4電漿對介面層表面進行處理,產生極性化合物(GeON)並搭配微波退火,達到局部活化的效果,以得到最佳的介面處理方式提升元件特性。
第一部分使用ALD通以水氣電漿方式形成GeO2作為介面層,其中分別使用不同製程溫度來成長介面層,分別為350℃、250℃、100℃。使得基板有足夠溫度讓水氣電漿和鍺完全反應產生GeO2,並增加Ge4+含量,探討不同溫度下成長之介面層品質。低溫100℃下成長介面層,品質最為鬆散閘極漏電流大。中溫250℃下成長介面層會是一個最佳的溫度,有最小的EOT 5.1 Å和最低的閘極漏電密度5.1 x 10-3 A/cm2。
第二部分討論有無氫氣電漿對介面層進行處理,搭配低溫微波系統或一般爐管FGA下退火。接續上一章最佳的介面層成長溫度,實驗結果可以看出,氫氣電漿對介面層處理可以有效的降低EOT,而無氫氣電漿處理搭配低溫微波加熱系統退火有較佳的特性。載子遷移率方面可以將phonon scattering的效應降至最低,因此得到最高的載子遷移率575 cm2/V-sec,和最大的導通電流。
第三部分使用NH3、N2、CF4電漿對介面層表面進行處理,並搭配前兩章最佳製程條件,實驗結果可以看到NH3電漿處理搭配微波退火,可以氮化介面層GeO2鍵結成極性分子GeON。經由微波退火局部加熱增加介面層中Ge4+含量比例,Ge4+增加表示介面層內含有較多能隙大的GeO2,大幅降低閘極漏電流至1.88 x 10-5 A/cm2。而介面層上方GeON可避免IL和high-k兩層混合,降低因high-k離子極化產生的聲子散射(Phonon scattering),載子移動率增加至588 cm2/V-sec,所以有最大的導通電流和On/Off ratio 3.4個數量級。本實驗發現含有氮之電漿處理介面層搭配低溫微波退火可以有效降低元件閘極漏電流。
Germanium (Ge) is proposed as promising channel material for next generation metal oxide semiconductor field effect transistor (MOSFETs), because electron and hole mobility are about two and four times higher than Si respectively. However, there are many challenges for applying Ge as channel material. Ge oxide is easily volatilized and hydrolyzed at high temperature. The interface engineering is always one of key factors in the semiconductor processes to achieve high quality GeO2 interfacial layer of Ge MOSFET. A GeO2 formed with H2O plasma in ALD chamber is applied to serve as main IL. Formation temperature of H2O plasma grown GeO2 IL, w/ or w/o H2 plasma and microwave annealing (MWA) or forming gas annealing (FGA), and w/ or w/o NH3, N2, CH4 plasma with MWA treatments on electrical characteristics of Ge pMOSFET are studied in this thesis.
In the first part, GeO2 IL was formed by H2O plasma in ALD chamber at various temperatures, including 350, 250, and 100℃. The interface quality of IL grown at low temperature (100℃) is poor, resulting in high gate leakage density (JG). A suitable temperature for growing GeO2 IL is at 250℃. The JG is reduced to 5.1 x 10-3 A/cm2 at low EOT of 5.1 Å.
In the second part, IL w/ or w/o hydrogen plasma treatment and together with MWA or FGA at low temperature were applied to fabricate Ge MOSFET. Base on the first part, the optimal IL grown temperature is 250℃. Results show that the EOT value can be effectively reduced by hydrogen plasma treatment. Peak hole mobility of ~575 cm2/V-sec at EOT value of 0.73 nm is achieved for sample w/o hydrogen plasma and w/ MWA treatment, which can further increase ID on current of due to reduced remote phonon scattering.
GeO2 IL grown at 250℃ and plasma treated IL with MWA were applied in the third part, the GeO2 IL was treated with NH3, N2, and CF4 plasma. The band-gap of GeO2 in IL of sample can be increased with creating Ge4+ content by using NH3 plasma and MWA. A nitridation on GeOx interface layer were performed to form polar compounds GeON for sample with NH3 plasma treatment. Then the GeON polar compounds, may be efficiently annealed by MWA without additional thermal cycles which can suppress Ge out diffusion or GeO desorption that cause in high JG or remote phonon scattering. A high peak hole mobility of ~588 cm2/V-sec and very low JG of 1.88 x 10-5 A/cm2 in Ge MOSFET are simultaneously achieved by using NH3 plasma treatment at high-k/GeOx interface together with MWA.
摘要 I
目錄 V
第一章 序論 1
1.1 前言 1
1.2 使用純鍺基板作為載子通道材料 1
1.3 高介電係數(High-K)介電材料導入的原因 2
1.4 高介電係數(High-K)材料的選擇 3
1.5 介面層的形成方式 4
1.6 界面缺陷鈍化 5
1.7 氫氣電漿處理的機制與影響 7
1.8 氮氣電漿處理的機制與影響 7
1.9 微波退火的機制 8
1.10 論文架構 8
第二章 元件製程與量測 16
2.1 HfON介電層的純鍺基板P-MOSFETs元件製程流程 16
2.2 電性量測 18
2.3 物性分析 20
第三章 鍺金氧半電晶體介電層水電漿成長溫度之影響研究 23
3.1 研究動機 23
3.2 製程與量測 24
3.3 實驗結果與討論 26
3.4 結論 29
第四章 氫氣電漿處理鍺金氧半電晶體介電層搭配微波退火影響研究 40
4.1 研究動機 40
4.2 製程與量測 41
4.3 實驗結果與討論 43
4.4 結論 46
第五章 氨氣/氮氣/氟氣電漿處理介電層搭配微波退火對鍺金氧半電晶體介電層影響研究 59
5.1 研究動機 60
5.2 製程與量測 60
5.3 實驗結果與討論 62
5.4 結論 67
第六章 結論與展望 86
6.1 結論 86
6.2 未來展望 88

[1] C. H. Fu et al., “Enhanced Hole Mobility and Low Tinv for pMOSFET by a Novel Epitaxial Si/Ge Superlattice Channel,” IEEE Electron Device Letters, vol. 33, no. 2. pp. 188–190, 2012.
[2] S. Maikap, M. H. Lee, S. T. Chang, and C.W.Liu, “Characteristics of strained-germanium p- and n-channel field effect transistors on a Si (1 1 1) substrate,” Semicond. Sci. Technol., vol. 22, no. 4, pp. 342–347, 2007.
[3] W. P. Bai, N. Lu, and D. L. Kwong, “Si interlayer passivation on germanium MOS capacitors with high-k dielectric and metal gate,” IEEE Electron Device Letters, vol. 26, no. 6. pp. 378–380, 2005.
[4] J. H. Stathis and D. J. DiMaria, “Reliability projection for ultra-thin oxides at low voltage,” International Electron Devices Meeting 1998. Technical Digest (Cat. No.98CH36217), no. 3. pp. 167–170, 1998.
[5] H. S. Momose et al., “Study of the manufacturing feasibility of 1.5-nm direct-tunneling gate oxide MOSFET’s: Uniformity, reliability, and dopant penetration of the gate oxide,” IEEE Transactions on Electron Devices, vol. 45, no. 3. pp. 691–700, 1998.
[6] J. Robertson, “Electronic behavior of high K oxides,” Proceedings. 7th International Conference on Solid-State and Integrated Circuits Technology, 2004., vol. 1. pp. 384–387, 2004.
[7] L. LUCCI et al., “Quantitative Assesment of mobility degradation by Remote Coulomb Scattering in Ultra-thin oxide MOSFETs: measurement and simulations,” Proceedings of International Electron Devices Meeting (IEDM), 2003. pp. 463–466, 2003.
[8] H. Ota et al., “Intrinsic origin of electron mobility reduction in high-k MOSFETs - From remote phonon to bottom interface dipole scattering,” Technical Digest - International Electron Devices Meeting, IEDM. pp. 65–68, 2007.
[9] R. Zhang, T. Iwasaki, N. Taoka, M. Takenaka, and S. Takagi, “High-mobility Ge pMOSFET With 1-nm EOT Al2O3 GeOx Ge gate stack fabricated by plasma post oxidation,” IEEE Transactions on Electron Devices, vol. 59, no. 2. pp. 335–341, 2012.
[10] K. Kita et al., “Comprehensive study of GeO2 oxidation, GeO desorption and GeO2-metal interaction: Understanding of Ge processing kinetics for perfect interface control,” Technical Digest - International Electron Devices Meeting, IEDM. pp. 1–4, 2009.
[11] Y. Fukuda, Y. Yazaki, Y. Otani, T. Sato, H. Toyota, and T. Ono, “Low-temperature formation of high-quality GeO2 interlayer for high-K gate dielectrics/Ge by electron-cyclotron-resonance plasma techniques,” IEEE Transactions on Electron Devices, vol. 57, no. 1. pp. 282–287, 2010.
[12] C. H. Lee et al., “Ge MOSFETs performance: Impact of Ge interface passivation,” Technical Digest - International Electron Devices Meeting, IEDM. p. 18.1.1-18.1.4, 2010.
[13] T. Takahashi, T. Nishimura, L. Chen, S. Sakata, K. Kita, and A. Toriumi, “Proof of Ge-interfacing concepts for metal/high-k/Ge CMOS - Ge-intimate material selection and interface conscious process flow,” Technical Digest - International Electron Devices Meeting, IEDM. pp. 697–700, 2007.
[14] C. H. Lee, T. Nishimura, K. Nagashio, K. Kita, and A. Toriumi, “High-electron-mobility Ge/GeO2 n-MOSFETs with two-step oxidation,” IEEE Transactions on Electron Devices, vol. 58, no. 5. pp. 1295–1301, 2011.
[15] S. H. Yi, K. S. Chang-Liao, T.Wu, C. Hsu, and J. Huang, “High Performance Ge pMOSFETs With HfO2 /Hf-Cap/GeOx Gate Stack and Suitable Post Metal Annealing Treatments,” IEEE Electron Device Letters, vol. 38, no. 5. pp. 544–547, 2017.
[16] W. J. Zhu and T. P.Ma, “Temperature Dependence of Channel Mobility in HfO2-Gated NMOSFETs,” IEEE Electron Device Letters, vol. 25, no. 2. pp. 89–91, 2004.
[17] Y. X. Zheng et al., “In situ process control of trilayer gate-stacks on p-germanium with 0.85-nm EOT,” IEEE Electron Device Lett., vol. 36, no. 9, pp. 881–883, 2015.
[18] H. Y. Yu et al., “High quality single-crystal germanium-on-insulator on bulk Si substrates based on multistep lateral over-growth with hydrogen annealing,” Appl. Phys. Lett., vol. 97, no. 6, pp. 95–98, 2010.
[19] E. Cartier, J. H. Stathis, and D. A. Buchanan, “Passivation and depassivation of silicon dangling bonds at the Si/SiO2 interface by atomic hydrogen,” Appl. Phys. Lett., vol. 63, no. 11, pp. 1510–1512, 1993.
[20] X. Garros et al., “Guidelines to improve mobility performances and BTI reliability of advanced High-K/Metal gate stacks,” Digest of Technical Papers - Symposium on VLSI Technology. pp. 68–69, 2008.
[21] H. Watanabe, K. Kutsuki, I. Hideshima, G. Okamoto, T. Hosoi, and T. Shimura, “High-quality GeON gate dielectrics formed by plasma nitridation of ultrathin thermal oxides on Ge(100),” ICSICT-2010 - 2010 10th IEEE International Conference on Solid-State and Integrated Circuit Technology, Proceedings. pp. 867–870, 2010.
[22] Y. J. Lee et al., “Low-temperature microwave annealing for MOSFETs with High-k/metal gate stacks,” IEEE Electron Device Lett., vol. 34, no. 10, pp. 1286–1288, 2013.
[23] L. Lin, K. Xiong, and J. Robertson, “Atomic structure, electronic structure, and band offsets at Ge:GeO:GeO2 interfaces,” Appl. Phys. Lett., vol. 97, no. 24, p. 242902, 2010.
[24] D. Kuzum et al., “Ge-interface engineering with ozone oxidation for low interface-state density,” IEEE Electron Device Lett., vol. 29, no. 4, pp. 328–330, 2008.
[25] Y. Nakakita, R. Nakakne, T. Sasada, M. Takenaka, and S. Takagi, “Interface-controlled self-align source/drain Ge p-channel metal-oxide-semiconductor field-effect transistors fabricated using thermally oxidized Geo2 interfacial layers,” Jpn. J. Appl. Phys., vol. 50, no. 1, 2011.
[26] K. Prabhakaran, F. Maeda, Y. Watanabe, and T. Ogino, “Thermal decomposition pathway of Ge and Si oxides observation.pdf,” vol. 369, pp. 289–292, 2000.
[27] S. Maikap et al., “Effects of interfacial NH3/N2O-plasma treatment on the structural and electrical properties of ultra-thin HfO2 gate dielectrics on p-Si substrates,” Solid. State. Electron., vol. 49, no. 4, pp. 524–528, 2005.
[28] C. S. Lai, W. C. Wu, K. M. Fan, J. C. Wang, and S. J. Lin, “Effects of post CF4 plasma treatment on the HfO2 thin film,” Japanese J. Appl. Physics, Part 1 Regul. Pap. Short Notes Rev. Pap., vol. 44, no. 4 B, pp. 2307–2310, 2005.
[29] C. C. Li et al., “Low inversion equivalent oxide thickness and enhanced mobility in MOSFETs with chlorine plasma interface engineering,” Solid. State. Electron., vol. 101, pp. 33–37, 2014.
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *