|
Chapter 1 [1.1] H. Iwai, T. Ohguro, and Sh. Ohmi, “NiSi salicide technology for scaled CMOS,” Microelectronic Engineering, vol. 60, no. 1, pp. 157–169, 2002, doi: https://doi.org/10.1016/S0167-9317(01)00684-0. [1.2] T. Ohguro, S. Nakamura, M. Koike, T. Morimoto, A. Nishiyama, Y. Ushiku, T. Yoshitomi, M. Ono, M. Saito, and Hiroshi Iwai, “Analysis of resistance behavior in tiand Ni-salicided polysilicon films,” IEEE Trans. Electron Devices, vol. 41, no. 12, pp. 2305–2317, 1994, doi: 10.1109/16.337443. [1.3] N. Collaert, A. De Keersgieter, A. Dixit, I. Ferain, L. S. Lai, D. Lenoble, A. Mercha, A. Nackaerts, B.J. Pawlak, R. Rooyackers, T. Schulz, K.T. San, N.J. Son, M. J. H. Van Dal, P. Verheyen, K. von Arnim, L. Witters, K. De Meyer, S. Biesemans, and M. Jurczak, “Multi-gate devices for the 32 nm technology node and beyond,” Solid-State Electronics, vol. 52, no. 9, pp.1291–1296, 2008, doi: 10.1109/ESSDERC.2007.4430899. [1.4] H. Yu, M. Schaekers, E. Rosseel, A. Peter, J. G. Lee, W. B. Song, S. Demuynck, T. Chiarella, L-Å. Ragnarsson, S. Kubicek, J. Everaert, N. Horiguchi, K. Barla, D. Kim, N. Collaert1, A. V. Y. Thean, and K. De Meyer, “1.5×10-9 Ω·cm2 contact resistivity on highly doped Si:P using Ge pre-amorphization and Ti silicidation, Int. Electron Devices Meeting Dig., pp. 592–595, 2015, doi: 10.1109/IEDM.2015.7409753. [1.5] H. Yu, M. Schaekers, S. A. Chew, J. L. Everaert, A. Dabral, G. Pourtois, N. Horiguchi, D. Mocuta, N. Collaert, and K. D. Meyer, “Titanium (germano-)silicides featuring 10-9 Ω∙cm2 contact resistivity and improved compatibility to advanced CMOS technology,” Int. Workshop on Junction Tech. (IWJT), pp. 1–5, 2018, doi: 10.1109/IWJT.2018.8330298. [1.6] A. V. Y Thean, D. Yakimets, T. H. Bao, P. Schuddinck, S. Sakhare, M. G. Bardon, A. S. Hernandez, I. Ciofi, G. Eneman, A. Veloso, J. Ryckaert, P. Raghavan, A. Mercha, A. Mocuta, Z. Tokei, D. Verkest, P. Wambacq, K. De Meyer, and N. Collaert, “Vertical device architecture for 5nm and beyond: device & circuit implications,” Symp. VLSI Tech. Dig., pp. T26–T27, 2015, doi: 10.1109/VLSIT.2015.7223689. [1.7] Y. Wang, “Laser spike annealing resolves sub-20 nm logic device manufacturing challenges,” Solid-State Tech., vol. 57, no. 8, pp. 16–20, 2014. [1.8] H. Yu, M. Sehaekersl, S. Demuynekl, K. Barlal, A. Moeutal, N. Horiguehil, N. Collaertl, A. V. Y. Theanl, and K. D. Meyer, “MIS or MS? source/drain contact scheme evaluation for 7nm Si CMOS technology and beyond,” Int. Workshop on Junction Tech. (IWJT), pp. 1–6, 2016, doi: 10.1109/IWJT.2016.7486665. [1.9] S. Dev, M. Meena, P. H. Vardhan, and S. Lodha, “Statistical simulation study of metal grainorientation-induced MS and MIS contact resistivity variability for 7nm FinFETs,” IEEE Trans. Electron Devices, vol. 65, no. 8, pp. 3104–3111, 2018, doi: 10.1109/TED.2018.2841975. [1.10] J Robertson, and L Lin, “Fermi level pinning in Si, Ge and GaAs systems – MIGS or defects?,” Int. Electron Devices Meeting Dig., pp. 119–122, 2009, doi: 10.1109/IEDM.2009.5424406. [1.11] K. W. Ang, K. Majumdar, K. Matthews, C. D. Young, C. Kenney, C. Hobbs, P. D. Kirsch, R. Jammy, R. D. Clark, S. Consiglio, K. Tapily, Y. Trickett, G. Nakamura, C. S. Wajda, G. J. Leusink, M. Rodgers, and S. C. Gausepoh, “Effective schottky barrier height modulation using dielectric dipoles for source/drain specific contact resistivity improvement,” Int. Electron Devices Meeting Dig., pp. 439–442, 2012, doi: 10.1109/IEDM.2012.6479068. [1.12] C. N. Ni, X. Li, S. Sharma, K. V. Rao, M. Jin, C. Lazik, V. Banthia, B. Colombeau, N. Variam, A. Mayur, H. Chung, R. Hung, and A. Brand, “Ultra-low contact resistivity with highly doped Si:P contact for nMOSFET,” Symp. VLSI Tech. Dig., pp. T118–T119, 2015, doi: 10.1109/VLSIT.2015.7223711. [1.13] E. Ko, J. Lee, H. Shin, S.Park, and Daehong Ko, “Comparison of strain characteristics and contact resistances of heavily phosphorus-doped Si formed by phosphorus implantation and in situ phosphorus-doped Si epitaxial growth,” Phys. Status Solidi A, vol. 1900989, pp. 1–6, 2020, doi: https://doi.org/10.1002/pssa.201900989. [1.14] V. Mazzocchi, X. Pages, M. Py, J. P Barnes, K. Vanormelingen, L. Hutin, R. Truche, P. Vermont, M. Vinet, C. Le Royer, and K. Yckache, “Diffusion and activation of boron and phosphorus in pre-amorphized and crystalline germanium using ultra-fast spike anneal,” Int. Conference on Adv. Thermal Processing of Semiconductors, pp. 1–5, 2009, doi: 10.1109/RTP.2009.5373459. [1.15] H. Yu, M. Schaekers, J. Zhang, L. L. Wang, J. L. Everaert, N. Horiguchi, Y. L. Jiang, D. Mocuta, N. Collaert, and K. D. Meyer, “TiSi(Ge) contacts formed at low temperature achieving around 2×10−9 Ω·cm2 contact resistivities to p-SiGe,” IEEE Trans. Electron Devices, vol. 64, no. 2, pp. 500–505, 2017, doi: 10.1109/TED.2016.2642888. [1.16] F. K. Hsueh, Y. J. Lee, K. L. Lin, M. I. Current, C. Y. Wu, and T. S. Chao, “Amorphous-layer regrowth and activation of P and As implanted Si by low-temperature microwave annealing,” IEEE Trans. Electron Devices, vol. 58, no. 7, pp. 2088–2093, 2011, doi: 10.1109/TED.2011.2132801. [1.17] Y. J. Lee, S. S. Chuang, C. I. Liu, F. K. Hsueh, P. J. Sung, H. C. Chen, C. T. Wu, K. L. Lin, J. Y. Yao, Y. L. Shen, M. L. Kuo, C. H. Yang, G. L. Luo, H. W. Chen, C. H. Lai, M. I. Current, C. Y. Wu, Y. M. Wan, T. Y. Tseng, C. Hu, and F. L. Yang, “Full low temperature microwave processed Ge CMOS achieving diffusion-less junction and ultrathin 7.5nm Ni mono-germanide,” Int. Electron Devices Meeting Dig., pp. 531–516, 2012, doi: 10.1109/IEDM.2012.6479087. [1.18] O. Gluschenkov, Z. Liu, H. Niimi, S. Mochizuki, J. Fronheiser, X. Miao, J. Li, J. Demarest, C. Zhang, C. Niu, B. Liu, A. Petrescu, P. Adusumilli, J. Yang, H. Jagannathan, H. Bu, and T. Yamashita, “FinFET performance with Si:P and Ge:Group-III-Metal metastable contact trench alloys” Int. Electron Devices Meeting Dig., pp. 448–451, 2016, doi: 10.1109/IEDM.2016.7838437. [1.19] W. Hsu, F. Wen, X. Wang, Y. Wang, A. Dolocan, A. Roy, T. Kim, E. Tutuc, and Sanjay K. Banerjee, “Laser spike annealing for shallow junctions in Ge CMOS,” IEEE Trans. Electron Devices, vol. 64, no. 2, pp. 346–352, 2017, doi: 10.1109/TED.2016.2635625. [1.20] C. Wang, C. Li, S. Huang, W. Lu, G. Yan, G. Lin, J. Wei, W. Huang, H. Lai, and S. Chen, “Low specific contact resistivity to n-Ge and well-behaved Ge n+/p diode achieved by implantation and excimer laser annealing,” Appl. Phys. Exp. vol. 6, no. 10, pp. 106501-1–106501-4, 2013, doi: 10.7567/APEX.6.106501. [1.21] C. Y. Chang, F. A. Khaja, K. E Hollar, K. Rao, C. Lazik, M. Jin, H. Zhou, R. Hung, Y. C. Huang, H. Chung, A. Mayur, and N. Kim, “Ultra-low (1.2×10−9 Ω·cm2) p- Si0.55Ge0.45 contact resistivity (ρc) using nanosecond laser anneal for 7nm nodes and beyond,” Int. Workshop on Junction Tech. (IWJT), pp. 1–4, 2017, doi: 10.23919/IWJT.2017.7966504. [1.22] H. Luth, “Solid surfaces, interfaces and thin films,” Springer Science & Business Media, pp.260–262, 2015, ISBN: 978-3-319-10756-1. [1.23] R. Islam, G. Shine, and K. C. Saraswat, “Schottky barrier height reduction for holes by Fermi level depinning using metal/nickel oxide/silicon contacts,” Appl. Phys. Lett., vol. 105, no. 18, pp. 182103-1–182103-4, 2014, doi: https://doi.org/10.1063/1.4901193. [1.24] T. Nishimura, K. Kita, and A. Toriumi, “Evidence for strong Fermi-level pinning due to metal-induced gap states at metal/germanium interface,” Appl. Phys. Lett., vol. 91, no. 12, pp. 123123-1–123123-3, 2007, doi: https://doi.org/10.1063/1.2789701. [1.25] L. Lin, Y. Guo, and J. Robertson, “Metal silicide Schottky barriers on Si and Ge show weaker Fermi level pinning,” Appl. Phys. Lett., vol. 101, no. 5, pp. 052110-1–052110-4, 2012, doi: https://doi.org/10.1063/1.4742861. [1.26] K. Martens, R. Rooyackers, A. Firrincieli, B. Vincent, R. Loo, B. De Jaeger, M. Meuris, P. Favia, H. Bender, B. Douhard, W. Vandervorst, E. Simoen, M. Jurczak, D. J. Wouters, and J. A. Kittl, “Contact resistivity and Fermi-level pinning in n-type Ge contacts with epitaxial Si-passivation,” Appl. Phys. Lett., vol. 98, no. 1, pp. 013504-1–013504-4, 2011, doi: https://doi.org/10.1063/1.3530437. [1.27] M. Kobayashi, A. Kinoshita, K. Saraswat, H. S. P. Wong, and Y. Nishi, “Fermi level depinning in metal/Ge Schottky junction for metal source/drain Ge metal oxide-semiconductor field-effect-transistor application,” J. Appl. Phys., vol. 105, no. 2, pp. 023702-1–023702-7, 2009, doi: https://doi.org/10.1063/1.3065990. [1.28] P. Paramahans, S. Gupta, R. K. Mishra, N. Agarwal, A. Nainani, Y. Huang, M.C. Abraham, S. Kapadia, U. Ganguly, and S. Lodha, “ZnO: an attractive option for n-type metal-interfacial layer-semiconductor (Si, Ge, SiC) contacts,” Symp. VLSI Tech. Dig., pp. T83–T84, 2012, doi: 10.1109/VLSIT.2012.6242472. [1.29] K. Y. Chen, C.C. Su, C. P. Chou, and Y. H. Wu, “Formation of ohmic contact with low contact resistance on N-GeSn by fermi level depinning using plasma treatment,” IEEE Electron Device Lett., vol. 37, no. 7, pp. 827–830, 2016, doi: 10.1109/LED.2016.2566809. [1.30] Y. Tong, G. Han, B. Liu, Y. Yang, L. Wang, W. Wang, and Y. C. Yeo, “Ni(Ge1−xSnx) Ohmic contact formation on N-Type Ge1−xSnx using selenium or sulfur implant and segregation,” IEEE Trans. Electron Devices, vol. 60, no. 2, pp. 746–752, 2013, doi: 10.1109/TED.2012.2233204. [1.31] M. Mueller, Q. T. Zhao, C. Urban, C. Sandow, D. Buca, S. Lenk, S. Estévez, and S. Mantl, “Schottky-barrier height tuning of NiGe/n-Ge contacts using As and P segregation,” Mater. Sci. and Eng. B, vol. 154-155, pp. 168–171, 2008, doi: https://doi.org/10.1016/j.mseb.2008.09.037. [1.32] H. Li, Y. Guo, and J. Robertson, “Face dependence of Schottky barriers heights of silicides and germanides on Si and Ge,” Scientific Reports, vol. 7, no. 16669, pp. 1–8, 2017, doi: 10.1038/s41598-017-16803-6. [1.33] S. Zhu, J. Chen, M. F. Li, S. J. Lee, J. Singh, C. X. Zhu, A. Du, C. H. Tung, A. Chin, and D. L. Kwong, “N-type Schottky barrier source/drain MOSFET using ytterbium silicide,” IEEE Electron Device Lett., vol. 25, no. 8, pp. 565–567, 2004, doi: 10.1109/LED.2004.831582. [1.34] Z. W. Zheng, T. C. Ku, M. Liu, and A. Chin, “Ohmic contact on n-type Ge using Yb-germanide,” Appl. Phys. Lett., vol. 101, no. 22, pp. 223501-1–223501-3, 2012, doi: https://doi.org/10.1063/1.4768700. [1.35] K. Gallacher, P. Velha, D. J. Paul, I. MacLaren, M. Myronov, and D. R. Leadley, “Ohmic contacts to n-type germanium with low specific contact resistivity,” Appl. Phys. Lett., vol. 100, no. 2, pp. 022113-1–022113-3, 2012, doi: https://doi.org/10.1063/1.3676667. [1.36] H. J. Ahn, J. Moon, Y. Seo, T. I. Lee, C. K. Kim, W. S. Hwang, H. Y. Yu, and B. J. Cho, “Formation of low-resistivity nickel germanide using atomic layer deposited nickel thin film,” IEEE Trans. Electron Devices, vol. 64, no. 6, pp. 2599–2602, 2017, doi: 10.1109/TED.2017.2694456. [1.37] H. Tanaka, T. Isogai, T. Goto, A. Teramoto, S. Sugawa, and T. Ohmi, “Low contact resistivity with low silicide/p+-silicon Schottky barrier for high-performance p-channel metal–oxide–silicon field effect transistors,” Jpn. J. Appl. Phys., vol. 49, no. 4S, pp. 04DA03-1–04DA03-5, 2010, doi: 10.1143/JJAP.49.04DA03. [1.38] V. K. Dugaev, and V. I. Litvinov, “Electric-current transmission through the contact of two metals,” Physical Review B, vol. 52, no. 7, pp. 5306–5312, 1995, doi: https://doi.org/10.1103/PhysRevB.52.5306. [1.39] H. Y. Chen, C. Y. Lin, M. C. Chen, C. C. Huang, and C. H. Chien, “Nickel silicide formation using pulsed laser annealing for nMOSFET performance improvement,” J. Electrochemical Soc., vol. 158, no. 8, pp. H840–H845, 2011, doi: 10.1149/1.3601849. [1.40] M. Shayesteh, K. Huet, I. T. Tresonne, R. Negru, C. L. M. Daunt, N. Kelly, D. O’Connell, R. Yu, V. Djara, P. B. Carolan, N. Petkov, and Ray Duffy, “Atomically flat low-resistive germanide contacts formed by laser thermal anneal,” IEEE Trans. Electron Devices, vol. 60, no.7, pp. 2178–2185, 2013, doi: 10.1109/TED.2013.2263336. [1.41] S. Datta, “Recent advances in high performance CMOS transistors: from planar to non-planar,” Electrochemical Soc. Interface, vol. 22, no.1, pp. 41–46, 2013, doi: 10.1149/2.F04131if. [1.42] S. H. Kim1, H. Kam, C. Hu and T. J. K. Liu, “Germanium-source tunnel field effect transistors with record high ION/IOFF,” Symp. VLSI Tech. Dig., pp. 178–179, 2009, ISBN: 978-1-4244-3308-7. [1.43] J. H. Seo, Y. J. Yoon, S. Lee, J. H. Lee, S. Cho, and I. M. Kang, “Design and analysis of Si-based arch-shaped gate-all-around (GAA) tunneling field-effect transistor (TFET),” Current Appl. Phys., vol. 15, no. 3, pp. 208–212, 2015, doi: https://doi.org/10.1016/j.cap.2014.12.013. [1.44] R. Gandhi, Z. Chen, N. Singh, K. Banerjee, and S. Lee, “CMOS-compatible vertical-silicon-nanowire gate-all-around p-type tunneling FETs with ≤ 50 mV/decade subthreshold swing,” IEEE Electron Device Lett., vol. 32, no. 11, pp. 1054–1506, 2011, doi: 10.1109/LED.2011.2165331. [1.45] T. N. Theis, “New devices for computing,” Silicon Nanoelectronics Workshop, 2014, doi: 10.1109/SNW.2014.7348525. [1.46] R. Rita, V. Anne, S. V. Anne, M. W. Amey, S. Eddy, D. Katia, L. C. Sabrina, D. Marc, B. George, L. Roger, H. Andriy, V. Tom, H. Cedric, C. Nadine, and V. Y. T. Aaron, “Ge source vertical tunnel FETs using a novel replacement source integration scheme,” IEEE Trans. Electron Devices, vol. 61, no. 12, pp. 4032–4039, 2014, doi: 10.1109/TED.2014.2365142. [1.47] H. Wang, Y. Liu, M. Liu, Q. Z, C. Zhang, X. Ma, J. Zhang, Y. Hao, and G. Han, “Performance improvement in novel germanium-tin/germanium heterojunction enhanced p-channel tunneling field-effect transistor,” Superlattices and Microstructures, vol. 383, pp. 401–410, 2015, doi: https://doi.org/10.1016/j.spmi.2015.03.030. [1.48] Y. Yang, G. Han, P. Guo, W. Wang, X. Gong, L. Wang, K. L. Low, and Y. C. Yeo, “Germanium-tin p-channel tunneling field-effect transistor: device design and technology demonstration,” IEEE Trans. Electron Devices, vol. 60, no. 12, pp. 4048–4055, 2013, doi: 10.1109/TED.2013.2287031. [1.49] Y. Yang, S. Su, P. Guo, W. Wang, X. Gong, L. Wang, K. L. Low, G. Zhang, C. Xue, B. Cheng, G. Han, and Y. C. Yeo, “Towards direct band-to-band tunneling in p-channel tunneling field effect transistor (TFET): technology enablement by germanium-tin (GeSn),” in IEDM Tech. Dig., pp. 379–382, 2012, doi: 10.1109/IEDM.2012.6479053. [1.50] S. Datta, H. Liu, and V. Narayanan, “Tunnel FET technology: A reliability perspective,” Microelectronics Reliability, vol. 54, no. 5, pp. 861–874, 2014, doi: https://doi.org/10.1016/j.microrel.2014.02.002. [1.51] A. M. Ionescu, and H. Riel, “Tunnel field-effect transistors as energy-efficient electronic switches.” Nature, vol. 479, pp. 329–337, 2011, doi: 10.1038/nature10679. [1.52] S. Mookerjea, D. Mohata, T. Mayer, V. Narayanan, and S. Datta, “Temperature-dependent I–V characteristics of a Vertical In0.53Ga0.47 as tunnel FET,” IEEE Electron Device Lett., vol. 31, no. 6, pp. 564–566, 2010, doi: 10.1109/LED.2010.2045631. [1.53] U. E. Avci, B. C. Kung, A. Agrawal, G. Dewey, V. Le, R. Rios, D. H. Morris, S. Hasan, R. Kotlyar, J Kavalieros, and I. A. Young, “Study of TFET non-ideality effects for determination of geometry and defect density requirements for Sub-60mV/dec Ge TFET,” in IEDM Tech. Dig., pp. 891–894, 2015, doi: 10.1109/IEDM.2015.7409828. [1.54] R. Pandey, S. Mookerjea, and Suman Datta, “Opportunities and challenges of tunnel FETs,” IEEE Trans. Circuits and Systems I: Regular Papers, vol. 63, no. 12, pp.2128–2138, 2016, doi: 10.1109/TCSI.2016.2614698. [1.55] I. A. Young, U. E. Avci, and D. H. Morris, “Tunneling Field Effect Transistors: Device and Circuit Considerations for Energy Efficient Logic Opportunities,” in IEDM Tech. Dig., pp. 600–603, 2015, doi: 10.1109/IEDM.2015.7409755. [1.56] U. E. Avci, D. H. Morris, and I. A. Young, “Tunnel field-effect transistors: prospects and challenges,” J. Electron. Devices Society, vol. 3, no. 3, pp.88–95, 2015, doi: 10.1109/JEDS.2015.2390591. [1.57] M. S. Ram, and D. B. Abdi, “Dopingless PNPN tunnel FET with improved performance: design and analysis,” Superlattices and Microstructures, vol. 82, pp. 430–437, 2015, doi: https://doi.org/10.1016/j.spmi.2015.02.024. [1.58] W. Cao, C. J. Yao, G. F. Jiao, D. Huang, H. Y. Yu, and M. F. Li, “Improvement in reliability of tunneling field-effect transistor with p-n-i-n structure,” IEEE Trans. Electron Devices, vol. 58, no. 7, pp. 2122–2126, 2011, doi: 10.1109/TED.2011.2144987. [1.59] R. Rooyackers, A. Vandooren, A. S. Verhulst, A. Walke, K. Devriendt, S. Locorotondo, M. Demand, G. Bryce, R. Loo, A. Hikavyy, T. Vandeweyer, C. Huyghebaert, N. Collaert, and A. Thean, “A new complementary hetero-junction vertical tunnel-FET integration scheme,” in IEDM Tech. Dig., pp. 92–95, 2013, doi: 10.1109/IEDM.2013.6724558. [1.60] T. Krishnamohan, D. Kim, S. Raghunathan, K. Saraswat, “Double-gate strained-ge heterostructure tunneling FET (TFET) with record high drive currents and < 60mV/dec subthreshold slope,” in IEDM Tech. Dig., pp. 2008, doi: 10.1109/IEDM.2008.4796839. [1.61] E. H. Toh, G. H. Wang, G. Samudra, and Y. C. Yeo, “Device physics and design of germanium tunneling field-effect transistor with source and drain engineering for low power and high-performance applications,” J. Appl. Phys., vol. 103, no. 10, pp. 104504-1-104504-5, 2008, doi: https://doi.org/10.1063/1.2924413. [1.62] D. B. Abdi, and M. J. Kumar, “PNPN tunnel FET with controllable drain side tunnel barrier width: Proposal and analysis,” Superlattices and Microstructures, vol. 86, pp. 121–125, 2015, doi: https://doi.org/10.1016/j.spmi.2015.07.045.
Chapter 2 [2.1] D. Gall, “Electron mean free path in elemental metals,” J. Appl. Phys., vol. 119, no. 8, p. 085101, Feb. 2016, doi: 10.1063/1.4942216. [2.2] N. Breil, D. Shemesh, J. Fernandez, R. Hung, N. Bekiaris, J. Tseng, M. Naik, J. H. Park, J. Bakke, A. Kumar, K. Nafisi, A. Litman, A. Karnieli, V. Kuchik, A. Wachs, N. Khasgiwale, and M. Chudzik, “Electron beam detection of cobalt trench embedded voids enabling improved process control for middle-of-line at the 7 nm node and beyond,” in IEDM Tech. Dig., Dec. 2017, pp. 349–352, doi: 10.1109/IEDM.2017.8268391. [2.3] R. Hung, J. H. Park, T. H. Ha, M. Lee, W. Hou, J. Lei, J. R. Bakke, S. Sharma, K. R. Sharma, N. S. Kim, E. Yeh, and A. Wachs, “Extreme contact scaling with advanced metallization of cobalt,” in Proc. Intl. Interconnect Technol. Conf., Jun. 2018, pp. 30–32, doi: 10.1109/IITC.2018.8430434. [2.4] J. Koike, M. Hosseini, H. T. Hai, D. Ando, and Y. Sutou, “Material innovation for MOL, BEOL, and 3D integration,” in IEDM Tech. Dig., Dec. 2017, pp. 725–728, doi: 10.1109/IEDM.2017.8268485. [2.5] H. Kim, J. Yoon, and H.-B.-R. Lee, “Atomic layer deposition for nanoscale contact applications,” in Proc. Intl. Interconnect Technol. Conf., May 2011, pp. 1–3, doi: 10.1109/IITC.2011.5940260. [2.6] C. N. Ni, X. Li, S. Sharma, K. V. Rao, M. Jin, C. Lazik, V. Banthia, B. Colombeau, N. Variam, A. Mayur, H. Chung, R. Hung, and A. Brand, “Ultra-low contact resistivity with highly doped Si: P contact for nMOSFET,” in Proc. Symp. VLSI Technol., Jun. 2015, pp. 118–119, doi: 10.1109/VLSIT.2015.7223711. [2.7] S. M. George, “Atomic layer deposition: An overview,” Chem. Rev., vol. 110, no. 1, pp. 111–131, Nov. 2009, doi: 10.1021/cr900056b. [2.8] H. Jun Ahn, J. Moon, Y. Seo, T. I. Lee, C. K. Kim, W. S. Hwang, H. Yong Yu, and B. J. Cho, “Formation of low-resistivity nickel germanide using atomic layer deposited nickel thin film,” IEEE Trans. Electron Devices, vol. 64, no. 6, pp. 2599–2603, Jun. 2017, doi: 10.1109/TED.2017.2694456. [2.9] M. R. Baklanov, I. A. Badmaeva, R. A. Donaton, L. L. Sveshnikova, W. Storm, and K. Maex, “Kinetics and mechanism of the etching of CoSi2 in HF-based solutions,” J. Electrochem. Soc., vol. 143, no. 10, pp. 3245–3251, Oct. 1996, doi: 10.1149/1.1837192. [2.10] V. K. Dugaev, V. I. Litvinov, and P. P. Petrov, “Electric-current transmission through the contact of two metals,” Phys. Rev. B, Condens. Matter, vol. 52, no. 7, pp. 5306–5312, Aug. 1995, doi: 10.1103/PhysRevB.52.5306. [2.11] M. Shayesteh, K. Huet, I. Toqué-Tresonne, R. Negru, C. L. M. Daunt, N. Kelly, D. O. Connell, R. Yu, V. Djara, P. B. Carolan, N. Petkov, and R. Duffy, “Atomically flat low-resistive germanide contacts formed by laser thermal anneal,” IEEE Trans. Electron Devices, vol. 60, no. 7, pp. 2178–2185, Jul. 2013, doi: 10.1109/TED.2013.2263336. [2.12] W. Hsu, X. Wang, F. Wen, Y. Wang, A. Dolocan, T. Kim, E. Tutuc, and S. K. Banerjee, “High phosphorus dopant activation in germanium using laser spike annealing,” IEEE Electron Device Lett., vol. 37, no. 9, pp. 1088–1091, Sep. 2016, doi: 10.1109/LED.2016.2587829.
Chapter 3 [3.1] Z. J. Gong, S. K. Wang, X. Yang, B. Sun, W. Zhao, H. D. Chang, and H. G. Liu, “Schottky barrier height modulation in metal/n-Ge system,” in Proc. IEEE Int. Conf. Solid-State Integr. Circuit Technol., Oct. 2014, pp. 1–3, doi: 10.1109/ICSICT.2014.7021633. [3.2] J. Y. J. Lin, A. M. Roy, A. Nainani, Y. Sun, and K. C. Saraswat, “Increase in current density for metal contacts to n-germanium by inserting TiO2 interfacial layer to reduce Schottky barrier height,” Appl. Phys. Lett., vol. 98, no. 9, p.092113, Mar. 2011, doi: 10.1063/1.3562305. [3.3] P. Paramahans, S. Gupta, R. K. Mishra, N. Agarwal, A. Nainani, Y. Huang, M. C. Abraham, S. Kapadia, U. Ganguly, and S. Lodha, “ZnO: An attractive option for n-type metal-interfacial layer-semiconductor (Si, Ge, SiC) contacts,” in Proc. Symp. VLSI Technol., Jun. 2012, pp. 2011–2012, doi: 10.1109/VLSIT.2012.6242472. [3.4] H. Li, Y. Guo, and J. Robertson, “Face dependence of Schottky barriers heights of silicides and germanides on Si and Ge,” Sci. Rep., vol. 7, p. 16669, Nov. 2017, doi: 10.1038/s41598-017-16803-6. [3.5] K. Gallacher, P. Velha, D. J. Paul, I. MacLaren, M. Myronov, and D. R. Leadley, “Ohmic contacts to n-type germanium with low specific contact resistivity,” Appl. Phys. Lett., vol. 100, no. 2, p. 022113, Jan. 2012, doi: 10.1063/1.3676667. [3.6] Q. Zhang, N. Wu, T. Osipowicz, L. K. Bera, and C. Zhu, “Formation and thermal stability of nickel germanide on germanium substrate,” Jpn. J. Appl. Phys., vol. 44, no. 45, pp. L1389–L1391, Oct. 2005, doi: 10.1143/JJAP.44.L1389. [3.7] C. P. Chou, H. H. Chang, and Y. H. Wu, “Enabling low contact resistivity on n-Ge by implantation after Ti germanide,” IEEE Electron Device Lett., vol. 39, no. 1, pp. 91–94, Jan. 2018, doi: 10.1109/led.2017.2774502. [3.8] N. Yoshida, S. Hassan, W. Tang, Y. Yang, W. Zhang, S. C. Chen, L. Dong, H. Zhou, M. Jin, M. Okazaki, J. Park, N. Bekiaris, R. Hung, J. Zhou, Y. Lei, P. Ma, X. Tang, T. Miyashita, N. Kim, and E. Yieh, “Highly conductive metal gate fill integration solution for extremely scaled RMG stack for 5 nm & beyond,” in IEDM Tech. Dig., Dec. 2017, pp. 541–544, doi: 10.1109/IEDM.2017.8268439. [3.9] J. Koike, M. Hosseini, H. T. Hai, D. Ando, and Y. Sutou, “Material innovation for MOL, BEOL, and 3D integration,” in IEDM Tech. Dig., Dec. 2017, pp. 725–728, doi: 10.1109/IEDM.2017.8268485. [3.10] M. Shayesteh, K. Huet, I. Toqué-Tresonne, R. Negru, C. L. M. Daunt, N. Kelly, D. O. Connell, R. Yu, V. Djara, P. B. Carolan, N. Petkov, and R. Duffy, “Atomically flat low-resistive germanide contacts formed by laser thermal anneal,” IEEE Trans. Electron Devices, vol. 60, no. 7, pp. 2178–2185, Jul. 2013, doi: 10.1109/TED.2013.2263336. [3.11] S. H. Huang, F. L. Lu, W.-L. Huang, C. H. Huang, and C. W. Liu, “The ~3×1020 cm−3 electron concentration and low specific contact resistivity of phosphorus-doped Ge on Si by in-situ chemical vapor deposition doping and laser annealing,” IEEE Trans. Electron Devices, vol. 36, no. 11, pp. 1114–1117, Nov. 2015, doi: 10.1109/LED.2015.2478916. [3.12] F. L. Lu, C. E. Tsai, I. H. Wong, C. T. Lu, and C. W. Liu, “Dopant recovery in epitaxial Ge on SOI by laser annealing with device applications,” IEEE Trans. Electron Devices, vol. 65, no. 7, pp. 2925–2931, Jul. 2018, doi: 10.1109/TED.2018.2834382. [3.13] H. J. Ahn, J. Moon, Y. Seo, T. I. Lee, C. K. Kim, W. S. Hwang, H. Y. Yu, and B. J. Cho, “Formation of low-resistivity nickel germanide using atomic layer deposited nickel thin film,” IEEE Trans. Electron Devices, vol. 64, no. 6, pp. 2599–2603, Jun. 2017, doi: 10.1109/TED.2017.2694456. [3.14] J. R. Wu, Y. H. Wu, C. Y. Hou, M. L. Wu, C. C. Lin, and L. L. Chen, “Impact of fluorine treatment on Fermi level depinning for metal/germanium Schottky junctions,” Appl. Phys. Lett., vol. 99, no. 25, p. 253504, Nov. 2011, doi: 10.1063/1.3666779. [3.15] S. Zhu, C. Detavernier, R. L. V. Meirhaeghe, F. Cardon, G. P. Ru, X. P. Qu, and B. Z. Li, “Electrical characteristics of CoSi2/n-Si(1 0 0) Schottky barrier contacts formed by solid state reaction,” Solid State Electron., vol. 44, no. 10, pp. 1807–1818, Oct. 2000, doi: 10.1016/S0038-1101(00)00127-1. [3.16] M. Witmer, D. L. Smith, P. W. Lew, and M. A. Nicolet, “Electrical characteristics of palladium silicide,” Solid State Electron., vol. 31, no. 3, pp. 570–580, Mar. 1978, doi: 10.1016/0038-1101(78)90029-1. [3.17] G. P. Ru, B. Z. Li, G. B. Jiang, X. P. Qu, J. Liu, R. L. V. Meirhaeghe, and F. Cardon, “Surface and interface morphology of CoSi2 films formed by multilayer solid-state reaction,” Mater. Characterization, vol. 48, nos. 2–3, pp. 229–235, Apr. 2002, doi: 10.1016/S1044-5803(02)00252-8. [3.18] H. Yu, M. Schaekers, A. Peter, G. Pourtois, E. Rosseel, J. G. Lee, W. B. Song, K. M. Shin, J. L. Everaert, S. A. Chew, S. Demuynck, D. Kim, K. Barla, A. Mocuta, N. Horiguchi, A. V. Y. Thean, N. Collaert, and K. D. Meyer, “Titanium silicide on Si:P with precontact amorphization implantation treatment: contact resistivity approaching 1×10−9 Ohm-cm2,” IEEE Trans. Electron Devices, vol. 63, no. 12, pp. 4632–4640, Dec. 2016, doi: 10.1109/TED.2016.2616587.
Chapter 4 [4.1] J. Borrel, L. Hutin, O. Rozeau, P. Batude, T. Poiroux, F. Nemouchi, and M. Vinet, “Considerations for efficient contact resistivity reduction via Fermi level depinning Impact of MIS contacts on 10 nm node nMOSFET DC characteristics,” in Proc. Symp. VLSI Technol., Jun. 2015, pp. 116–117, doi: 10.1109/VLSIT.2015.7223710. [4.2] M. Kobayashi, A. Kinoshita, K. Saraswat, H. S. P. Wong, and Y. Nishi, “Fermi level depinning in metal/Ge Schottky junction and its application to metal source/drain Ge NMOSFET,” in Proc. Symp. VLSI Technol., Jun. 2008, pp. 54–55, doi: 10.1109/VLSIT.2008.4588561. [4.3] Y. Zhou, W. Han, Y. Wang, F. Xiu, J. Zou, R. K. Kawakami, and K. L. Wang, “Investigating the origin of Fermi level pinning in Ge Schottky junctions using epitaxially grown ultrathin MgO films,” Appl. Phys. Lett., vol. 96, no. 10, p. 102103, 2010, doi: 10.1063/1.3357423. [4.4] P. Paramahans, S. Gupta, R. K. Mishra, N. Agarwal, A. Nainani, Y. Huang, M. C. Abraham, S. Kapadia, U. Ganguly, and S. Lodha, “ZnO: An attractive option for n-type metal-interfacial layer-semiconductor (Si, Ge, SiC) contacts,” in Proc. Symp. VLSI Technol., Jun. 2012, pp. 2011–2012, doi: 10.1109/VLSIT.2012.6242472. [4.5] J. Y. J. Lin, A. M. Roy, A. Nainani, Y. Sun, and K. C. Saraswat, “Increase in current density for metal contacts to n-germanium by inserting TiO2 interfacial layer to reduce Schottky barrier height,” Appl. Phys. Lett., vol. 98, no. 9, p. 092113, 2011, doi: 10.1063/1.3562305. [4.6] L. Lin, Y. Guo, and J. Robertson, “Metal silicide Schottky barriers on Si and Ge show weaker Fermi level pinning,” Appl. Phys. Lett., vol. 101, no. 5, p. 052110, 2012, doi: 10.1063/1.4742861. [4.7] C. H. Wu, B. F. Hung, A. Chin, S. J. Wang, F. Y. Yen, Y. T. Hou, Y. Jin, H. J. Tao, S. C. Chen, and M. S. Liang, “HfAlON n-MOSFETs incorporating low-work function gate using ytterbium silicide,” IEEE Electron Device Lett., vol. 27, no. 6, pp. 454–456, Jun. 2006, doi: 10.1109/LED.2006.874778. [4.8] S. Zhu, J. Chen, M.-F. Li, S. J. Lee, J. Singh, C. X. Zhu, A. Du, C. H. Tung, A. Chin, and D. L. Kwong, “N-type Schottky barrier source/drain MOSFET using ytterbium silicide,” IEEE Electron Device Lett., vol. 25, no. 8, pp. 565–567, Aug. 2004, doi: 10.1109/LED.2004.831582. [4.9] Z. W. Zheng, T.-C. Ku, M. Liu, and A. Chin, “Ohmic contact on n-type Ge using Yb-germanide,” Appl. Phys. Lett., vol. 101, no. 22, p. 223501, 2012, doi: 10.1063/1.4768700. [4.10] Y. Tong, G. Han, B. Liu, Y. Yang, L. Wang, W. Wang, and Y. C. Yeo, “NiGe1−x Snx ohmic contact formation on N-type Ge1−x Snx using selenium or sulfur implant and segregation,” IEEE Trans. Electron Devices, vol. 60, no. 2, pp. 746–752, Feb. 2013, doi: 10.1109/TED.2012.2233204. [4.11] C. W. Lee, Y. H. Wu, C. H. Hsieh, and C. C. Lin, “Epitaxial GeSn film formed by solid phase epitaxy and its application to Yb2O3-gated GeSn metal-oxide-semiconductor capacitors with sub-nm equivalent oxide thickness,” Appl. Phys. Lett., vol. 105, no. 20, p. 203508, 2014, doi: 10.1063/1.4902119. [4.12] Y. C. Fang, K. Y. Chen, C. H. Hsieh, C. C. Su, and Y. H. Wu, “N-MOSFETs formed on solid phase epitaxially grown GeSn film with passivation by oxygen plasma featuring high mobility,” ACS Appl. Mater. Interfaces, vol. 7, no. 48, pp. 26374–26380, 2015, doi: 10.1021/acsami.5b08518. [4.13] J. Y. J. Lin, A. M. Roy, and K. C. Saraswat, “Reduction in specific contact resistivity to n+ Ge using TiO2 interfacial layer,” IEEE Electron Device Lett., vol. 33, no. 11, pp. 1541–1543, Nov. 2012, doi: 10.1109/LED.2012.2214758. [4.14] K. Martens, A. Firrincieli, R. Rooyackers, B. Vincent, R. Loo, S. Locorotondo, E. Rosseel, T. Vandeweyer, G. Hellings, B. De Jaeger, M. Meuris, P. Favia, H. Bender, B. Douhard, J. Delmotte, W. Vandervorst, E. Simoen, G. Jurczak, D. Wouters, and J. A. Kittl, “Record low contact resistivity to n-type Ge for CMOS and memory applications,” in IEDM Tech. Dig., 2010, pp. 18.4.1–18.4.4, doi: 10.1109/IEDM.2010.5703387. [4.15] G. S. Kim, S. H. Kim, J. K. Kim, C. Shin, J. H. Park, K. C. Saraswat, B. J. Cho, and H. Y. Yu, “Surface passivation of germanium using SF6 plasma to reduce source/drain contact resistance in germanium n-FET,” IEEE Electron Device Lett., vol. 36, no. 8, pp. 745–747, Aug. 2015, doi: 10.1109/LED.2015.2440434. [4.16] G. W. Peng, Y. P. Feng, A. C. H. Huan, M. Bouville, D. Z. Chi, and D. J. Srolovitz, “Mechanisms of silicon diffusion in erbium silicide,” Phys. Rev. B, vol. 75, no. 12, p. 125319, 2007, doi: 10.1103/PhysRevB.75.125319. [4.17] Y. L. Jiang, Q. Xie, C. Detavernier, R. L. Van Meirhaeghe, G. P. Ru, X. P. Qu, B. Z. Li, and P. K. Chu, “Growth of pinhole-free ytterbium silicide film by solid-state reaction on Si(001) with a thin amorphous Si interlayer,” J. Appl. Phys., vol. 102, no. 3, p. 033508, 2007, doi: 10.1063/1.2767375. [4.18] H. Y. Chen, C. Y. Lin, M. C. Chen, C. C. Huang, and C. H. Chien, “Nickel silicide formation using pulsed laser annealing for nMOSFET performance Improvement,” J. Electrochem. Soc., vol. 158, no. 8, pp. H840–H845, 2011, doi: 10.1149/1.3601849. [4.19] W. C. Tsai, K. S. Chi, and L. J. Chen, “Growth of pinhole-free epitaxial Yb and Er silicide thin films on atomically clean (111) Si,” J. Appl. Phys., vol. 96, no. 9, p. 5353, 2004, doi: 10.1063/1.1769604. [4.20] Y. Nishi and R. Doering, Eds., Handbook of Semiconductor Manufacturing Technology, 2nd ed. Boca Raton, FL, USA: CRC Press, 2007, pp. 10-1–10-52.
Chapter 5 [5.1] A. C. Seabaugh and Q. Zhang, “Low voltage tunnel transistors for beyond CMOS logic,” Proc. IEEE, vol. 98, no. 12, pp. 2095–2110, Dec. 2010, doi: 10.1109/JPROC.2010.2070470. [5.2] A. Villalon, G. L. Carval, S. Martinie, C. L. Royer, M. A. Jaud, and S. Cristoloveanu, “Further insights in TFET operation,” IEEE Trans. Electron Devices, vol. 61, no. 8, pp. 2893–2898, Aug. 2014, doi: 10.1109/TED.2014.2325600. [5.3] T. Krishnamohan, D. Kim, S. Raghunathan, K. Saraswat, and S. Clara, “Double gate strained Ge heterostructure tunneling FET (TFET) with record high drive currents and <60 mV/dec subthreshold slope,” in Proc. IEEE Int. Electron Devices Meeting, Dec. 2008, pp. 1–3, doi: 10.1109/IEDM.2008.4796839. [5.4] A. Vladimirescu, Hraziia, A. Amara, and C. Anghel, “An analysis on the ambipolar current in Si double-gate tunnel FETs,” Solid State Electron., vol. 70, pp. 67–72, Apr. 2012, doi: https://doi.org/10.1016/j.sse.2011.11.009. [5.5] E. H. Toh, G. H. Wang, G. Samudra, and Y. C. Yeoa, “Device physics and design of germanium tunneling field effect transistor with source and drain engineering for low power and high-performance applications,” J. Appl. Phys., vol. 103, no. 10, pp. 104504-1–104504-5, May 2008, doi: https://doi.org/10.1063/1.2924413. [5.6] C. Anghel, Hraziia, A. Gupta, A. Amara, and A. Vladimirescu, “30 nm tunnel FET with improved performance and reduced ambipolar current,” IEEE Trans. Electron Devices, vol. 58, no. 6, pp. 1649–1654, Jun. 2011, doi: 10.1109/TED.2011.2128320. [5.7] D. B. Abdi and M. J. Kumar, “PNPN tunnel FET with controllable drain side tunnel barrier width: Proposal and analysis,” Superlattices Microstruct., vol. 86, pp. 121–125, Jul. 2015, doi: https://doi.org/10.1016/j.spmi.2015.07.045. [5.8] J. Zhu et al., “Design and simulation of a novel graded channel heterojunction tunnel FET with high ION/IOFF ratio and steep swing,” IEEE Electron Device Lett., vol. 38, no. 9, pp. 1200–1203, Sep. 2017, doi: 10.1109/LED.2017.2734679. [5.9] S. Garg and S. Saurabh, “Suppression of ambipolar current in tunnel FETs using drain pocket: Proposal and analysis,” Superlattices Microstruct., vol. 113, pp. 261–270, Jan. 2018, doi: https://doi.org/10.1016/j.spmi.2017.11.002. [5.10] A. M. Ionescu and H. Riel, “Tunnel field-effect transistors as energy efficient electronic switches,” Nature, vol. 479, pp. 329–337, Nov. 2011, doi: 10.1038/nature10679 [5.11] R. Gandhi, Z. Chen, N. Singh, K. Banerjee, and S. Lee, “Vertical Sinanowire n-type tunneling FETs with low subthreshold swing (≤ 50 mv/decade) at room temperature,” IEEE Electron Device Lett., vol. 32, no. 4, pp. 437–439, Apr. 2011, doi: 10.1109/LED.2011.2106757. [5.12] R. Rooyackers et al., “A new complementary hetero-junction vertical tunnel-FET integration scheme,” in Proc. IEEE Int. Electron Devices Meeting, Dec. 2013, pp. 4.2.1–4.2.4, doi: 10.1109/IEDM.2013.6724558. [5.13] Z. Yang, “Tunnel field-effect transistor with an L-shaped gate,” IEEE Electron Device Lett., vol. 37, no. 7, pp. 839–842, Jul. 2016, doi: 10.1109/LED.2016.2574821. [5.14] E. D. Kurniawan, S. Y. Yang, V. Thirunavukkarasu, and Y. C. Wu, “Analysis of Ge-Si heterojunction nanowire tunnel FET: Impact of tunneling window of band-to-band tunneling model,” J. Electrochem. Soc., vol. 164, no. 11, pp. E3354–3358, Jun. 2017, doi: 10.1149/2.0371711jes. [5.15] H. Y. Chang, B. Adams, P. Y. Chien, J. Li, and J. C. S. Woo, “Improved subthreshold and output characteristics of source-pocket Si tunnel FET by the application of laser annealing,” IEEE Trans. Electron Devices, vol. 60, no. 1, pp. 92–96, Jan. 2013, doi: 10.1109/TED.2012.2228006. [5.16] H. Luan, H. N. Alshareef, P. S. Lysaght, H. R. Harris, and H. C. Wen, “Evaluation of tantalum silicon alloy systems as gate electrodes,” Appl. Phys. Lett., vol. 87, no. 21, pp. 212110-1–212110-3, Nov. 2005, doi: https://doi.org/10.1063/1.2126132. [5.17] M. A. Taubenblatt and C. R. Helms, “Silicide and Schottky barrier formation in the Ti-Si and the Ti-SiOx-Si systems,” Appl. Phys. Lett., vol. 53, no. 9, pp. 6308–6315, May 1982, doi: https://doi.org/10.1063/1.331551. [5.18] C. Lavoie, F. M. Heurle, and S. L. Zhang, “Silicides,” in Handbook of Semiconductor Manufacturing Technology, 2nd ed., vol. 10. Boca Raton, FL, USA: CRC Press, Jul. 2007, pp. 5–6. [5.19] A. S. Verhulst, W. G. Vandenberghe, K. Maex, and G. Groeseneken, “Tunnel field-effect transistor without gate-drain overlap,” Appl. Phys. Lett., vol. 91, no. 5, pp. 053102-1–053102-3, Jul. 2007, doi: https://doi.org/10.1063/1.2757593. [5.20] U. E. Avci, D. H. Morris, and I. A. Young, “Tunnel field-effect transistors: Prospects and challenges,” IEEE J. Electron Devices Soc., vol. 3, no. 3, pp. 88–95, May 2015, doi: 10.1109/JEDS.2015.2390591.
|