帳號:guest(3.146.34.244)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):洪欣妤
作者(外文):Hung, Hsin-Yu
論文名稱(中文):利用類表面電漿極化子的週期性差分線結構在高速差分傳輸減少串間干擾
論文名稱(外文):Study of Spoof Surface Plasmon Polariton Structure of Differential Pair with Reduced Crosstalk on High Speed Differential Link
指導教授(中文):柳克強
指導教授(外文):Leou, Keh-Chyang
口試委員(中文):謝政宏
盧志文
口試委員(外文):Hsieh, Cheng-Hung
Lu, Chih-Wen
學位類別:碩士
校院名稱:國立清華大學
系所名稱:工程與系統科學系
學號:104011546
出版年(民國):106
畢業學年度:106
語文別:中文
論文頁數:124
中文關鍵詞:類表面電漿極化子表面電漿極化子差分傳輸線串間干擾
外文關鍵詞:SPPspoof SPPdifferential paircrosstalk
相關次數:
  • 推薦推薦:0
  • 點閱點閱:207
  • 評分評分:*****
  • 下載下載:19
  • 收藏收藏:0
  由於電信產業中越來越高速的傳輸需求,差分線被廣泛的應用在傳輸訊號中,要符合好的訊號完整性(SI),縮小相鄰差分線之間的串間干擾,訊號傳輸才不會失真。
  傳輸速率需求由25 Gbps進化到更高速,而因為印刷電路板的面積有限,所以佔大部分面積的訊號傳輸線尺寸大小佔了很重要的影響因素,為了克服這些挑戰,本研究提出以spoof surface plasmon polariton (spoof SPP) 的特性建立一組差分傳輸線,此方法不增加額外電路板面積又能減少差分訊號傳輸線之間的串間干擾。
  另外,因高頻傳輸下傳輸線之間的串間干擾問題會越嚴重,探討100 gigabit/second (70 GHz)的傳輸速率下,使用低相對介電係數(relative permittivity)和低耗損正切(loss tangent)的印刷電路板(PCB)建立週期性結構差分線,採用 HFSS軟體有限元素分析法(FEM)模擬單一晶胞(unit cell)的色散關係以了解結構的色散特性,建立出單一晶胞結構的的幾何參數,因電腦資源有限,再以ADS軟體矩量法(MoM)數值分析完整類電表面電漿極化子(Spoof SPP)週期性結構差分對與另一組差分對之間的串間干擾s參數。
  一般兩對差分線之間距離在小於三倍線寬時串間干擾S參數會大於-10 dB,且兩組差分線距離越靠近串間干擾問題會越嚴重,在不佔用PCB板額外空間的前提,本研究設計一個Spoof SPP結構差分線與另一對差分傳輸線在距離小於三倍線寬,70 GHz頻率下,串間干擾S63參數值小於-10 dB,改善了2.7 dB。
Owing to the demand of higher speed continues to increase in telecommunication industry, the differential pair is widely used in signal transmission. the issue in high-speed printed circuit boards (PCBs) that is crosstalk which was incurred by the coupling effect. In order to obtain good signal integral (SI) by minimizing the crosstalk between adjacent differential pair. That the output signal will not distortion is much important.
As the transfer rate higher than 25 Gbps is needed. Minimizing the size of transmission line became an important issue because of limited area of the PCB. To overcome the challenges, this research proposed a spoof surface plasmon polariton (spoof SPP) structure of differential pair. This method not only can avoid using much space of PCB but also reducing the crosstalk noise.
However, the crosstalk noise is serious because the frequency is higher and higher. We discuss the spoof SPP structure of differential pair for 100 gigabit/second transmission on low relative permittivity and low loss tangent PCB. The spoof SPP structure reduces the crosstalk at 70 GHz by the concept of spoof surface plasmon polaritons (spoof SPPs). It is found that the propagation frequency range of the unit-cell can optimize the geometric parameter. Numerical simulation is used to analyze the dispersion relation and the resonant frequency of unit cell and s-parameter of differential pair, then also compared with the conventional differential pair with the same size and separation. Hence the proposed spoof SPP differential pair can improve the crosstalk between the other typical differential pair, and the S63 parameter of crosstalk can smaller than -10 dB, that improved 2.7 dB.
摘要 I
Abstract II
目錄 III
圖目錄 V
第一章 緒論 1
1.1 研究背景 1
1.2 研究目的 1
第二章 文獻探討 3
2.1 增加接地傳輸線或貫孔[1, 8] 3
2.2 改變差分線路徑(re-arrange the routing)[3] [9] [10] 10
2.3 相鄰貫孔之間的距離探討[11] 17
2.4 Spoof SPP結構[6] 21
2.5 文獻探討結論 30
第三章 研究原理及方法 36
3.1電磁模擬分析法 36
3.2 差分訊號原理 38
3.3 串間干擾 44
3.4 眼圖(eye-diagram)[21] 45
第四章 週期性Spoof SPP差分訊號線模擬模型 49
4.1 週期性結構邊界條件設定(for HFSS)[22, 23] 49
4.2 單一晶胞差分線模擬方法與分析(詳見附錄A) 52
4.3 差分線模型模擬方法與分析 57
4.4 Spoof SPP差分對干擾值模擬分析 69
第五章 結論 76
參考文獻 79
附錄A 單一晶胞HFSS模擬分析建構 83
A.1 比較PEC和PML邊界條件設定 83
A.2 Symmetry邊界條件 85
A.3 單一晶胞網格層設定 86
A.4 不同d的eigenmode frequency 90
附錄B 差分傳輸線ADS模擬分析建構 92
B.1 差分傳輸線網格設定探討 92
B.2 差分傳輸線網格層設定探討 99
B.3 Spoof SPP 結構不同週期比較結果 105
附錄C Differential Pair模擬建立和設定(in ADS) 1
附錄D Eigenmode模擬建立和設定(in HFSS) 11
[1] D. M. Nair, W. E. McKinzie, B. A. Thrasher, M. A. Smith, E. D. Hughes, and J. M. Parisi, "A 10 MHz to 100 GHz LTCC CPW-to-stripline vertical transition," in 2013 IEEE MTT-S International Microwave Symposium Digest (MTT), 2013, pp. 1-4.
[2] K. Lee, H. K. Jung, H. J. Chi, H. J. Kwon, J. Y. Sim, and H. J. Park, "Serpentine Microstrip Lines With Zero Far-End Crosstalk for Parallel High-Speed DRAM Interfaces," Ieee Transactions on Advanced Packaging, vol. 33, pp. 552-558, May 2010.
[3] X. Ye, "Intentional and un-intentional far end crosstalk cancellation in high speed differential link," in Electromagnetic Compatibility (EMC), 2011 IEEE International Symposium on, 2011, pp. 791-796.
[4] K. Dong Gun, L. Heeseok, and K. Joungho, "Twisted differential line structure on high-speed printed circuit boards to reduce crosstalk and radiated emission," IEEE Transactions on Advanced Packaging, vol. 27, pp. 590-596, 2004.
[5] S. K. Lee, K. Lee, H. J. Park, and J. Y. Sim, "FEXT-eliminated stub-alternated microstrip line for multi-gigabit/second parallel links," Electronics Letters, vol. 44, pp. 272-273, Feb 2008.
[6] J. J. Wu, D. J. Hou, K. Liu, L. Shen, C. A. Tsai, C. J. Wu, et al., "Differential microstrip lines with reduced crosstalk and common mode effect based on spoof surface plasmon polaritons," Optics Express, vol. 22, pp. 26777-26787, 2014/11/03 2014.
[7] H. C. Zhang, T. J. Cui, Q. Zhang, Y. Fan, and X. Fu, "Breaking the Challenge of Signal Integrity Using Time-Domain Spoof Surface Plasmon Polaritons," ACS Photonics, vol. 2, pp. 1333-1340, 2015/09/16 2015.
[8] W. T. Huang, C. H. Lu, and D. B. Lin, "SUPPRESSION OF CROSSTALK USING SERPENTINE GUARD TRACE VIAS," Progress in Electromagnetics Research-Pier, vol. 109, pp. 37-61, 2010.
[9] K. Aihara, J. Buan, A. Nagao, T. Takada, C. C. Huang, and Ieee, "Minimizing Differential Crosstalk of Vias for High-speed Data Transmission," in 2014 Ieee 23rd Conference on Electrical Performance of Electronic Packaging and Systems, ed New York: Ieee, 2014, pp. 191-194.
[10] C. Ming-Hsien, T. Yun-Ju, L. Daniel Ying-Tso, and P. Chia-Nan, "Microstrip lines far-end crosstalk cancellation using striplines in hybrid PCB structure," in 2016 Asia-Pacific International Symposium on Electromagnetic Compatibility (APEMC), 2016, pp. 576-579.
[11] M. Leib, M. Mirbach, and W. Menzel, "An ultra-wideband vertical transition from microstrip to stripline in PCB technology," in 2010 IEEE International Conference on Ultra-Wideband, 2010, pp. 1-4.
[12] "IEEE Standard for Information Technology Telecommunications and Information Exchange Between Systems Local and Metropolitan Area Networks Specific Requirements Part 3: Carrier Sense Multiple Access With Collision Detection (CSMA/CD) Access Method and Physical Layer Specifications Amendment 4: Ethernet Operation Over Electrical Backplanes," IEEE Std 802.3ap-2007 (Amendment to IEEE Std 802.3-2005), pp. c1-185, 2007.
[13] S. Young-Soo, L. Jeong-Cheol, P. Hong-June, and C. Soo-In, "Empirical equations on electrical parameters of coupled microstrip lines for crosstalk estimation in printed circuit board," IEEE Transactions on Advanced Packaging, vol. 24, pp. 521-527, 2001.
[14] T. Sakurai, "CLOSED-FORM EXPRESSIONS FOR INTERCONNECTION DELAY, COUPLING, AND CROSSTALK IN VLSIS," Ieee Transactions on Electron Devices, vol. 40, pp. 118-124, Jan 1993.
[15] keysight, "ADS 2016.01 Help," 2016.
[16] D. W. Kammler, "Calculation of Characteristic Admittances and Coupling Coefficients for Strip Transmission Lines," IEEE Transactions on Microwave Theory and Techniques, vol. 16, pp. 925-937, 1968.
[17] D. A. Smolyansky and S. D. Corey, "Characterization of differential interconnects from time domain reflectometry measurements," Microwave Journal, vol. 43, pp. 68-80, 03// 2000.
[18] F. Romeo and M. Santomauro, "Time-domain simulation of n coupled transmission lines," IEEE transactions on microwave theory and techniques, vol. 35, pp. 131-137, 1987.
[19] M. Integrated, "NRZ Bandwidth - HF Cutoff vs. SNR ".
[20] A. Corporation, "Via Optimization Techniques for High-Speed Channel Designs," May, 2008.
[21] G. Breed, "Analyzing signals using the eye diagram," High Frequency Electronics, vol. 4, pp. 50-53, 2005.
[22] D. M. Pozar, "Microwave Engineering fourth edition," 2012.
[23] A. HFSS, "HFSS Online help."
[24] J. J. Wu, H. E. Lin, T.-J. Yang, H. J. Chang, and I.-J. Hsieh, "Low-Frequency Surface Plasmon Polaritons Guided on a Corrugated Metal Striplines with Subwavelength Periodical Inward Slits," Plasmonics, vol. 6, pp. 59-65, 2011.
[25] K. Seki, K. Kanazawa, and M. Yasunaga, "Crosstalk-noise reduction in GHz domain using segmental transmission line," in 2013 IEEE Electrical Design of Advanced Packaging Systems Symposium (EDAPS), 2013, pp. 96-99.
[26] Kianinejad, Amin, Zhi Ning Chen, and Cheng-Wei Qiu. "Low-loss spoof surface plasmon slow-wave transmission lines with compact transition and high isolation." IEEE Transactions on Microwave Theory and Techniques 64.10 (2016): 3078-3086.
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *