帳號:guest(18.116.49.23)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):彭喬威
作者(外文):Peng, Chiao-Wei
論文名稱(中文):以乘載奈米白金觸媒之石墨烯材料發展高密度產氫與儲氫系統
論文名稱(外文):Platinum Nanoparticles Loaded Graphene Materials for High Density Hydrogen Generation and Storage System
指導教授(中文):曾繁根
指導教授(外文):Tseng, Fan-Gang
口試委員(中文):陳福榮
吳樸偉
口試委員(外文):Chen, Fu-Rong
Wu, Pu-Wei
學位類別:碩士
校院名稱:國立清華大學
系所名稱:工程與系統科學系
學號:104011543
出版年(民國):106
畢業學年度:105
語文別:中文
論文頁數:76
中文關鍵詞:奈米氣泡儲氫材料石墨烯濕式腔體
外文關鍵詞:hydrogen storage materialnanobubblegraphenewet cell
相關次數:
  • 推薦推薦:0
  • 點閱點閱:57
  • 評分評分:*****
  • 下載下載:10
  • 收藏收藏:0
氫能一直是在綠色能源領域中極受重視的能源。而除了氫氣的產生過程如何減少傳統能源的使用以及過多的能量損耗以外,氫氣的儲存方式也相都重要。本研究專注於尋找以奈米氣泡的形式產生氫氣,藉由Young-Laplace equation得知其氣泡內壓大、密度大等特性,且有諸多穩定的機制可使其存在數天而不消失。另外,現今的儲氫材料皆需要低溫或高壓才可達成一定的儲氫率,若可將奈米氣泡與儲氫材料相互結合,或可為一改善其儲氫能力的方法。
本研究首先以水膠形成微米等級的顆粒,並包覆奈米白金粒子作為觸媒,並以化學產氫的方式觀察水溶液與乘載白金之水膠球內擴散與氣泡生成的情形;另外也發展一化學製程,製作以修飾奈米白金粒之奈米石墨烯球殼複合材料,並以掃描式電子顯微鏡、動態光散射粒徑分析以及介達電位的量測來分析材料製備過程特性,並且引用穿透式電子顯微鏡濕式腔體的技術在有水溶液的環境中原位觀察該觸媒產生氫氣形成的奈米氣泡相關現象。研究與討論奈米氣泡在奈米觸媒上的形成、反應機制,以及包覆觸媒進行高密度儲氫的過程。
Hydrogen has been an important energy source in the field of green energy. This research focuses on the hydrogen gas as nanobubbles, which are stabilized since the large Y-L pressure difference between the bubble and the water environment. And this indicates a new method for hydrogen storage more convenient and energy-saving compared with the traditional hydrogen storage system, ie, high pressure steel vase and liquid hydrogen system. Furthermore, most of the hydrogen storage materials require a high pressure and low temperature to achieve nice storage capacities The combination of hydrogen nanobubbles and storage material may come up with new idea on the technology of hydrogen storage.
Firstly, this research use Pt-loaded micro alginate particle to demonstrate a substrate for hydrogen evolution and keep the bubble in micro-scale; Secondly, porous graphene nano-spheres around 100 nm and loaded with Pt nanoparticles are chemically synthesized. With scanning electron microscope for morphology analysis, dynamic light scattering and zeta potential measurement, the quality of the material is demonstrated. In-situ wet cell transmission electron microscope is applied for the observation of hydrogen nanobubbles generation from the platinum nanoparticle surface with the substrate of graphene nano-spheres. The discussion for the feasibility to realize the formation and interaction with graphene substrate is also included.
摘要 i
Abstract ii
誌謝 iii
總目錄 v
圖目錄 vii
表目錄 xi
第一章 緒論 1
1.1 前言 1
1.2 氫氣的產生方式 3
1.3 氫氣儲存技術 5
1.4 奈米氣泡 8
1.5 研究動機與目的 10
第二章 文獻回顧 12
2.1 儲氫碳材料與氫溢流現象(Spillover effect) 12
2.2 奈米石墨烯球殼 20
2.3 觸媒製備 24
2.3.1 貴金屬奈米顆粒懸浮液 24
2.3.2 貴金屬觸媒修飾 26
2.4 水膠與電噴灑(Electrospraying) 27
第三章 實驗設計 33
3.1 實驗規劃-水膠乘載奈米白金粒 33
3.2 觸媒、水膠溶液製備與電噴灑系統 34
3.3 實驗規劃-奈米石墨烯球殼承載奈米白金粒 37
3.4 氫氣泡的產生與觀察 43
3.5 實驗藥品與設備 46
3.5.1藥品 46
3.5.2儀器與設備、耗材 47
第四章 結果討論 51
4.1 電噴灑水膠球與白金分布 51
4.2 光學顯微鏡觀測水膠觸媒氣泡生成 56
4.3 奈米白金粒修飾於奈米石墨烯球殼 58
4.4 石墨烯球殼懸浮液的粒徑分析與介達電位 64
4.5 傅立葉轉換紅外光譜與拉曼光譜 66
4.6 穿透式電子顯微鏡濕式腔體氣泡觀測 68
第五章 結論 70
第六章 參考文獻 71
1. Chen, H.M., et al., Nano-architecture and material designs for water splitting photoelectrodes. Chemical Society Reviews, 2012. 41(17): p. 5654-5671.
2. Züttel, A., Materials for hydrogen storage, in Materials Today. 2003. p. 24-33.
3. Karkamkar, A., C. Aardahl, and T. Autrey, Recent developments on hydrogen release from ammonia borane. Material Matters, 2007. 2(2): p. 6-9.
4. Parker, J.L., P.M. Claesson, and P. Attard, Bubbles, cavities, and the long-ranged attraction between hydrophobic surfaces. The Journal of Physical Chemistry, 1994. 98(34): p. 8468-8480.
5. Lou, S.-T., et al., Nanobubbles on solid surface imaged by atomic force microscopy. Journal of Vacuum Science & Technology B, 2000. 18(5): p. 2573-2575.
6. Ishida, N., et al., Nano Bubbles on a Hydrophobic Surface in Water Observed by Tapping-Mode Atomic Force Microscopy. Langmuir, 2000. 16(16): p. 6377-6380.
7. Hampton, M.A. and A.V. Nguyen, Nanobubbles and the nanobubble bridging capillary force. Advances in Colloid and Interface Science, 2010. 154(1–2): p. 30-55.
8. Zhang, X.H., et al., Degassing and temperature effects on the formation of nanobubbles at the mica/water interface. Langmuir, 2004. 20(9): p. 3813-3815.
9. Borkent, B.M., et al., On the shape of surface nanobubbles. Langmuir, 2009. 26(1): p. 260-268.
10. Zhang, X.H., N. Maeda, and V.S. Craig, Physical properties of nanobubbles on hydrophobic surfaces in water and aqueous solutions. Langmuir, 2006. 22(11): p. 5025-5035.
11. Borkent, B.M., et al., Preferred sizes and ordering in surface nanobubble populations. Physical Review E, 2009. 80(3): p. 036315.
12. Seddon, J.R., et al., Surface bubble nucleation stability. Physical review letters, 2011. 106(5): p. 056101.
13. Ducker, W.A., Contact Angle and Stability of Interfacial Nanobubbles. Langmuir, 2009. 25(16): p. 8907-8910.
14. Zhang, X.H., et al., Removal of induced nanobubbles from water/graphite interfaces by partial degassing. Langmuir, 2006. 22(22): p. 9238-9243.
15. Brenner, M.P. and D. Lohse, Dynamic equilibrium mechanism for surface nanobubble stabilization. Phys Rev Lett, 2008. 101(21): p. 214505.
16. Liu, G. and V.S. Craig, Improved cleaning of hydrophilic protein-coated surfaces using the combination of Nanobubbles and SDS. ACS Appl Mater Interfaces, 2009. 1(2): p. 481-7.
17. Yürüm, Y., Hydrogen energy system: production and utilization of hydrogen and future aspects. Vol. 295. 1995: Springer Science & Business Media.
18. Rzepka, M., P. Lamp, and M. De la Casa-Lillo, Physisorption of hydrogen on microporous carbon and carbon nanotubes. The Journal of Physical Chemistry B, 1998. 102(52): p. 10894-10898.
19. Lee, S.M. and Y.H. Lee, Hydrogen storage in single-walled carbon nanotubes. Applied Physics Letters, 2000. 76(20): p. 2877-2879.
20. Liu, C., et al., Hydrogen storage in carbon nanotubes revisited. Carbon, 2010. 48(2): p. 452-455.
21. Novoselov, K.S., et al., Electric field effect in atomically thin carbon films. science, 2004. 306(5696): p. 666-669.
22. Arellano, J., et al., Density functional study of adsorption of molecular hydrogen on graphene layers. The Journal of Chemical Physics, 2000. 112(18): p. 8114-8119.
23. Lueking, A. and R.T. Yang, Hydrogen spillover from a metal oxide catalyst onto carbon nanotubes—implications for hydrogen storage. Journal of Catalysis, 2002. 206(1): p. 165-168.
24. Robell, A.J., E. Ballou, and M. Boudart, Surface diffusion of hydrogen on carbon. The Journal of Physical Chemistry, 1964. 68(10): p. 2748-2753.
25. Lachawiec, A.J., G. Qi, and R.T. Yang, Hydrogen storage in nanostructured carbons by spillover: bridge-building enhancement. Langmuir, 2005. 21(24): p. 11418-11424.
26. Wu, H.-Y., et al., DFT study of hydrogen storage by spillover on graphene with boron substitution. The Journal of Physical Chemistry C, 2011. 115(18): p. 9241-9249.
27. Kumar, R., et al., Nanohole-structured and palladium-embedded 3D porous graphene for ultrahigh hydrogen storage and CO oxidation multifunctionalities. ACS nano, 2015. 9(7): p. 7343-7351.
28. Parambhath, V.B., et al., Investigation of spillover mechanism in palladium decorated hydrogen exfoliated functionalized graphene. The Journal of Physical Chemistry C, 2011. 115(31): p. 15679-15685.
29. Divya, P. and S. Ramaprabhu, Hydrogen storage in platinum decorated hydrogen exfoliated graphene sheets by spillover mechanism. Physical Chemistry Chemical Physics, 2014. 16(48): p. 26725-26729.
30. Tozzini, V. and V. Pellegrini, Prospects for hydrogen storage in graphene. Physical Chemistry Chemical Physics, 2013. 15(1): p. 80-89.
31. Wang, L. and R.T. Yang, New sorbents for hydrogen storage by hydrogen spillover–a review. Energy & Environmental Science, 2008. 1(2): p. 268-279.
32. Gudarzi, M.M. and F. Sharif, Self assembly of graphene oxide at the liquid–liquid interface: A new route to the fabrication of graphene based composites. Soft Matter, 2011. 7(7): p. 3432-3440.
33. Cao, J., et al., Hollow graphene spheres self-assembled from graphene oxide sheets by a one-step hydrothermal process. Carbon, 2013. 56: p. 389-391.
34. Bogush, G., M. Tracy, and C. Zukoski, Preparation of monodisperse silica particles: control of size and mass fraction. Journal of non-crystalline solids, 1988. 104(1): p. 95-106.
35. Zhang, J., et al., Preparation of monodisperse polystyrene spheres in aqueous alcohol system. Materials Letters, 2003. 57(28): p. 4466-4470.
36. Shao, Q., et al., Synthesis and characterization of graphene hollow spheres for application in supercapacitors. Journal of Materials Chemistry A, 2013. 1(48): p. 15423-15428.
37. Wu, L., et al., Graphene-based hollow spheres as efficient electrocatalysts for oxygen reduction. Nanoscale, 2013. 5(22): p. 10839-10843.
38. Teranishi, T., I. Kiyokawa, and M. Miyake, Synthesis of monodisperse gold nanoparticles using linear polymers as protective agents. Advanced Materials, 1998. 10(8): p. 596-599.
39. Hirai, H., et al., Characterization of palladium nanoparticles protected with polymer as hydrogenation catalyst. Reactive and Functional Polymers, 1998. 37(1): p. 121-131.
40. Wei, T.C., C.C. Wan, and Y.Y. Wang, Poly(N-vinyl-2-pyrrolidone)-capped platinum nanoclusters on indium-tin oxide glass as counterelectrode for dye-sensitized solar cells. Applied Physics Letters, 2006. 88(10): p. 103122.
41. Karabanovas, D.V., Kvantinių taškų panaudojimas nanomedicinoje. 2012.
42. Slaughter, B.V., et al., Hydrogels in regenerative medicine. Advanced materials, 2009. 21(32‐33): p. 3307-3329.
43. Appel, E.A., et al., Self-assembled hydrogels utilizing polymer-nanoparticle interactions. Nat Commun, 2015. 6: p. 6295.
44. Bushetti, S., et al., Stimuli sensitive hydrogels: a review. Indian Journal of Pharmaceutical Education and Research, 2009. 43(3): p. 241-250.
45. Xu, Y., et al., Feasibility study of a novel crosslinking reagent (alginate dialdehyde) for biological tissue fixation. Carbohydrate Polymers, 2012. 87(2): p. 1589-1595.
46. Bugarski, B., et al., Electrostatic droplet generation: mechanism of polymer droplet formation. AIChE Journal, 1994. 40(6): p. 1026-1031.
47. Goosen, M.F., et al., Electrostatic Droplet Generation for Encapsulat ion of Somatic Tissue: Assessment of High‐Voltage Power Supply. Biotechnology progress, 1997. 13(4): p. 497-502.
48. Huang, Z.-M., et al., A review on polymer nanofibers by electrospinning and their applications in nanocomposites. Composites Science and Technology, 2003. 63(15): p. 2223-2253.
49. Park, H., et al., Fabrication of cross-linked alginate beads using electrospraying for adenovirus delivery. Int J Pharm, 2012. 427(2): p. 417-25.
50. Chu, B., Dynamic light scattering, in Soft Matter Characterization. 2008, Springer. p. 335-372.

 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *