|
1. Chen, H.M., et al., Nano-architecture and material designs for water splitting photoelectrodes. Chemical Society Reviews, 2012. 41(17): p. 5654-5671. 2. Züttel, A., Materials for hydrogen storage, in Materials Today. 2003. p. 24-33. 3. Karkamkar, A., C. Aardahl, and T. Autrey, Recent developments on hydrogen release from ammonia borane. Material Matters, 2007. 2(2): p. 6-9. 4. Parker, J.L., P.M. Claesson, and P. Attard, Bubbles, cavities, and the long-ranged attraction between hydrophobic surfaces. The Journal of Physical Chemistry, 1994. 98(34): p. 8468-8480. 5. Lou, S.-T., et al., Nanobubbles on solid surface imaged by atomic force microscopy. Journal of Vacuum Science & Technology B, 2000. 18(5): p. 2573-2575. 6. Ishida, N., et al., Nano Bubbles on a Hydrophobic Surface in Water Observed by Tapping-Mode Atomic Force Microscopy. Langmuir, 2000. 16(16): p. 6377-6380. 7. Hampton, M.A. and A.V. Nguyen, Nanobubbles and the nanobubble bridging capillary force. Advances in Colloid and Interface Science, 2010. 154(1–2): p. 30-55. 8. Zhang, X.H., et al., Degassing and temperature effects on the formation of nanobubbles at the mica/water interface. Langmuir, 2004. 20(9): p. 3813-3815. 9. Borkent, B.M., et al., On the shape of surface nanobubbles. Langmuir, 2009. 26(1): p. 260-268. 10. Zhang, X.H., N. Maeda, and V.S. Craig, Physical properties of nanobubbles on hydrophobic surfaces in water and aqueous solutions. Langmuir, 2006. 22(11): p. 5025-5035. 11. Borkent, B.M., et al., Preferred sizes and ordering in surface nanobubble populations. Physical Review E, 2009. 80(3): p. 036315. 12. Seddon, J.R., et al., Surface bubble nucleation stability. Physical review letters, 2011. 106(5): p. 056101. 13. Ducker, W.A., Contact Angle and Stability of Interfacial Nanobubbles. Langmuir, 2009. 25(16): p. 8907-8910. 14. Zhang, X.H., et al., Removal of induced nanobubbles from water/graphite interfaces by partial degassing. Langmuir, 2006. 22(22): p. 9238-9243. 15. Brenner, M.P. and D. Lohse, Dynamic equilibrium mechanism for surface nanobubble stabilization. Phys Rev Lett, 2008. 101(21): p. 214505. 16. Liu, G. and V.S. Craig, Improved cleaning of hydrophilic protein-coated surfaces using the combination of Nanobubbles and SDS. ACS Appl Mater Interfaces, 2009. 1(2): p. 481-7. 17. Yürüm, Y., Hydrogen energy system: production and utilization of hydrogen and future aspects. Vol. 295. 1995: Springer Science & Business Media. 18. Rzepka, M., P. Lamp, and M. De la Casa-Lillo, Physisorption of hydrogen on microporous carbon and carbon nanotubes. The Journal of Physical Chemistry B, 1998. 102(52): p. 10894-10898. 19. Lee, S.M. and Y.H. Lee, Hydrogen storage in single-walled carbon nanotubes. Applied Physics Letters, 2000. 76(20): p. 2877-2879. 20. Liu, C., et al., Hydrogen storage in carbon nanotubes revisited. Carbon, 2010. 48(2): p. 452-455. 21. Novoselov, K.S., et al., Electric field effect in atomically thin carbon films. science, 2004. 306(5696): p. 666-669. 22. Arellano, J., et al., Density functional study of adsorption of molecular hydrogen on graphene layers. The Journal of Chemical Physics, 2000. 112(18): p. 8114-8119. 23. Lueking, A. and R.T. Yang, Hydrogen spillover from a metal oxide catalyst onto carbon nanotubes—implications for hydrogen storage. Journal of Catalysis, 2002. 206(1): p. 165-168. 24. Robell, A.J., E. Ballou, and M. Boudart, Surface diffusion of hydrogen on carbon. The Journal of Physical Chemistry, 1964. 68(10): p. 2748-2753. 25. Lachawiec, A.J., G. Qi, and R.T. Yang, Hydrogen storage in nanostructured carbons by spillover: bridge-building enhancement. Langmuir, 2005. 21(24): p. 11418-11424. 26. Wu, H.-Y., et al., DFT study of hydrogen storage by spillover on graphene with boron substitution. The Journal of Physical Chemistry C, 2011. 115(18): p. 9241-9249. 27. Kumar, R., et al., Nanohole-structured and palladium-embedded 3D porous graphene for ultrahigh hydrogen storage and CO oxidation multifunctionalities. ACS nano, 2015. 9(7): p. 7343-7351. 28. Parambhath, V.B., et al., Investigation of spillover mechanism in palladium decorated hydrogen exfoliated functionalized graphene. The Journal of Physical Chemistry C, 2011. 115(31): p. 15679-15685. 29. Divya, P. and S. Ramaprabhu, Hydrogen storage in platinum decorated hydrogen exfoliated graphene sheets by spillover mechanism. Physical Chemistry Chemical Physics, 2014. 16(48): p. 26725-26729. 30. Tozzini, V. and V. Pellegrini, Prospects for hydrogen storage in graphene. Physical Chemistry Chemical Physics, 2013. 15(1): p. 80-89. 31. Wang, L. and R.T. Yang, New sorbents for hydrogen storage by hydrogen spillover–a review. Energy & Environmental Science, 2008. 1(2): p. 268-279. 32. Gudarzi, M.M. and F. Sharif, Self assembly of graphene oxide at the liquid–liquid interface: A new route to the fabrication of graphene based composites. Soft Matter, 2011. 7(7): p. 3432-3440. 33. Cao, J., et al., Hollow graphene spheres self-assembled from graphene oxide sheets by a one-step hydrothermal process. Carbon, 2013. 56: p. 389-391. 34. Bogush, G., M. Tracy, and C. Zukoski, Preparation of monodisperse silica particles: control of size and mass fraction. Journal of non-crystalline solids, 1988. 104(1): p. 95-106. 35. Zhang, J., et al., Preparation of monodisperse polystyrene spheres in aqueous alcohol system. Materials Letters, 2003. 57(28): p. 4466-4470. 36. Shao, Q., et al., Synthesis and characterization of graphene hollow spheres for application in supercapacitors. Journal of Materials Chemistry A, 2013. 1(48): p. 15423-15428. 37. Wu, L., et al., Graphene-based hollow spheres as efficient electrocatalysts for oxygen reduction. Nanoscale, 2013. 5(22): p. 10839-10843. 38. Teranishi, T., I. Kiyokawa, and M. Miyake, Synthesis of monodisperse gold nanoparticles using linear polymers as protective agents. Advanced Materials, 1998. 10(8): p. 596-599. 39. Hirai, H., et al., Characterization of palladium nanoparticles protected with polymer as hydrogenation catalyst. Reactive and Functional Polymers, 1998. 37(1): p. 121-131. 40. Wei, T.C., C.C. Wan, and Y.Y. Wang, Poly(N-vinyl-2-pyrrolidone)-capped platinum nanoclusters on indium-tin oxide glass as counterelectrode for dye-sensitized solar cells. Applied Physics Letters, 2006. 88(10): p. 103122. 41. Karabanovas, D.V., Kvantinių taškų panaudojimas nanomedicinoje. 2012. 42. Slaughter, B.V., et al., Hydrogels in regenerative medicine. Advanced materials, 2009. 21(32‐33): p. 3307-3329. 43. Appel, E.A., et al., Self-assembled hydrogels utilizing polymer-nanoparticle interactions. Nat Commun, 2015. 6: p. 6295. 44. Bushetti, S., et al., Stimuli sensitive hydrogels: a review. Indian Journal of Pharmaceutical Education and Research, 2009. 43(3): p. 241-250. 45. Xu, Y., et al., Feasibility study of a novel crosslinking reagent (alginate dialdehyde) for biological tissue fixation. Carbohydrate Polymers, 2012. 87(2): p. 1589-1595. 46. Bugarski, B., et al., Electrostatic droplet generation: mechanism of polymer droplet formation. AIChE Journal, 1994. 40(6): p. 1026-1031. 47. Goosen, M.F., et al., Electrostatic Droplet Generation for Encapsulat ion of Somatic Tissue: Assessment of High‐Voltage Power Supply. Biotechnology progress, 1997. 13(4): p. 497-502. 48. Huang, Z.-M., et al., A review on polymer nanofibers by electrospinning and their applications in nanocomposites. Composites Science and Technology, 2003. 63(15): p. 2223-2253. 49. Park, H., et al., Fabrication of cross-linked alginate beads using electrospraying for adenovirus delivery. Int J Pharm, 2012. 427(2): p. 417-25. 50. Chu, B., Dynamic light scattering, in Soft Matter Characterization. 2008, Springer. p. 335-372.
|