帳號:guest(3.142.199.191)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):劉陶鈞
作者(外文):Liu, Tao-Chun
論文名稱(中文):可撓曲微型直接甲醇燃料電池
論文名稱(外文):Flexible Mini-Direct Methanol Fuel Cell
指導教授(中文):曾繁根
王本誠
指導教授(外文):Tseng, Fan-Gang
Wang, Pen-Cheng
口試委員(中文):葉宗洸
薛康琳
口試委員(外文):Yeh, Tsung-Kuang
Hsueh, Kan-Lin
學位類別:碩士
校院名稱:國立清華大學
系所名稱:工程與系統科學系
學號:104011542
出版年(民國):106
畢業學年度:105
語文別:中文
論文頁數:97
中文關鍵詞:可撓曲燃料電池PDMS甲醇
外文關鍵詞:flexiblefuel cellPDMSmeth
相關次數:
  • 推薦推薦:0
  • 點閱點閱:396
  • 評分評分:*****
  • 下載下載:9
  • 收藏收藏:0
有鑑於質子交換膜燃料電池 (Proton Exchange Membrane Fuel Cell, PEMFC)以氫氣為燃料,不利儲存與攜帶,因此本研究主要發展可撓曲微型直接甲醇燃料電池 (Direct Methanol Fuel Cell, DMFC),並應用於未來的穿戴式電子設備。本實驗首先將商用觸媒配製成漿料,以噴塗方式將觸媒層乘載於碳布上,接著分析不同觸媒與Ionomer比例之電化學性質,結果顯示Pt/C與Ionomer比例為18:1時有最佳的效能,其電化學活性面積 (Electrochemical catalyst surface activity, ECSA)為417.80 cm2/mg,質量活性 (mass activity)為51.05 A/g,以此比例進行Pt-Ru/C的電化學分析後,可以發現其If/Ib為3.41,證實二元觸媒可改善CO毒化的問題,經由SEM表面分析,得知觸媒表面皆有團聚現象發生,推測是觸媒效能不佳;接著進行DMFC單電池測試,結果在水平式並在常溫下操作以2 M甲醇,流量為0.5 sccm的效能最佳,其輸出功率為7 mW/cm2;接著以自行設計的PMMA模具進行單電池測試,氧氣採被動式進料,最高效能為1.6 mW,其開路電位為0.4 V,主要是甲醇洩漏造成混合電位發生;為了改善觸媒團聚現象,透過觸媒乘載量下降再次進行商用單電池量測,發現輸出功率提升至20 mW/cm2;研究最後以自行設計的PDMS模具進行單電池測試,氧氣採被動式進料,最高效能為1.8 mW,其開路電位為0.554 V,另外在曲率半徑為2吋 (5.08 cm)與1吋 (2.54 cm)下的輸出功率分別為0.708 mW以及0.656 mW,結果顯示封裝仍是需要克服的問題。
PEMFC uses H2 as fuel, this kind of gas is hard to storage and transport, so we develop flexible DMFC and apply on wearable electronic devices. In this study, catalyst ink was prepared by commercial catalyst. Different proportions of Pt/C catalyst and ionomer were prepared and analyzed by electrochemical method. The result shown that 18:1 is the best proportion, electrochemical catalyst surface activity, and mass activity was 417.80 cm2/mg and 51.05 A/g, respectively. Using this proportion on Pt-Ru/C, the result indicated that binary catalyst can improve CO poisoning effect and the If/Ib value was 3.41. From the SEM images, the catalyst surface shown agglomeration, it may lower the catalyst activity. Single cell tested in room temperature and horizontal mode shown the best performance which was 7 mW/cm2 by 2 M methanol, the flow rate was 0.5 sccm. Then we did further, using PMMA as single cell structure which was designed by our-self. The O2 was air-breathing mode, and the highest performance was 1.6 mW, open circuit voltage was 0.4 V because of methanol leakage then occurred mix potential effect. In order to overcome catalyst agglomeration, the loading of catalyst was decreased then tested the single cell again, the result shown that the performance was enhanced to 20 mW/cm2. Finally, PDMS was used as single cell structure which was designed by our-self as well. The O2 was air-breathing mode, and the highest performance was 1.8 mW, open circuit voltage was 0.554 V. In addition, when single cell tested in different curvature radius which were 2 inch (5.08 cm) and 1 inch (2.54 cm), the performance were 0.708 mW and 0.656 mW, respectively. However, the package problem still needs to overcome.
摘要 i
Abstract ii
致謝 iii
總目錄 iv
圖目錄 ix
表目錄 xiv
第一章 緒論 1
1.1 前言 1
1.2 研究動機與目的 2
第二章 文獻回顧 5
2.1 燃料電池簡介 5
2.2 直接甲醇燃料電池 7
2.3 直接甲醇燃料電池結構 8
2.3.1 質子交換膜 (Proton Exchange Membrane) 8
2.3.2 觸媒層 (Catalyst Layer, CL) 10
2.3.3 氣體擴散層 (Gas Diffusion Layer, GDL) 11
2.3.4 單雙極板 (Unipolar& Bipolar Plate) 12
2.3.5 周邊輔助系統 (Balance of Plant, BOP) 12
2.4 直接甲醇燃料電池工作原理 12
2.5 直接甲醇燃料電池之極化現象 14
2.5.1 甲醇穿越 (Methanol Crossover) 15
2.5.2 活性極化 (Active Polarization) 15
2.5.3 歐姆極化 (Ohmic Polarization) 16
2.5.4 濃度極化 (Concentration Polarization) 16
2.6 被動式直接甲醇燃料電池 16
2.7 可撓曲燃料電池 17
2.8 操作方向對電池效能之影響 20
2.9 流道設計對電池效能之影響 22
2.10電流蒐集層設計對電池效能之影響 23
2.11 有機矽烷修飾方式 24
第三章 實驗方法 28
3.1 實驗藥品與耗材 28
3.2 實驗設備 29
3.3 實驗步驟 30
3.4 實驗原理 30
3.4.1 電化學分析 30
3.4.2 硫酸測試 (Sulfuric acid test) 31
3.4.3 甲醇測試 (Methanol oxidation test) 33
3.4.4 電子槍蒸鍍系統 (E-bean) 34
3.4.5 反應離子蝕刻機 (RIE) 34
3.4.6 掃描式電子顯微鏡 (SEM) 34
3.4.7 吸附性測試原理 35
3.4.8 燃料電池測試機台 36
3.5 觸媒催化性分析 36
3.6 觸媒表面形貌分析 38
3.7 單電池測試 (Single Cell Test) 38
3.7.1 膜電極組 (Membrane Electrode Assembly, MEA) 39
3.7.2 膜電極組壓合 40
3.7.3 單電池極化掃描 40
3.8 壓克力單電池測試 (PMMA Single Cell Test) 41
3.8.1 壓克力模組設計與製作 41
3.8.2 壓克力單電池極化掃描 43
3.9 PDMS可撓曲單電池測試 (PDMS Single Cell Test) 44
3.9.1 第一代PDMS模組設計與製作 44
3.9.2 第二代PDMS模組設計與製作 46
3.9.3 PDMS可撓曲單電池極化掃描 49
第四章 結果與討論 51
4.1 20 % Pt/C商用觸媒電化學分析結果 51
4.1.1 20 % Pt/C商用觸媒硫酸測試 51
4.1.2 20 % Pt/C商用觸媒甲醇測試 52
4.2 40 % Pt/C商用觸媒電化學分析結果 53
4.2.1 不同Ionomer比例之40 % Pt/C商用觸媒硫酸測試 53
4.2.2不同Ionomer比例之40 % Pt/C商用觸媒甲醇測試 54
4.3 40 % Pt-Ru/C商用觸媒電化學分析結果 55
4.3.1 40 % Pt-Ru /C商用觸媒硫酸測試 55
4.3.2 40 % Pt-Ru /C商用觸媒甲醇測試 56
4.4 觸媒微影像分析 58
4.5 以MPTMS對PMMA基材表面修飾 59
4.5.1 不同-OH基修飾方式對PMMA附著性之影響 61
4.5.2不同電暈時間對PMMA附著性之影響 61
4.5.3 不同蒸鍍金膜厚度對PMMA附著性之影響 62
4.5.4 不同MPTMS浸泡時間對PMMA附著性之影響 63
4.5.5 加熱PMMA基材對PMMA附著性之影響 64
4.6 Au/PMMA之電性量測 65
4.7 單電池極化掃描測試 65
4.8 壓克力單電池極化掃描測試 68
4.9 不同-OH基修飾方式對PDMS附著性之影響 70
4.10 Au/PDMS流道板兼電流蒐集層之埋管方式 72
4.10.1 PDMS側向機械鑽孔埋管 72
4.10.2 壓克力母模模具側向埋管 74
4.11 Au/PDMS之電性量測 75
4.12 第一代PDMS可撓曲單電池極化曲線掃描 76
4.13 第二代PDMS可撓曲單電池極化曲線掃描 81
4.13.1 不同測試方向對單電池效能之影響 85
4.13.2 不同撓曲程度對單電池效能之影響 86
第五章 結論 90
第六章 未來工作 92
參考文獻 93
[1] Statistical Review of World Energy, British Petroleum, 2012.
[2] R. Padbury, X. Zhang, Lithium Oxygen batteries Limiting factors that affect performance, Journal of Power Sources, Vol. 196, pp. 4436-4444, 2011.
[3] P.P. Kundu, K. Dutta, 6 – Hydrogen fuel cells for portable applications, Compendium of Hydrogen Energy, Vol. 4, pp. 111-131, 2016.
[4] Sam Koohi-Kamali, V.V. Tyagi, N.A. Rahim, N.L. Panwar, H. Mokhlis, Emergence of energy storage technologies as the solution for reliable operation of smart power systems: A review, Renewable and Sustainable Energy Reviews, Vol.25, pp. 135-165, 2013.
[5] R. V. Helmolt, U. Eberle, Fuel cell vehicles: Status 2007, Journal of Power Sources, Vol. 165, pp. 833-843, 2007.
[6] U. Eberle, G. Arnold, R. von Helmolt, Hydrogen storage in metal–hydrogen systems and their derivatives, Journal of Power Sources, Vol. 154, pp. 456-460, 2006.
[7] B. Bogdanovic, M. Schwickardi, Ti-doped alkali metal aluminium hydrides as potential novel reversible hydrogen storage materials, Journal of Alloys and Compounds, pp. 253-254, 1997.
[8] B. Bogdanovic, R. A. Brandb, A. Marjanovića, M. Schwickardia, J. Töllea, Metal-doped sodium aluminium hydrides as potential new hydrogen q storage materials, Journal of Alloys and Compounds, Vol. 302, pp. 36-58, 2000.
[9] S.C. Kelley, G.A. Deluga, W.H. Smyrl, Miniature fuel cells fabricated on silicon substrates, AIChE Journal, Vol. 48, pp. 1071-1082, 2002.
[10] K. Shah, W. C. Shin, R. S. Besser, Novel microfabrication approaches for directly patterning PEM fuel cell membranes, Journal of Power Sources, Vol. 123, pp. 172-181, 2003.
[11] Z. Y. Xiao, G. H. Yan, C. H. Feng , Philip C. H. Chan, I-Ming Hsing, A silicon-based fuel cell micro power system using a microfabrication technique, Journal of Micromechanics and Microengineering, Vol. 16, pp. 2014-2020, 2006.
[12] M. Shen, S. Walter, M. A. M. Gijs, Monolithic micro-direct methanol fuel cell in polydimethylsiloxane with microfluidic channel-integrated Nafion strip, Journal of Power Sources, Vol. 193, pp. 761-765, 2009.
[13] O. Z. Sharaf, M. F. Orhan, An overview of fuel cell technology: Fundamentals and applications, Renewable and Sustainable Energy Reviews, Vol. 32, pp. 810-853, 2014.
[14] A. Tesfai, J. T. S. Irvine, 4.10-Solid Oxide Fuel Cells: Theory and Materials, Comprehensive Renewable Energy, pp.261-276, 2012.
[15] A. Manthiram, X. Zhao, W. Li, 11 – Developments in membranes, catalysts and membrane electrode assemblies for direct methanol fuel cells (DMFCs), Functional Materials for Sustainable Energy Applications, pp. 312-369, 2012.
[16] Ranjan K. Mallick, Shashikant B. Thombre, Naveen K. Shrivastava, A critical review of the current collector for passive direct methanol fuel cells, Journal of Power Sources, Vol. 285, pp. 510-529, 2015.
[17] Membranes for artificial photosynthesis, SEGURIDAD y Medio Ambiente, 2012.
[18] L. Carrette, K. A. Friedrich, U. Stimming, Fuel Cells – Fundamentals and Applications, Fuel Cells, Vol. 1, pp. 5-39, 2001.
[19] M. Uchida, Y. Aoyama, M. Tanabe, N. Yanagihara, N. Eda, A. Ohta, Influences of Both Carbon Supports and Heat - Treatment of Supported Catalyst on Electrochemical Oxidation of Methanol, Journal of The Electrochemical Society, Vol. 142, pp. 2572-2576, 1995.
[20] M. Naraghi, Carbon Nanotubes -Growth and Applications, InTech, 2011.
[21] S. Yousefi, M. Zohoor, Conceptual design and statistical overview on the design of a passive DMFC single cell, Hydrogen Energy, Vol. 39, pp. 5972-5980, 2014.
[22] A. Faghri, Z. Guo, An innovative passive DMFC technology, Applied Thermal Engineering, Vol. 28, pp. 1614-1622, 2008.
[23] S. Tominaka, H. Nishizeko, J. Mizuno, T. Osaka, Bendable fuel cells: on-chip fuel cell on a flexible polymer substrate, Energy & Environmental Science, No. 2, pp. 1074-1077, 2009.
[24] T. Ito, K. Kimura, M. Kunimatsu, Characteristics of micro DMFCs array fabricated on flexible polymeric substrate, Electrochemistry Communications, No. 8, pp. 973-976, 2006.
[25] I. H. Chang, M. H. Lee, J.H. Lee, Y. S. Kim, S. W. Cha, Air-breathing Flexible Polydimethylsiloxane (PDMS)-based Fuel Cell, International Journal Of Precision Engineering And Manufacturing, Vol. 14, No. 3, pp. 501-504, 2013.
[26] W. J. Lee, An Integrated and Microstructured Flexible Hydrogen Fuel Cell, 2015.
[27] W. Yuan, Y. Tang, X. J. Yang, B. Liu, Z. P. Wan, Structural diversity and orientation dependence of a liquid-fed passive air-breathing direct methanol fuel cell, Vol. 37, pp. 9298-9313, 2012.
[28] R. Chen, T. S. Zhao, J. G. Liu, Effect of cell orientation on the performance of passive direct methanol fuel cells, Journal of Power Sources, Vol. 157, pp. 351-357, 2006.
[29] V. B. Oliveiraa, C. M. Rangel, A. M. F. R. Pintoa, Effect of anode and cathode flow field design on the performance of a direct methanol fuel cell, Chemical Engineering Journal, Vol. 157, pp. 174-180, 2010.
[30] K. Scott, W. M. Taama, P. Argyropoulos, Material aspects of the liquid feed direct methanol fuel cell, Journal of Applied Electrochemistry, Vol. 28, pp. 1389-1397, 1998.
[31] K. Tüber, A. Oedegaard, M. Hermann, C. Hebling, Investigation of fractal flow fields in portable proton exchange membrane and direct methanol fuel cells, Journal of Power Sources, Vol. 131, pp.175-181, 2004.
[32] Y.D. Kuana, J. Y. Chang, S. M. Lee, Experimental investigation of the effect of free openings of current collectors on a direct methanol fuel cell, Journal of Power Sources, Vol. 196, pp. 717-728, 2011.
[33] P. C. Wang, L. H. Liu, D. A. Mengistie, K. H. Li, B. J. Wen, T. S. Liu, C. W. Chu, Transparent electrodes based on conducting polymers for display applications, Displays, Vol. 34, pp. 301-304, 2013.
[34] I. Byun1, A. W. Coleman, B. Kim, Transfer of thin Au films to polydimethylsiloxane (PDMS) with reliable bonding using (3-mercaptopropyl)trimethoxysilane (MPTMS) as a molecular adhesive, Journal of Micromechanics and Microengineering, Vol. 23, No. 8, 2013.
[35] S. Thomas, Marcia, D. S. Scott, W. Hafele, Fuel Cells: Green Power, 2006.
[36] J. Y. Sun, J. S. Huang, Y. X. Cao, X. G. Zhang, Hydrothermal synthesis of Pt-Ru/MWCNTs and its electrocatalytic properties for oxidation of methanol, International Journal of Electrochemical Science, Vol. 2, pp. 64-71, 2007.
[37] CHUANHUA PRECISION, www.chuanhua.com.tw.
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *