帳號:guest(3.145.73.196)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):賴科維
作者(外文):Lai, Ke-Wei
論文名稱(中文):應力分析與CFD雙向耦合之流沖振動(FIV)模式建立
論文名稱(外文):Developing Two-way Coupling Method of CFD/Stress Analysis for Flow-induced Vibration
指導教授(中文):馮玉明
林志宏
指導教授(外文):Ferng, Yu-ming
Lin, Chih-Hung
口試委員(中文):白寶實
曾永信
口試委員(外文):Pei, Bau-Shei
Tseng, Yung-Shin
學位類別:碩士
校院名稱:國立清華大學
系所名稱:工程與系統科學系
學號:104011532
出版年(民國):106
畢業學年度:105
語文別:中文
論文頁數:60
中文關鍵詞:流沖振動單向流固耦合雙向流固耦合
外文關鍵詞:Fluid-induced vibrationOne way FSITwo way FSI
相關次數:
  • 推薦推薦:0
  • 點閱點閱:137
  • 評分評分:*****
  • 下載下載:11
  • 收藏收藏:0
早期由於電腦的限制,侷限了吾人對核能安全的分析,所以只能夠以CFD模擬流場來分析核能安全此為單向流固耦合(one way coupling)。近年來,由於電腦運算能力的提升,雙向流固耦合(two way coupling)的分析方法已變為可能,使得流沖振動等分析更接近真實的物理現象。此外,由於大眾對於核能安全的需求增加,流固耦合分析慢慢被重視,國際學者紛紛投入大量資源於研究流固耦合領域。本研究分析流管在橫流(cross flow)內的流場情形,並使用單向流固耦合與雙向流固耦合的方法來比較其結果,分析單向與雙向流固耦合之優缺點,並評估其保守性,最後,將建立的流固耦合分析模式應用於核電廠之組件,例如:殼管式熱交換器,並以三乘三四方排列之模型進行分析,完整評估模擬之安全性與保守性,增加核電廠安全評估的完整性。本篇研究已模擬了單根與雙根圓柱的流固耦合之流沖振動現象,並比較不同的紊流模型之流沖振動現象,選用適合的紊流模型,且已完成模式的校驗確保此分析模式的可行性。在應用方面,也評估了三乘三圓柱陣列之安全性與保守性。
In recent years, the fluid-solid interaction (FSI) is crucial problems in the safety analysis and structure design of industry, for example, steam generators, off shore wind turbines, and submarine communication cables. Vortex-induced vibration is a common problem in the FSI.
In this research, the simulation of a cross flow over single cylinder and two tandem cylinders with one way coupling and two way coupling has been conducted.
The results show the lift and drag coefficient calculated by two way coupling is similar to the results of one way coupling. Different turbulence models for the simulation have been tested too. Furthermore, nine cylinders in square arrangement have been simulated. The result shows that LES model can simulate FIV well at low Reynolds number and cylinders at the downstream should be noted.
摘要 I
Abstract II
目錄 III
圖目錄 V
表目錄 VIII
第一章 緒論 1
1.1 研究背景 1
1.2 文獻回顧 1
1.3 研究目的與流程 4
1.4 分析工具與流程 6
第二章 流固耦合模擬分析 8
2.1 流固耦合現象介紹 8
2.2 統御方程式與紊流模式 11
2.3 單根圓柱模型 16
2.3.1 模型建立 16
2.3.2 網格建立與靈敏度分析 17
2.3.3 邊界條件與紊流模式不準度 18
2.4 兩根圓柱陣列 18
2.4.1 模型建立 18
2.4.2 網格建立與靈敏度分析 19
2.4.3 邊界條件與紊流模式 20
2.5 九根圓柱陣列 21
2.5.1 模型建立 21
2.5.2 網格建立 21
2.5.3 邊界條件與紊流模式 23
第三章 結果與討論 24
3.1 單根圓柱 24
3.2 雙根圓柱 36
3.3 3x3圓柱陣列 41
第四章 結論與建議 50
參考文獻 51

1. Bishop, R.E.D., and Hassan, A.Y., 1964, “The lift and Drag Forces on a Circular Cylinder in a Flowing Field“, Proc. Roy. Soc.(London), Ser.A, 277, 51-75.
2. Koopmann, G. H. 1967 The vortex wakes of vibrating cylinders at low Reynolds numbers. Journal of Fluid Mechanics 28, 501-512.
3. Feng, C. C. 1968 The measurement of vortex-induced e!ects in #ow past stationary and oscillating circular and D-section cylinders. M.A.Sc. Thesis, University of British Columbia, Vancouver, B. C., Canada.
4. Gharib M. R., Shiels, D., Gharib, M., Leonard, A. &Roshko, A. 1997 Exploration of flow-induced vibration at low mass and damping. In Proceedings of fourth International Symposium on Fluid-Structure Interaction, Aeroelasticity, Flow-Induced Vibration, and Noise (eds M. P. PamKdoussiset al.) Vo. 1, pp. 75-81. New York: ASME
5. Khalak, A.&WILLIAMSON, C. H. K. 1997 Fluid forces and dynamics of a hydroelastic structure with very low mass and damping. Journal of Fluids and Structures 11, 973-982.
6. Brika, D. & Laneville, A. 1993 Vortex-induced vibrations of a long flexible circular cylinder. J. Fluid Mech. 250, 481–508
7. M. Hurlbut et al., “Numerical solution for laminar two dimensional flow about a cylinder oscillating in a uniform stream,”ASME J. of Fluids Eng., 104, 214(1982)
8. S. Mittlal, T.E. Tezduyar, “A finite element study of incompressible flows past oscillating cylinders and airfoils,”Int. J. for Numercial Methods in Fluids, 15, 1073(1992)
9. T. Ichioka et al., “Two-dimensional flow analysis of fluid structure interaction around a tube row and tube arrays in cross-flow,”3rdICONE, Kyoto, 1995
10. V. Kassera, K. Strohmeier, “Simulation of tube bundle vibrations induced by cross flow,”J. of Fluids Structures, 11, 1997
11. So RMC, Liu Y, Chan ST, Lam K. Numerical studies of a freely vibrating cylinder
12. Xiangxi Han, Wei Lin, Youhong Tang, Chengbi Zhao, Karl Sammut, “Effects of natural frequency ratio on vortex-induced vibrationof a cylindrical structure,2015”,JournalofComputers& Fluids, Volume 110, 2015 ,pp62-76
13. S. Pasto,”Vortex-induced vibrations of a circular cylinderin laminar and turbulent flows” Journal of Fluids and Structures 24 (2008) 977–993
14. Eric Williams, Andrew Gerber, Marwan Hassan,“Simulation of Cross Flow Induced Vibration”,2004
15. R. Franke ,W. Rodi ,“Calculation of Vortex Shedding Past a Square Cylinder with Various Turbulence Models “,1991
16. J. Smagorinsky, 1963, “General Circulation Experiments with the Primitive Equations”, The basic experiment, Monthly Weather Rev. Vol.91 pp. 99-164
17. Desrdorff, J.W., 1973, “A Numerical Study of Three-Dimensional Turbulent Channel Flow at Large Reynolds Numbers”, J. Fluid Mech., Vol.41, 453-465
18. Moin, P., Kim, J., 1982, “Numerical Investigation of Turbulent Channel Flow”, J. 72Fluid Mech., Vol.118, 341-377
19. 葉爾翰,” Large Eddy Simulation of Flow over Circular Cylinder with Natural Coupling”,國立清華大學工程與系統科學系,碩士論文,2004
20. K. Schröder, H. Gelbe “Two- and three-dimensional CFD-simulation of flow-induced vibration excitation in tube bundles”, September 1999
21. Guilmineau E, QueuteyP,“Numerical simulation of vortex-induced vibration of a circular cylinder with low mass-damping in a turbulent flow.” J Fluid Mech ,2004
22. Meneghini, J.R., Saltara, F., Siqueira, C.L.R., Ferrari Jr., J.A., 2001. Numerical simulation of flow interference between two circular cylinders in tandem and side-by-side arrangements. Journal of Fluids and Structures 15, 327–350
23. Mizushima, J., Suehiro, N., 2005. Instability and transition of flow past two tandem circular cylinders. Physics of Fluids 17, 104107.
24. Tasaka, Y., Kon, S., Schouveiler, L., Gal, P.L., 2006. Hysteretic mode exchange in the wake of two circular cylinders in tandem. Physics of Fluids 18, 084104
25. Borazjani, I., Sotiropoulos, F., 2009. Vortex-induced vibrations of two cylinders in tandem arrangement in the proximity–wake interference region. Journal of Fluid Mechanics 621, 321–364
26. P. Wais, Influence of fin thickness and winglet orientation on mass and thermal
efficiency of cross-flow heat exchanger, Appl. Therm. Eng. 102 (2016) 184–195.
27. Z.L. Han et al., “Flow-induced vibration of four circulation cylinders with square arrangement at low Reynolds numbers,”Ocean Eng., 96, 21(2015)
28. A. Arora, P.M.V. Subbarao, R.S. Agarwal, Development of parametric space for the ortex generator location for improving thermal compactness of an existing inline fin and tube heat exchanger, Appl. Therm. Eng. 98 (2016) 727–
29. J.D. Ji, P.Q. Ge, W.B. Bi, Numerical analysis on the combined flow induced vibration response of elastic tube bundle in heat exchanger, J. Xi’an Jiaotong Univ. 49 (9) (2015) 24–29
30. J.D. Ji, P.Q. Ge, W.B. Bi, Numerical analysis on flow-induced vibration responses of elastic tube bundle, J. Vib. Shock 35 (6) (2016) 80–84
31. Lienhard, J.H., 1966, “Synopsis of Lift, Drag and Vortex Frequency Data for Rigid Circular Cylinders”, Washington State University College of Engineering, Research Division Bulletin, 300
32. M.J. Pettigrew , Collette E. Taylor “ Flow-induced vibration : recent findings and open questions ”Nuclear Engineering and Design 185(2-3):249-276 , October 1998
33. Ravi ChaithanyaMysa, AbouzarKaboudian, Rajeev Kumar Jaiman,”On the origin of wake-induced vibration in two tandem circular cylinders at low Reynolds number”, Journal of Fluids and Structures 61 (2016) 76–98
34. Berger, E., and R. Wille (1972). "Periodic Flow Phenomena," Annual Review of Fluid Mechanics, Van Dyke, M., et al., editors, Palo Alto, CA, 1972, pp 313-340.
35. Li T, Zhang J, Zhang W. Nonlinear characteristics of vortex-induced vibration at low Reynolds number. CommunNonlinSciNumerSimul 2011;16:2753–71.
36. DEHKORDI BehzadGhadiri, MOGHADDAMHesamSarvghad, JAFARIHamedHouri, “NUMERICAL SIMULATION OF FLOW OVER TWO CIRCULAR CYLINDERS IN TANDEM ARRANGEMENT”, Journal of Hydrodynamics, 2011, 23(1): 114-126
37. MENEGHINI J. R., SATARA F., “Numerical simulation of flow interference between two circular cylinders in tandem and side-by-side arrangements[J].”Journal of Fluids and Structures, 2001, 15(2): 327-350.
38. MAHIR N., ALTAC Z., “Numerical investigation of convective heat transfer in unsteady flow past two cylinders in tandem arrangements[J].” International Journal of Heat and Fluid Flow, 2008, 29(5): 1309-1318.
39. ANSYS. ANSYS system coupling guide; 2013
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *