帳號:guest(18.188.55.184)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):郭封均
作者(外文):Kuo, Feng-Jiun
論文名稱(中文):雙相攪拌流譜訊號處理發展與特性分析
論文名稱(外文):Developing Signal Process and Characteristic Analysis of Churn Two-Phase Flow
指導教授(中文):陳紹文
指導教授(外文):Chen, Shao-Wen
口試委員(中文):裴晉哲
鄭憶湘
口試委員(外文):Peir, Jin-Jhe
Cheng, Yi-Hsiang
學位類別:碩士
校院名稱:國立清華大學
系所名稱:工程與系統科學系
學號:104011522
出版年(民國):106
畢業學年度:105
語文別:中文
論文頁數:77
中文關鍵詞:雙相流攪拌流空泡分率
外文關鍵詞:Two-Phase FlowChurn FlowVoid Fraction
相關次數:
  • 推薦推薦:0
  • 點閱點閱:41
  • 評分評分:*****
  • 下載下載:11
  • 收藏收藏:0
在此研究中,以實驗方式研究垂直圓管上升氣水雙相流流譜量測與鑑別,利用壓力信號、差壓信號以及電導度信號所做量測信號的特性分析,並同時設有觀測段可供照相、攝影作為對比使用。目前尚未有完整偵測流譜信號的方法,故透過建立大量的實驗數據庫,並對實驗範圍內各種流譜進行流譜特性分析,期望能夠得到客觀的雙相流流譜鑑別方法用於非侵入式的感測器偵測。本研究將專注於攪拌流的流譜特性分析,顧名思義其流譜動態過程看似空氣與水流動過程有互相攪拌的行為,因此其物理特性相較其他流譜複雜,在過去的研究中鮮少有特別研究攪拌流譜的特性分析,著名的雙相流譜Taitel and Dukler以及Mishima and Ishii皆有區別攪拌流,但兩者的範圍有極大的差異,同時也說明了攪拌流譜在雙相流的複雜程度。
過去大部分學者認為攪拌流僅是彈狀流與環狀流的流轉轉換過程,但經詳細觀察,本研究的初步認為攪拌流應在流譜圖再細分為兩種流譜,此兩種的物理行為迥異,目前分別命名為低水流速攪拌流與高水流速攪拌流,首先低水流速攪拌流較為接近彈狀流與環狀流的轉換過程的中間流譜,行為單純隨著氣流速增加,泰勒氣泡逐漸增長至互相連接形成環狀流。後者物理行為更為複雜,本研究認為在高水流速攪拌流中除了變形泰勒氣泡與氣水混和段外,有一群中型氣泡的穩定存在,形狀不規則、空泡分率約小於0.65,其在流譜中的佔比會隨著氣、水比例不同變化,因此本研究特別發展信號分析方法,希望透過客觀的訊號分割三種不同流態,分別使用信號處理以及統計研究高水流速攪拌流的特性。
Two-phase flow in a vertical pipe can be divided into several flow patterns, such as bubbly flow, slug flow, churn flow, annular flow and wispy-annular flow with increasing gas superficial velocity, respectively. However, some of the transitions and/or definitions of flow regimes are still debating or unclear. Some researchers may consider that churn flow was just a transition of slug flow and annular flow. Actually, there is not only a lot of complicated interactions between water and gas, but also there are some unique characteristics for churn flow. To figure out the complicity of churn and annular flows as long as to understand the interactions between two phases among these flow regimes are indispensable.
In this study, the operating condition of adiabatic two phase flow experiment is at normal temperature and pressure. During the experiments, air and water flowed into a 30mm diameter, 5m height vertical pipe by controlling water and air volume flow rate. And several conductivity sensors and differential pressure sensors were used to record. In addition to signal, some photos and videos were token by high frame rate camera and high speed camcorder in the visualization region. A signal process for high water flow rate churn flow was developed successfully and the results of the signal process showed the distinguished characteristic of high water flow rate churn flow.
摘要 ii
Abtract iii
目錄 iv
圖目錄 vi
表目錄 x
符號說明 xi
第一章 緒論 1
1.1 前言 1
1.2 雙相流簡介 2
1.2.1 雙相流基本性質 2
1.2.2 流譜分類(flow regime/ flow pattern) 2
1.3 研究目的與方法 5
第二章 文獻回顧 7
2.1 攪拌流研究 7
2.2 彈狀流/攪拌流研究 13
2.3 環狀流/攪拌流研究 17
2.4 小結 18
第三章 實驗系統與實驗步驟 19
3.1 實驗設備 19
3.1.1 空氣供給系統 20
3.1.2 冷水供給系統 22
3.1.3 流譜測試段系統 23
3.1.4 量測信號系統 25
3.1.5 資料擷取系統 26
3.2 實驗流速範圍 26
3.3 實驗步驟 27
第四章 分析方法 29
4.1 空泡分率信號與驗證 29
4.2 機率密度分佈圖 32
4.3 PDF模組參數化 34
4.4 PDF雙峰模組參數化 37
4.5 PDF雙峰模組參數化流譜圖驗證 39
4.6 高水流速攪拌流之區域定義 41
4.7 攪拌流譜訊號處理 47
第五章 結果與討論 59
第六章 結論 71
第七章 參考文獻 73
1. Levy, S., Two-phase flow in complex systems. 1999.
2. Ghajar, A.J., Non-boiling heat transfer in gas-liquid flow in pipes - a tutorial. Journal of the Braz. Soc. of Mech. Sci. & Eng., 2005. 27: p. 46-73.
3. Chen, S.-W., et al., Experimental investigation and identification of the transition boundary of churn and annular flows using multi-range differential pressure and conductivity signals. Applied Thermal Engineering, 2016.
4. Wallis, G.B., Critical two-phase flow. International Journal of Multiphase Flow, 1980. 6: p. 97-112.
5. Hewitt, G.F., Churn and Wispy Annular Flow Regimes in Vertical Gas–Liquid Flows. Energy & Fuels, 2012. 26(7): p. 4067-4077.
6. Govan, A.H., et al., Flooding and churn flow in vertical pipes. International Journal of Multiphase Flow, 1991. 17: p. 27-44.
7. Barbosa, J.R., A.H. Govan, and G.F. Hewitt, Visualisation and modeling studies of churn flow in a vertical pipe. International Journal of Multiphase Flow, 2001. 27: p. 2105-2127.
8. Azzopardi, B.J. and E. Wren, What is entrainment in vertical two-phase churn flow? International Journal of Multiphase Flow, 2004. 30(1): p. 89-103.
9. Sawai, T., et al., Gas–liquid interfacial structure and pressure drop characteristics of churn flow. Experimental Thermal and Fluid Science, 2004. 28(6): p. 597-606.
10. Da Riva, E. and D. Del Col, Numerical simulation of churn flow in a vertical pipe. Chemical Engineering Science, 2009. 64(17): p. 3753-3765.
11. Wang, K., et al., A physical model for huge wave movement in gas–liquid churn flow. Chemical Engineering Science, 2012. 79: p. 19-28.
12. Cachard, F.D. and J.M. Delhaye, A slug-churn flow model for small-diameter airlift pumps. International Journal of Multiphase Flow, 1996. 22: p. 627-649.
13. Carvalho, J.R.F.G., Experimental study of the slug/churn flow transition in a single Taylor bubble. Chemical Engineering Science, 2006. 61(11): p. 3632-3642.
14. Chen, X.T. and J.P. Brill, Slug to churn transition in upward vertical two-phase flow. Chemical Engineering Science, 1997. 52: p. 4269-4272.
15. Brauner, N. and D. Barnea, slug/churn transition in upward gas-liquid flow. Chemical Engineering Science, 1986. 41: p. 159-163.
16. Watson, M.J. and G.F. Hewitt, Pressure effects on the slug to churn transition. International Journal of Multiphase Flow, 1999. 25: p. 1225-1241.
17. van ’t Westende, J.M.C., et al., On the role of droplets in cocurrent annular and churn-annular pipe flow. International Journal of Multiphase Flow, 2007. 33(6): p. 595-615.
18. Tibiriçá, C.B., F.J. do Nascimento, and G. Ribatski, Film thickness measurement techniques applied to micro-scale two-phase flow systems. Experimental Thermal and Fluid Science, 2010. 34(4): p. 463-473.
19. Andreussi, P., A.D. Donfrancesco, and M. Messia, An impedance method for the measurement of liquid hold-up in two-phase flow. International Journal of Multiphase Flow, 1988. 14: p. 777-785.
20. Coney, M.W.E., The theory and application of conductance probes for the measurement of liquid film thickness in two-phase flow. Physics E: Scientific Instruments, 1973. 6: p. 903-910.
21. Zhang, J., et al., Bubble characteristics in a developing vertical gas-liquid upflow using a conductivity probe. Transaction of the ASME, 2000. 122: p. 138-145.
22. Fossa, M., Design and performance of a conductance probe for measuring the liquid fraction in two-phase gas-liquid flows. Flow Measurement and Instrumentation, 1998. 9: p. 103-109.
23. Tsochatzidis, N.A., et al., A conductance probe for measuring liquid fraction in pipes and packed beds. International Journal of Multiphase Flow, 1992. 18: p. 653-667.
24. Dong, F., et al., Application of electrical resistance tomography to two-phase pipe flow parameters measurement. Flow Measurement and Instrumentation, 2003. 14(4-5): p. 183-192.
25. Wang, R., et al., Analytical estimation of liquid film thickness in two-phase annular flow using electrical resistance measurement. Applied Mathematical Modelling, 2012. 36(7): p. 2833-2840.
26. Costigan, G. and P.B. Whalley, Slug flow regime identification from dynamic void fraction measurement in vertical air-water flows. International Journal of Multiphase Flow, 1997. 23: p. 263-282.
27. Ma, Y.P., et al., Two simplified methods to determine void fractions for two-phase flow. Nuclear Technology, 1991. 94: p. 124-133.
28. Chen, S.-W., et al., Experimental investigation and identification of the transition boundary of churn and annular flows using multi-range differential pressure and conductivity signals. Applied Thermal Engineering, 2017. 114: p. 1275-1286.
29. Ishii, M., one-dimensional drift-flux model and constitutive equation for relative motion between phases in various two-phase flow regimes. 1977.
30. Keska, J.K. and B.E. Williams, Experimental compassion of flow pattern detection techniques for air-water mixture flow. Experimental Thermal and Fluid Science, 1999. 19: p. 1-12.
31. Owen C. Jones, J. and N. Zuber, The interrelation between void fraction fluctuations and flow patterns in two-phase flow. International Journal of Multiphase Flow, 1975. 2: p. 273-306.
32. Pozorski, J. and J.-P. Minier, Probability density function modeling of dispersed two-phase turbulent flows. Physical Review E, 1999. 59: p. 855-863.
33. Taitel, Y., D. Bornea, and A.E. Dukler, Modelling flow pattern transitions for steady upward gas liquid flowing vertical tubes. AIChE Journal, 1980. 26: p. 345-354.
34. Mishma, K. and M. Ishii, Flow regime transition criteria for upward two-phase flow in vertical tube. International Journal of Heat Mass Transfer, 1984. 27: p. 723-737.
35. Pelleg, D. and A.W. Moore. X-means: Extending K-means with Efficient Estimation of the Number of Clusters. in ICML. 2000.
36. Ramsey, S.A., et al., Uncovering a macrophage transcriptional program by integrating evidence from motif scanning and expression dynamics. PLoS computational biology, 2008. 4(3): p. e1000021.
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *