帳號:guest(18.223.172.180)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):洪功霖
作者(外文):Hong, Gong-Lin
論文名稱(中文):在鈷/錫銀/鈷對稱結構中熱遷移對焊錫微結構及介金屬化合物成長的影響
論文名稱(外文):Microstructure evolution and interfacial growth of intermetallic compound for Co/SnAg/Co structure under thermomigration
指導教授(中文):歐陽汎怡
指導教授(外文):Ouyang, Fan-Yi
口試委員(中文):陳智
吳子嘉
口試委員(外文):Chen, Chih
Wu, Albert T.
學位類別:碩士
校院名稱:國立清華大學
系所名稱:工程與系統科學系
學號:104011521
出版年(民國):106
畢業學年度:106
語文別:中文
論文頁數:83
中文關鍵詞:熱遷移無鉛銲錫CoSn3介金屬化合物溫度梯度擴散
外文關鍵詞:DiffusionThermomigrationCoSn3 intermetallic compoundTemperature gradientPb-free solder
相關次數:
  • 推薦推薦:0
  • 點閱點閱:79
  • 評分評分:*****
  • 下載下載:14
  • 收藏收藏:0
隨著科技的日新月異,消費者對電子產品的效能有更高的需求,3D-IC因故成為電子封裝的主流,微型化的效應使得散熱變得相當重要,因為焦耳熱效應產生過高的溫度會造成元件快速失效,而散熱的過程中又會在微小的電子元件內造成一定的溫度梯度,此溫度梯度亦會造成元素的熱遷移導致元件失效,所以在追趕更高效能的元件時,這些物理限制是我們需要研究並解決得議題。
因為許多人正提倡著鈷是一個理想的底層金屬薄膜 (under-bump metallization (UBM))材料替代者,因此我們取鈷/錫銀/鈷試片施加2220K/cm的熱梯度去觀察其熱遷移情形,由本研究發現鈷原子並不會受到此熱梯度的驅動而擴散,而在此熱梯度下擴散主宰元素是無鉛焊錫中的錫,當0-150小時的時候,錫原子受熱驅動不停往熱端擴散,在熱端造成了錫的擠出,並抑制了原本應該生成更快的介金屬化合物CoSn3 ,使得冷熱兩端的介金屬化合物厚度相差不遠,此情形與銅和鎳UBM材料會導致兩界面非對稱成長有明顯不同,隨著介金屬化合物快速變厚,溫度梯度小於誘發錫熱遷移的臨界梯度後,錫源子擠出的現象停止,去而代之的是CoSn3的快速生成,當CoSn3生成接近20μm左右會產生裂縫阻礙進一步的介金屬化合物成長。
To meet the demands of high performance and small feature sizes of electronic products, three-dimensional integrated circuit (3DIC) technology is proposed as a promising way to overcome Moore’s law. However, the miniaturization of electronic products may bring about the serious heat issues. Because the higher temperature induced by Joule heating effect will make the electronic products quickly fail. To effectively remove heat, a temperature gradient must be established across the solder joint ; the temperature gradient would also cause the thermomigration of elements, and it finally leads to failure in Pb-free microbumps. Therefore, it is critical to understand the behavior of thermomigration of microbump .
Cobalt has been regarded as a promising candidate for under bump metallization (UBM) material, In this study, a Co/SnAg/Co sandwich structure was used to investigate the microstructure evolution and interfacial reaction of IMC in solid-state micro-scale solders under a thermal gradient of 2220 K/cm.
The results found that Co atoms would not be driven by thermal gradient of 2220 K/cm, and the dominate diffusing species under this thermal gradient is Sn. Sn atoms were observed to move toward the hot end during test period between 0-150 h, leading to mass protrusion on the hot end and voids formation at the cold end. In addition, due to the protrusion of Sn on the hot end, the interface growth of CoSn3 at the hot end were retarded and no significant difference of IMC thickness was found at the hot and cold interface. With increasing thickness of IMC at both interfaces, temperature gradient gradually decreases. While the temperature gradient is lower than 1000 K/cm , thermomigration of Sn stopped and growth rate of IMC triggered by chemical potential gradient become fast.
Furthermore, due to fast growth of CoSn3 after 180 h,cracks were found at the interface between IMC and solder. These cracks further blocked the supply of Sn and further prevent the growth of IMC at the hot and cold end.
目錄
摘要 i
ABSTRACT ii
致謝 iii
目錄 iv
表格目錄 vi
圖目錄 vii
第一章 簡介 1
第二章 文獻回顧 3
2.1 三維立體封裝的問題 3
2.2 熱遷移 6
2.2.1 熱遷移的基礎原理 6
2.2.2 在覆晶焊錫中焦耳熱誘發溫度梯度 7
2.2.3 在無鉛焊錫中的熱遷移 11
2.3 UBMs 材料的熱遷移 14
2.4 錫鈷系統介面反應 19
2.4.1 錫鈷介面反應 19
2.4.2 錫鈷銅介面反應 23
2.5 動機 25
第三章 實驗過程 26
3.1 試片製備 26
3.2 鈷/錫銀/鈷(銅)熱遷移實驗的設置 26
3.3 鈷/錫銀/銅三明治結構熱遷移 27
3.4 等溫實驗設置 27
3.5 ANSYS WORKBENCH 模擬熱梯度分佈 28
3.6 奈米壓痕記號點 28
3.7 維克氏壓痕記號點 28
第四章 結果 31
4.1 鈷/錫銀/鈷(銅)三明治結構的溫度分佈模擬 31
4.2 等溫時效下鈷/錫銀/鈷樣品的微結構變化 34
4.3 溫度梯度下鈷/錫銀/鈷樣品的微結構變化等 44
4.4 溫度梯度下鈷/錫銀/銅樣品的成分變化 56
4.5 奈米壓痕記號點 64
第五章 討論 68
5.1 在鈷/錫銀/鈷試片中CoSn3受溫度梯度驅動下的成長機構 68
5.1.1 鈷/錫銀/鈷試片等溫實驗與熱遷移實驗的比較 68
5.1.2 鈷/錫銀/鈷熱遷移實驗中介金屬化合物成長機制 70
5.2 錫熱遷移的理論證明與計算 76
第六章 結論 78
1. Wang, C.-h. and C.-y. Kuo, Growth kinetics of the solid-state interfacial reactions in the Sn–Cu/Co and Sn/Co–Cu couples. Materials Chemistry and Physics, 2011. 130(1-2): p. 651-656.
2. Wang, C.-h., S.-e. Huang, and K.-t. Li, Inhibiting CoSn3 growth at the Sn/Co system by minor Zn addition. Intermetallics, 2015. 56: p. 68-74.
3. WenJun Zhu , Jiang Wang , HuaShan Liu , ZhanPeng Jin , WeiPing Gong , The interfacial reaction between Sn–Ag alloys and Co substrate. Materials Science and Engineering: A, 2007. 456(1-2): p. 109-113.
4. Pan, H.-C. and T.-E. Hsieh, Diffusion Barrier Characteristics of Electroless Co(W,P) Thin Films to Lead-Free SnAgCu Solder. Journal of The Electrochemical Society, 2011. 158(11): p. P123.
5. Sinn-Wen Chen, Tung-Kai Chen, Jui-Shen Chang, Chia-Ming Hsu, and Wei-An Chen, Interfacial Reactions in Sn-Ag/Co Couples. Journal of Electronic Materials, 2013. 43(2): p. 636-639.
6. Pan, H.-C. and T.-E. Hsieh, An Investigation of Diffusion Barrier Characteristics of an Electroless Co(W,P) Layer to Lead-Free SnBi Solder. Journal of Electronic Materials, 2011. 40(3): p. 330-339.
7. N. Tsyntsaru & G. Kaziukaitis & C. Yang & H. Cesiulis & H. G. G. Philipsen & M. Lelis & J.-P. Celis, Co-W nanocrystalline electrodeposits as barrier for interconnects. Journal of Solid State Electrochemistry, 2014. 18(11): p. 3057-3064.
8. Wang, C.-h., S.-e. Huang, and C.-w. Chiu, Influence of the P content on phase formation in the interfacial reactions between Sn and electroless Co(P) metallization on Cu substrate. Journal of Alloys and Compounds, 2015. 619: p. 474-480.
9. Wang, C.-h. and C.-y. Kuo, Coupling Effect of the Interfacial Reaction in Co/Sn/Cu Diffusion Couples. Journal of Electronic Materials, 2010. 39(8): p. 1303-1308.
10. Wang, C.-h. and C.-y. Kuo, Peltier effect on CoSn3 growth in Sn/Co/Sn couples with different substrate lengths. Materials Chemistry and Physics, 2015. 153: p. 72-77.
11. Chao-hong Wang, Chun-yi Kuo, Sheng-en Huang, Po-yi Li, Temperature effects on liquid-state Sn/Co interfacial reactions. Intermetallics, 2013. 32: p. 57-63.
12. Wu, W.C., T.-E. Hsieh, and H.-C. Pan, Investigation of Electroless Co(W,P) Thin Film as the Diffusion Barrier of Underbump Metallurgy. Journal of The Electrochemical Society, 2008. 155(5): p. D369.
13. WenJun Zhu, HuaShan Liu , Jiang Wang, Zhan Peng Jin, Formation of intermetallic compound (IMC) between Sn and Co substrate. Journal of Alloys and Compounds, 2008. 456(1-2): p. 113-117.
14. Humpston, G., Cobalt: a universal barrier metal for solderable under bump metallisations. Journal of Materials Science: Materials in Electronics, 2009. 21(6): p. 584-588.
15. Ingrīda Vītiņa , Velta Belmane, Aija Krūmiņa, Valda Rubene, Changes in the phase composition and structure of electrodeposited Sn–Co alloys in Sn–Co/Cu layer systems upon heating. Surface and Coatings Technology, 2011. 205(8-9): p. 2893-2898.
16. Reynolds, P.C., M. Stojanovic, and S.E. Latturner, Flux growth of a new cobalt–zinc–tin ternary phase Co7+xZn3−xSn8 and its relationship to CoSn. Journal of Solid State Chemistry, 2011. 184(7): p. 1875-1881.
17. Wang, C.-h., S.-e. Huang, and J.-l. Liu, Liquid-State Interfacial Reactions of Sn-Zn/Co Couples at 250°C. Journal of Electronic Materials, 2012. 41(12): p. 3259-3265.
18. N. Zhao, J.F. Deng, Y. Zhong, M.L. Huang, and H.T. Ma, Abnormal Intermetallic Compound Evolution in Ni/Sn/Ni and Ni/Sn-9Zn/Ni Micro Solder Joints Under Thermomigration. Journal of Electronic Materials, 2016. 46(4): p. 1931-1936.
19. Y. Zhong, N. Zhao, H.T.Ma, W.Dong, M.L. Huang, Retardation of thermomigration-induced Cu substrate consumption in Pb-free solder joints by Zn addition. Journal of Alloys and Compounds, 2017. 695: p. 1436-1443.
20. Tu, K.N., Reliability challenges in 3D IC packaging technology. Microelectronics Reliability, 2011. 51(3): p. 517-523.
21. Chen, C., H.M. Tong, and K.N. Tu, Electromigration and Thermomigration in Pb-Free Flip-Chip Solder Joints. Annual Review of Materials Research, 2010. 40(1): p. 531-555.
22. Tu, K.N., Recent advances on electromigration in very-large-scale-integration of interconnects. Journal of Applied Physics, 2003. 94(9): p. 5451-5473.
23. Ouyang, F.-Y. and C.L. Kao, In situ observation of thermomigration of Sn atoms to the hot end of 96.5Sn-3Ag-0.5Cu flip chip solder joints. Journal of Applied Physics, 2011. 110(12): p. 123525.
24. Hsiao, H.-Y. and C. Chen, Thermomigration in Pb-free SnAg solder joint under alternating current stressing. Applied Physics Letters, 2009. 94(9): p. 092107.
25. Hsiang-Yao Hsiao and Chih Chen, Thermomigration in SnPb composite flip chip solder joints. Applied Physics Letters, 2006. 88(14): p. 141911.
26. Chen, H.-Y. and C. Chen, Thermomigration of Cu–Sn and Ni–Sn intermetallic compounds during electromigration in Pb-free SnAg solder joints. Journal of Materials Research, 2011. 26(08): p. 983-991.
27. Ming-Yung Guo , C.K. Lin , Chih Chen , K.N. Tu, Asymmetrical growth of Cu6Sn5 intermetallic compounds due to rapid thermomigration of Cu in molten SnAg solder joints. Intermetallics, 2012. 29: p. 155-158.
28. Hsu, W.-N. and F.-Y. Ouyang, Effect of Ag3Sn: Effective suppression of thermomigration-induced Cu dissolution in micro-scale Pb-free interconnects. Materials Chemistry and Physics, 2015. 165: p. 66-71.
29. Huang, M.L., F. Yang, and N. Zhao, Thermomigration-induced asymmetrical precipitation of Ag 3 Sn plates in micro-scale Cu/Sn–3.5Ag/Cu interconnects. Materials & Design, 2016. 89: p. 116-120.
30. L. Meinshausen, H. Frémont, K. Weide-Zaage, Bernard Plano, Electro- and thermomigration induced Cu3Sn and Cu6Sn5 formation in SnAg3.0Cu0.5 bumps. Microelectronics Reliability, 2015. 55(1): p. 192-200.
31. Ouyang, F.-Y., W.-C. Jhu, and T.-C. Chang, Thermal-gradient induced abnormal Ni3Sn4 interfacial growth at cold side in Sn2.5Ag alloys for three-dimensional integrated circuits. Journal of Alloys and Compounds, 2013. 580: p. 114-119.
32. Su, Y.-P., C.-S. Wu, and F.-Y. Ouyang, Asymmetrical Precipitation of Ag3Sn Intermetallic Compounds Induced by Thermomigration of Ag in Pb-Free Microbumps During Solid-State Aging. Journal of Electronic Materials, 2015. 45(1): p. 30-37.
33. Chih Chen, Hsiang-Yao Hsiao, Yuan-Wei Chang, Fanyi Ouyang, K.N.Tu, Thermomigration in solder joints. Materials Science and Engineering: R: Reports, 2012. 73(9): p. 85-100.
34. Ouyang, F.-Y. and W.-C. Jhu, Comparison of thermomigration behaviors between Pb-free flip chip solder joints and microbumps in three dimensional integrated circuits: Bump height effect. Journal of Applied Physics, 2013. 113(4): p. 043711.
35. J.R. Lloyd , N.A. Connelly, Xiaoli He, K.J. Ryan, B.H. Wood., Fast diffusers in a thermal gradient (solder ball). Microelectronics Reliability, 2010. 50(9-11): p. 1355-1358.
36. Chen, H.-Y., C. Chen, and K.-N. Tu, Failure induced by thermomigration of interstitial Cu in Pb-free flip chip solder joints. Applied Physics Letters, 2008. 93(12): p. 122103.
37. Yang, Y.-S., C.-J. Yang, and F.-Y. Ouyang, Interfacial reaction of Ni3Sn4 intermetallic compound in Ni/SnAg solder/Ni system under thermomigration. Journal of Alloys and Compounds, 2016. 674: p. 331-340.
38. Hsu, W.-N. and F.-Y. Ouyang, Effects of anisotropic β-Sn alloys on Cu diffusion under a temperature gradient. Acta Materialia, 2014. 81: p. 141-150.
39. Vassilev, G.P., K.I. Lilova, and J.C. Gachon, Calorimetric and phase diagram studies of the Co–Sn system. Intermetallics, 2007. 15(9): p. 1156-1162.
40. O, M., Y. Takamatsu, and M. Kajihara, Kinetics of Solid-State Reactive Diffusion between Co and Sn. Materials Transactions, 2014. 55(7): p. 1058-1064.
41. Wang, C.-h. and S.-w. Chen, Sn/Co solid/solid interfacial reactions. Intermetallics, 2008. 16(4): p. 524-530.
42. Yang, G., D. Yang, and L. Li, Microstructure and morphology of interfacial intermetallic compound CoSn3 in Sn–Pb/Co–P solder joints. Microelectronics Reliability, 2015. 55(11): p. 2403-2411.
43. Wang, C.-h., K.-t. Li, and P.-y. Huang, Metastable CoSn4 formation induced by minor Ga addition and effective suppression effect on the IMC growth in solid-state Sn–Ga/Co reactions. Journal of Materials Science, 2016. 51(15): p. 7309-7321.
44. Wang, C.-h. and S.-w. Chen, Cruciform pattern formation in Sn/Co couples. Journal of Materials Research, 2011. 22(12): p. 3404-3409.
45. Wang, C.-h. and K.-t. Li, Strong effects of minor Ga addition on liquid-state Sn–Ga/Co interfacial reactions. Journal of Alloys and Compounds, 2015. 649: p. 1197-1204.
46. Shackelford, J.F., W. Alexander, and J.S. Park, CRC materials science and engineering handbook. 1994: CRC Press.
47. E. J. O'Sullivan ;A.G. Schrott; M. Paunovic, C. J. Sambucetti ; J. R. Marino ; P. J. Bailey;S. Kaja ;K. W. Semkow Electrolessly deposited diffusion barriers for microelectronics. IBM Journal of Research and Development, 1998. 42(5): p. 607-620.
48. M. Nasir Bashir, A.S.M.A. Haseeb , Abu Zayed Mohammad Saliqur Rahman, M.A. Fazal, Effect of Cobalt Doping on the Microstructure and Tensile Properties of Lead Free Solder Joint Subjected to Electromigration. Journal of Materials Science & Technology, 2016. 32(11): p. 1129-1136.
49. Chen, C.-m., C.-m. Hsu, and S.-w. Chen, Interfacial Reactions in Sn-Co-(Cu)/Ni Couples With/Without Current Stressing. Journal of Electronic Materials, 2012. 41(11): p. 3205-3214.
50. Feng Gao, Fangjie Cheng, Hiroshi Nishikawa , Tadashi Takemoto, Characterization of Co–Sn intermetallic compounds in Sn–3.0Ag–0.5Cu–0.5Co lead-free solder alloy. Materials Letters, 2008. 62(15): p. 2257-2259.
51. Hsu, C.-m. and S.-w. Chen, Interfacial reactions with and without current stressing at Sn–Co/Ag and Sn–Co/Cu solder joints. Journal of Materials Science, 2013. 48(19): p. 6640-6646.
52. Wang, C.-h. and S.-w. Chen, Peltier Effect on Sn/Co Interfacial Reactions. Journal of Electronic Materials, 2009. 38(5): p. 655-662.
53. Xu, L., J.H.L. Pang, and K.N. Tu, Effect of electromigration-induced back stress gradient on nanoindentation marker movement in SnAgCu solder joints. Applied Physics Letters, 2006. 89(22): p. 221909.
54. N. Zhao, Y. Zhong, M.L. Huang, H.T. Ma & W. Dong, Growth kinetics of Cu6Sn5 intermetallic compound at liquid-solid interfaces in Cu/Sn/Cu interconnects under temperature gradient. Sci Rep, 2015. 5: p. 13491.
55. Riet Labie, Wouter Ruythooren, Kris Baert, Eric Beyne and Bart Swinnen . Resistance to electromigration of purely intermetallic micro-bump interconnections for 3D-device stacking. in 2008 International Interconnect Technology Conference. 2008.
56. Neumann, G. and C. Tuijn, Self-diffusion and Impurity Diffusion in Pure Metals: Handbook of Experimental Data. 2011: Elsevier Science.
57. V. I. Dybkov Æ V. G. Khoruzha Æ V. R. Sidorko Æ K. A. Meleshevich Æ A. V. Samelyuk Æ D. C. Berry Æ K. Barmak, Interfacial interaction of solid cobalt with liquid Pb-free Sn–Bi–In–Zn–Sb soldering alloys. Journal of Materials Science, 2009. 44(22): p. 5960-5979.

 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *