|
[1] C. R. F.Azevedo, “Selection of fuel cladding material for nuclear fission reactors,” Eng. Fail. Anal., vol. 18, no. 8, pp. 1943–1962, 2011. [2] T.Alam, M. K.Khan, M.Pathak, K.Ravi, R.Singh, andS. K.Gupta, “A review on the clad failure studies,” Nucl. Eng. Des., vol. 241, no. 9, pp. 3658–3677, 2011. [3] P.By, “World s largest Science , Technology & Medicine Open Access book publisher Power Uprate Effect on Thermal Effluent of Nuclear Power Plants in Taiwan.” [4] R. A.Perez, H.Nakajima, andF.Dyment, “Diffusion in α-Ti and Zr,” Mater. Trans., vol. 44, no. 1, pp. 2–13, 2003. [5] X.Ma, T.Guilbert, D.Hamon, andJ. C.Brachet, “Oxidation kinetics and oxygen diffusion in low-tin Zircaloy-4 up to 1523 K,” vol. 377, pp. 359–369, 2008. [6] S.Report, Nuclear Fuel Behaviour in Loss-of-coolant Accident ( LOCA ) Conditions ORGANISATION FOR ECONOMIC CO-OPERATION AND DEVELOPMENT ORGANISATION FOR ECONOMIC CO-OPERATION AND DEVELOPMENT, no. 6846. 2009. [7] A. S. R. O. F.Past, P.Devoted, andT. O.Fuel, “Cladding Oxidation . Resistance to Quench and Post-Quench Loads .,” 2008. [8] R.Formation, P.Bonding, P.Change, E.Melting, andS.Explosions, “Chapter 28 : Fuel Behavior under Abnormal Conditions,” Fuel, pp. 1–44. [9] G.Hache, “No Title,” pp. 1–32. [10] A.Introduction, “Development of Radiation Resistant Reactor Core Structural Materials,” pp. 1–8, 2007. [11] C.Anghel, Modified oxygen and hydrogen transport in Zr-based oxides. 2006. [12] K.Daub, R.VanNieuwenhove, andH.Nordin, “SC,” J. Nucl. Mater., 2015. [13] H.Kim, I.Kim, Y.Jung, D.Park, J.Park, andY.Koo, “Adhesion property and high-temperature oxidation behavior of Cr- coated Zircaloy-4 cladding tube prepared by 3D laser coating,” J. Nucl. Mater., vol. 465, pp. 531–539, 2015. [14] G. I.Cubillos, M.Bethencourt, andJ. J.Olaya, “Applied Surface Science Corrosion resistance of zirconium oxynitride coatings deposited via DC unbalanced magnetron sputtering and spray pyrolysis-nitriding,” Appl. Surf. Sci., vol. 327, pp. 288–295, 2015. [15] J.Lin, B.Mishra, J. J.Moore, andW. D.Sproul, “A study of the oxidation behavior of CrN and CrAlN thin films in air using DSC and TGA analyses,” Surf. Coatings Technol., vol. 202, no. 14, pp. 3272–3283, 2008. [16] Z. B.Qi, B.Liu, Z. T.Wu, F. P.Zhu, Z. C.Wang, andC. H.Wu, “A comparative study of the oxidation behavior of Cr2N and CrN coatings,” Thin Solid Films, vol. 544, pp. 515–520, 2013. [17] H. G.Sockel, B.Saal, andM.Heilmaier, “Determination of the grain boundary diffusion coefficient of oxygen in Cr2O3,” Surf. Interface Anal., vol. 12, no. 10, pp. 531–533, 1988. [18] W. M.Rohsenow, J. P.Hartnett, andE. N.Ganić, Handbook of heat transfer applications, vol. 73, no. 9. 1985. [19] “Assessment at CEA of coated nuclear fuel cladding for LWRS with increased margins in loca and beyond loca conditions,” no. 2013, p. 2017, 2017. [20] P. J.Kelly andR. D.Arnell, “The influence of magnetron configuration on ion current density and deposition rate in a dual unbalanced magnetron sputtering system,” vol. 109, pp. 317–322, 1998. [21] P. J.Kelly andR. D.Arnell, “Magnetron sputtering : a review of recent developments and applications,” vol. 56, pp. 159–172, 2000. [22] “CHAPTER 4 (Addendum re Corrosion Kinetics),” vol. 4, no. 49, pp. 1–6. [23] IAEA, “Waterside corrosion of zirconium alloys in nuclear power plants,” IAEA Tecdoc, no. January, pp. 1–313, 1998. [24] C.Proff, S.Abolhassani, andC.Lemaignan, “Oxidation behaviour of zirconium alloys and their precipitates - A mechanistic study,” J. Nucl. Mater., vol. 432, no. 1–3, pp. 222–238, 2013. [25] D. U.Zy andE. N.Milieu, “u,” 1999. [26] P.Platt, P.Frankel, M.Gass, R.Howells, andM.Preuss, “Finite element analysis of the tetragonal to monoclinic phase transformation during oxidation of zirconium alloys,” J. Nucl. Mater., vol. 454, no. 1–3, pp. 290–297, 2014. [27] P.Tägstrom, M.Limbäck, M.Dahlbäck, T.Andersson, andH.Pettersson, Zirconium in the Nuclear Industry: Thirteenth International Symposium. 2002. [28] N.Selmi andA.Sari, “Study of Oxidation Kinetics in Air of Zircaloy-4 by in Situ X-Ray Diffraction,” Adv. Mater. Phys. Chem., vol. 3, no. June, pp. 168–173, 2013. [29] C.Duriez, D.Drouan, andG.Pouzadoux, “Reaction in air and in nitrogen of pre-oxidised Zircaloy-4 and M5??? claddings,” J. Nucl. Mater., vol. 441, no. 1–3, pp. 84–95, 2013. [30] M.Lasserre, V.Peres, M.Pijolat, O.Coindreau, C.Duriez, andJ. P.Mardon, “Modelling of Zircaloy-4 accelerated degradation kinetics in nitrogen-oxygen mixtures at 850 °c,” J. Nucl. Mater., vol. 462, pp. 221–229, 2015. [31] M.Steinbr??ck andM.B??ttcher, “Air oxidation of Zircaloy-4, M5?? and ZIRLO??? cladding alloys at high temperatures,” J. Nucl. Mater., vol. 414, no. 2, pp. 276–285, 2011. [32] C.Duriez, T.Dupont, B.Schmet, andF.Enoch, “Zircaloy-4 and M5?? high temperature oxidation and nitriding in air,” J. Nucl. Mater., vol. 380, no. 1–3, pp. 30–45, 2008. [33] Z. M.Smoqi, “Oxidation of Ti 2 AlC in High Temperature Steam Environment,” 2017. [34] P.Platt, V.Allen, M.Fenwick, M.Gass, andM.Preuss, “Observation of the effect of surface roughness on the oxidation of Zircaloy-4,” Corros. Sci., vol. 98, pp. 1–5, 2015. [35] I. G.Ritchie andA.Atrens, “The diffusion of oxygen in alpha-zirconium,” J. Nucl. Mater., vol. 67, no. 3, pp. 254–264, 1977. [36] K. A. M.Ahmed, “Exploitation of KMnO4 material as precursors for the fabrication of manganese oxide nanomaterials,” J. Taibah Univ. Sci., vol. 10, no. 3, pp. 412–429, 2016. [37] M.Aghazadeh, A. A. M.Barmi, andM.Hosseinifard, “Nanoparticulates Zr(OH) 4 and ZrO2 prepared by low-temperature cathodic electrodeposition,” Mater. Lett., vol. 73, no. April, pp. 28–31, 2012. [38] G.Ali, Y. J.Park, H. J.Kim, andS. O.Cho, “Formation of self-organized Zircaloy-4 oxide nanotubes in organic viscous electrolyte via anodization,” pp. 2–8, 2014. [39] J. T.Natsushima, Yokosuka 237-0061, “Oxygen-reduction reaction analysis of Zirconium-oxide catalysts by using EC-XPS,” vol. 1293, p. 2013, 1998. [40] U.Brossmann, R.Würschum, U.Södervall, andH.-E.Schaefer, “Oxygen diffusion in ultrafine grained monoclinic ZrO2,” J. Appl. Phys., vol. 85, no. 11, pp. 7646–7654, 1999. [41] J.Pelleg, Diffusion in Ceramics, vol. 221. 2016. [42] M.Parise, O.Sicardy, andG.Cailletaud, “Modelling of the mechanical behavior of the metal–oxide system during Zr alloy oxidation,” J. Nucl. Mater., vol. 256, no. 1, pp. 35–46, 1998. [43] H.Swan et al., “The measurement of stress and phase fraction distributions in pre and post-transition Zircaloy oxides using nano-beam synchrotron X-ray diffraction,” J. Nucl. Mater., vol. 479, pp. 559–575, 2016. [44] F.-H.Lu andW.-Z.Lo, “Degradation of ZrN films at high temperature under controlled atmosphere,” J. Vac. Sci. Technol. A Vacuum, Surfaces, Film., vol. 22, no. 5, p. 2071, 2004. [45] F.Pettit, R.Yinger, andJ.Wagner, “The mechanism of oxidation of iron in carbon monoxide-carbon dioxide mixtures,” Acta Metall., vol. 8, pp. 617–623, 1960. [46] M.Steinbrück, “Prototypical experiments relating to air oxidation of Zircaloy-4 at high temperatures,” J. Nucl. Mater., vol. 392, no. 3, pp. 531–544, 2009. [47] “Oxidation of zircaloy by steam and oxygen.,” pp. 1–3. [48] F.-H.Lu, H.-Y.Chen, andC.-H.Hung, “Degradation of CrN films at high temperature under controlled atmosphere,” J. Vac. Sci. Technol. A Vacuum, Surfaces, Film., vol. 21, no. 3, p. 671, 2003. [49] M.Kutz, “Handbook of Environmental Degradation of Materials,” Handbook of Environmental Degradation of Materials. 2005. [50] M.Steinbrueck, F. O.daSilva, andM.Grosse, “Oxidation of Zircaloy-4 in steam-nitrogen mixtures at 600–1200 °C,” J. Nucl. Mater., vol. 490, pp. 226–237, 2017. [51] C.Huang, Z.Tang, andZ.Zhang, “Differences between zirconium hydroxide (Zr (OH) 4· nH2O) and hydrous zirconia (ZrO2· nH2O),” J. Am. Ceram. …, vol. 38, pp. 1637–1638, 2001. [52] S. K.Yen, “Mechanism of electrolytic ZrO2 coating on commercial pure titanium,” Mater. Chem. Phys., vol. 63, no. 3, pp. 256–262, 2000.
|