|
[1] A.Engineering, “Wire bonding using copper wire,” 2008. [2] T. K.Omiyama, Y. C.Honan, J. O.Nuki, M. K.Oizumi, andT. S.Higemura, “High-Temperature Thick Al Wire Bonding Technology for High-Power Modules High-Temperature Thick Al Wire Bonding Technology for High-Power Modules Emitter electrode Gate electrode,” vol. 5030. [3] A.Wire, “Development of High-Reliability Thick Al-Mg 2 Si Wire Bonds for High-Power Modules,” no. June, pp. 279–282, 2012. [4] H.Xu et al., “Intermetallics Intermetallic phase transformations in Au e Al wire bonds,” vol. 19, pp. 1808–1816, 2011. [5] H. T.Orchard andA. L.Greer, “Electromigration Effects on Intermetallic Growth at Wire-Bond Interfaces,” vol. 35, no. 11, pp. 1961–1968, 2006. [6] E.Zin et al., “Mechanism of Electromigration in Au / Al Wirebond and its Effects Cu,” pp. 943–947, 2009. [7] F. W.Wulff, C. D.Breach, D.Stephan, S.Saraswati, andK. J.Dittmer, “Characterisation of intermetallic growth in copper and gold ball bonds on aluminium metallization,” Proc. 6th Electron. Packag. Technol. Conf. (EPTC 2004) (IEEE Cat. No.04EX971), pp. 348–353, 2004. [8] B.Yytanyik-yeetaninfienoncom andK. S.Sim, “Effect of Cu and PdCu wire bonding on bond pad splash,” Electron. Lett., vol. 50, pp. 8–11, 2014. [9] B.Chylak, J.Ling, H.Clauberg, T.Thieme, F.Washington, andA. D.Gmbh, “Next Generation Nickel-Based Bond Pads Enable Copper Wire Bonding Bond Pad Design for Cu wire bonding.” [10] H.Ji, M.Li, C.Wang, J.Guan, andH.Sur, “Evolution of the bond interface during ultrasonic Al – Si wire wedge bonding process,” vol. 182, pp. 202–206, 2007. [11] M.Hook, D.Xu, andM.Mayer, “Electromigration testing of wire bonds,” pp. 1–6, 2014. [12] O.Mokhtari et al., “Investigation of Formation and Growth Behavior of Cu / Al Intermetallic Compounds during Isothermal Aging,” pp. 1–7, 2014. [13] M.Ciappa, “Selected failure mechanisms of modern power modules,” vol. 42, pp. 653–667, 2002. [14] S.Ramminger, P.Ttirkes, andG.Wachutka, “Crack Mechanism in Wire Bonding Joints,” Microelectron. Reliab., vol. 38, pp. 1301–1305, 1998. [15] H.Xu, C.Liu, V.V.Silberschmidt, andZ.Chen, “Growth of intermetallic compounds in thermosonic copper wire bonding on aluminum metallization,” J. Electron. Mater., vol. 39, no. 1, pp. 124–131, 2010. [16] H.Xu, C.Liu, V.V.Silberschmidt, S. S.Pramana, T. J.White, andZ.Chen, “A re-examination of the mechanism of thermosonic copper ball bonding on aluminium metallization pads,” Scr. Mater., vol. 61, no. 2, pp. 165–168, 2009. [17] H.Xu et al., “Behavior of aluminum oxide , intermetallics and voids in Cu – Al wire bonds,” vol. 59, pp. 5661–5673, 2011. [18] S.Wang, L.Gao, andM.Li, “application on bonding,” pp. 789–793, 2013. [19] H. A.Mustain, A. B.Lostetter, andW. D.Brown, “Evaluation of Gold and Aluminum Wire Bond Performance for High Temperature ( 500 ° C ) Silicon Carbide ( SiC ) Power Modules,” pp. 1623–1628, 2005. [20] P. S.Chauhan, A.Choubey, Z.Zhong, andM. G.Pecht, Copper Wire Bonding. . [21] Y.Long, J.Twiefel, andJ.Wallaschek, “Journal of Materials Processing Technology A review on the mechanisms of ultrasonic wedge-wedge bonding,” J. Mater. Process. Tech., vol. 245, pp. 241–258, 2017. [22] H. O.Willrich, “Application of Ultrasonic Waves,” Weld. J., vol. 18(1), pp. 61–66, 1950. [23] D.HPC., “Ultrasonic welding,” vol. 3, no. 4, pp. 190–196, 1965. [24] K. C.Joshi, “The formation of ultrasonic bonds between metals,” Weld. J., vol. 50, no. 1971, p. 840, 1971. [25] U.High, “Observation of Ultrasonic Al-Si Wire Wedge Bond Interface Using High Resolution Transmission Electron Microscope,” 2007, vol. 0, pp. 2–5. [26] J.Ho, C.Chen, andC.Wang, “Thin film thermal sensor for real time measurement of contact temperature during ultrasonic wire bonding process,” vol. 111, pp. 188–195, 2004. [27] B.Lasgesecker, “Effects of ultrasound on deformation characteristics of metals,” IEEE Trans. Sonics Ultrason., vol. 13, no. 1, 1966. [28] A.O., Ultrasound in liquid and solid metals. CRC Press, 1994. [29] C. D.Breach andF. W.Wulff, “Microelectronics Reliability A brief review of selected aspects of the materials science of ball bonding,” Microelectron. Reliab., vol. 50, no. 1, pp. 1–20, 2010. [30] J.Qi, N. C.Hung, M.Li, andD.Liu, “Effects of process parameters on bondability in ultrasonic ball bonding,” vol. 54, pp. 293–297, 2006. [31] T. K.Lee, C. D.Breach, W. L.Chong, andD.Optimization, “Comparsion of Au / Al and Cu / Al in Wirebonding Assembly and Reliability,” in Microsystems, Packaging, Assembly and Circuits Technology Conference, 2011, pp. 234–237. [32] H.Chu, J.Hu, L.Jin, andY.Jie, “Defect Analysis of Copper Ball Bonding,” in ICEPT-HDP 2008, 2008, no. 10, pp. 8–10. [33] R.Gao andL.Han, “Experimental studies of bonding pressure on heavyaluminum wire bonding strength,” Piezoelectectr. Acoustoopt, vol. 29, no. 3, p. 2007, 2007. [34] J.Tsujino, H.Yoshihara, K.Kamimoto, andY.Osada, “Welding characteristics and temperature rise of high frequency and complex vibration ultrasonic wire bonding,” Ultrasonics, vol. 36, no. 1–5, pp. 59–65, 1998. [35] G.Hu, “Comparison of copper, silver and gold wire bonding on interconnect metallization,” in ICEPT-HDP 2012 Proceedings - 2012 13th International Conference on Electronic Packaging Technology and High Density Packaging, 2012, pp. 529–533. [36] T. S.Epithelium et al., Silver Metallization: Stability and Reliability. Springer-Verlag London, 2009. [37] L. J.Kai et al., “Silver alloy wire bonding,” Proc. - Electron. Components Technol. Conf., no. February, pp. 1163–1168, 2012. [38] D. R.Smith andF. R.Fickett, “Low-Temperature Properties of Silver,” J. Res. Natl. Inst. Stand. Technol., vol. 100, no. 2, p. 119, 1995. [39] N. J.Noolu, N. M.Murdeshwar, K. J.Ely, J. C.Lippold, andW. a.Baeslack, “Degradation and failure mechanisms in thermally exposed Au–Al ball bonds,” J. Mater. Res., vol. 19, no. 5, pp. 1374–1386, 2004. [40] H.Xu et al., “New mechanisms of void growth in Au-Al wire bonds: Volumetric shrinkage and intermetallic oxidation,” Scr. Mater., vol. 65, no. 7, pp. 642–645, 2011. [41] M.Drozdov, G.Gur, Z.Atzmon, andW. D.Kaplan, “Detailed investigation of ultrasonic Al-Cu wire-bonds: II. Microstructural evolution during annealing,” J. Mater. Sci., vol. 43, no. 18, pp. 6038–6048, 2008. [42] H. J.Kim et al., “Effects of Cu/Al intermetallic compound (IMC) on copper wire and aluminum pad bondability,” in Advances in Electronic Materials and Packaging 2001, 2001, pp. 44–51. [43] H.Clauberg, P.Backus, andB.Chylak, “Nickel-palladium bond pads for copper wire bonding,” Microelectron. Reliab., vol. 51, no. 1, pp. 75–80, 2011. [44] P.Liu, L.Tong, J.Wang, L.Shi, andH.Tang, “Challenges and developments of copper wire bonding technology,” Microelectronics Reliability, vol. 52, no. 6. pp. 1092–1098, 2012. [45] R.Schmidt, C.König, andP.Prenosil, “Novel wire bond material for advanced power module packages,” Microelectron. Reliab., vol. 52, no. 9–10, pp. 2283–2288, 2012. [46] A.Shah, M.Mayer, Y. N.Zhou, S. J.Hong, andJ. T.Moon, “Low-stress thermosonic copper ball bonding,” IEEE Trans. Electron. Packag. Manuf., vol. 32, no. 3, pp. 176–184, 2009. [47] J.Premkumar, B. S.Kumar, M.Madhu, M.Sivakumar, K. Y. J.Song, andY. M.Wong, “Key factors in Cu wire bonding reliability: Remnant aluminum and Cu/Al IMC thickness,” in 10th Electronics Packaging Technology Conference, EPTC 2008, 2008, pp. 971–975. [48] T.Chen andK.Jude, “17 . 5um Thin Cu Wire Bonding For Fragile Low-K Wafer Technology,” in Electronics Packaging Technology Conference, 2010, pp. 355–358. [49] D.Adams andT. L.Alford, “Encapsulated silver for integrated circuit metallization,” Materials Science and Engineering R: Reports, vol. 40, no. 6. pp. 207–250, 2003. [50] T. E.Graedel, “Corrosion mechanisms for silver exposed to the atmosphere,” J. Electrochem. Soc., vol. 139, no. 7, pp. 1963–1970, 1992. [51] T. B.Massalski, Binary Alloy Phase Diagrams, vol. 2. 1990. [52] E. A.Owen et al., “X-RAY AXALY-SIS OF SOLID SOLUTIONS,” Proc Phys Soc, vol. 36, p. 14, 1924. [53] L. D.Gulay andB.Harbrecht, “The crystal structure of ζ1-Al3Cu4,” J. Alloys Compd., vol. 367, no. 1–2, pp. 103–108, 2004. [54] W.Depmeier, “Structure of cubic aluminate sodalite Ca8[Al12O24](WO4)2 in comparison with its orthorhombic phase and with cubic Sr8[Al12O24](CrO4)2,” Acta Crystallogr. Sect. B, vol. 44, no. 3, pp. 201–207, 1988. [55] L.Arnberg andS.Westman, “Crystal perfection in a noncentrosymmetric alloy. Refinement and test of twinning of the ?????Cu9Al4 structure,” Acta Crystallogr. Sect. A, vol. 34, no. 3, pp. 399–404, 1978. [56] A.Meetsma, J. L.DeBoer, andS.VanSmaalen, “Refinement of the crystal structure of tetragonal Al2Cu,” J. Solid State Chem., vol. 83, no. 2, pp. 370–372, 1989. [57] R.Pretorius, T. K.Marais, andC. C.Theron, “Thin film compound phase formation sequence: An effective heat of formation model,” Materials Science Reports, vol. 10, no. 1–2. pp. 1–83, 1993. [58] R. T.Downs andM.Hall-Wallace, “The American Mineralogist crystal structure database,” Am. Mineral., vol. 88, no. 1, pp. 247–250, 2003. [59] H. E.Swason, R. K.Fuyat, andG. M.Ugrinic, Standard X-ray Diffraction Powder Patterns. Washington, DC: U.S. Dept. of commerce: National Bureau of Standards, 1985. [60] F.Haidara, M. C.Record, B.Duployer, andD.Mangelinck, “Investigation of reactive phase formation in the Al-Cu thin film systems,” Surf. Coatings Technol., vol. 206, no. 19–20, pp. 3851–3856, 2012. [61] O.Mokhtari et al., “Effect of isothermal aging on the growth behavior of Cu/Al intermetallic compounds,” in ICEP 2014, 2014, pp. 144–147. [62] K. N.Tu, “APPLIED PHYSICS REVIEWS — FOCUSED REVIEW Recent advances on electromigration in very-large-scale-integration of interconnects,” vol. 94, no. 9, 2003. [63] P. S. H. andThomas andK.IBM, “Electromigration in metals,” Prog. Phys, vol. 52, pp. 301–348, 1989. [64] K. N.Tu, “Electromigration in stressed thin films,” Phys. Rev. B, vol. 45, no. 3, pp. 1409–1413, 1992. [65] J. R.Lloyd, “Electromigration in Thin Film Conductors,” Defect Diffus. Forum, vol. 143–147, pp. 1661–1672, 1997. [66] H. B.Huntington andA. R.Grone, “Current-induced marker motion in gold wires,” J. Phys. Chem. Solids, vol. 20, no. 1, pp. 76–87, 1961. [67] K. L.Lee, C. K.Hu, andK. N.Tu, “In situ scanning electron microscope comparison studies on electromigration of Cu and Cu(Sn) alloys for advanced chip interconnects,” J. Appl. Phys., vol. 78, no. 7, pp. 4428–4437, 1995. [68] I. A.Blech, “Electromigration in thin aluminum films on titanium nitride,” J. Appl. Phys., vol. 47, no. 4, pp. 1203–1208, 1976. [69] P.I, Introduction to Thermodynamics of Irreversible Processes. Springfield, IL: CC Thomas, 1955. [70] T. H.Yang, Y. M.Lin, andF. Y.Ouyang, “Joule-heating-induced damage in Cu-Al wedge bonds under current stressing,” J. Electron. Mater., vol. 43, no. 1, pp. 270–276, 2014. [71] B.Krabbenborg, “High current bond design rules based on bond pad degradation and fusing of the wire,” Microelectron. Reliab., vol. 39, no. 1, pp. 77–88, 1999. [72] H.Gan andK. N.Tu, “Effect of electromigration on intermetallic compound formation in Pb-free solder - Cu interfaces,” 52Nd Electron. Components Technol. Conf. 2002 Proc., no. 1, pp. 1206–1212, 2002. [73] H.Gan, W. J.Choi, G.Xu, andK. N.Tu, “Electromigration om Solder Joints and Solder Lines,” J. Met., vol. 54, no. 6, pp. 34–37, 2002. [74] F. Y.Ouyang, H.Hsu, Y. P.Su, andT. C.Chang, “Electromigration induced failure on lead-free micro bumps in three-dimensional integrated circuits packaging,” J. Appl. Phys., vol. 112, no. 2, 2012. [75] A.Birolini, “Investigation on The Long Term of Power IGBT Modulus,” in Proceedings of 1995 International Symposium on Power Semiconductor Devices & ICs, 1995, pp. 443–448. [76] A. F.Mayadas andM.Shatzkes, “Electrical-resistivity model for polycrystalline films: The case of arbitrary reflection at external surfaces,” Phys. Rev. B, vol. 1, no. 4, pp. 1382–1389, 1970. [77] E. T.Ogawa, K. D.Lee, V. A.Blaschke, andP. S.Ho, “Electromigration reliability issues in dual-damascene Cu interconnections,” IEEE Trans. Reliab., vol. 51, no. 4, pp. 403–419, 2002. [78] C.-K.Hu andJ. M. E.Harper, “Copper interconnections and reliability,” Mater. Chem. Phys., vol. 52, pp. 5–16, 1998. [79] J.Joseph Clement, “Electromigration modeling for integrated circuit interconnect reliability analysis,” IEEE Trans. Device Mater. Reliab., vol. 1, no. 1, pp. 33–42, 2001. [80] A. S.Budiman et al., “Plasticity-amplified diffusivity: Dislocation cores as fast diffusion paths in CU interconnects,” in Annual Proceedings - Reliability Physics (Symposium), 2007, pp. 122–127. [81] C. K.Hu, M. B.Small, K. P.Rodbell, C.Stanis, P.Blauner, andP. S.Ho, “Electromigration failure due to interfacial diffusion in fine Al alloy lines,” Appl. Phys. Lett., vol. 62, no. 9, pp. 1023–1025, 1993. [82] A.Wolfenden andJ. M.Wolla, “Mechanical damping and dynamic modulus measurements in alumina and tungsten fibre-reinforced aluminium composites,” J. Mater. Sci., vol. 24, no. 9, pp. 3205–3212, 1989. [83] W. F.Gale andT. C.Totemeir, “Smithells Metals Reference Book,” Smithells Met. Ref. B., pp. 1–2072, 2004. [84] a.Charlesby, CRC materials science and engineering handbook, vol. 49, no. 2. 1997. [85] A.Lodder andJ. P.Dekker, “The electromigration force in metallic bulk,” in Fourth international workshop on stress induced phenomena in metallization, 1998, pp. 315–328.
|