帳號:guest(3.149.238.79)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):植柏鈞
作者(外文):Chih, Po-Chun
論文名稱(中文):鈦介層厚度對鍍覆於AISI D2鋼之氮化鈦鋯薄膜機械性質與耐磨性之影響
論文名稱(外文):Effect of Ti interlayer thickness on mechanical properties and wear resistance of TiZrN coatings on AISI D2 steel
指導教授(中文):喻冀平
黃嘉宏
指導教授(外文):Yu, Ge-Ping
Huang, Jia-Hong
口試委員(中文):張奇龍
張銀祐
口試委員(外文):Chang, Chi-Lung
Chang, Yin-Yu
學位類別:碩士
校院名稱:國立清華大學
系所名稱:工程與系統科學系
學號:104011515
出版年(民國):106
畢業學年度:105
語文別:英文
論文頁數:83
中文關鍵詞:介層氮化鈦鋯耐磨性機械性質介層厚度
外文關鍵詞:interlayerTiZrNwear resistancemechanical propertiesinterlayer thickness
相關次數:
  • 推薦推薦:0
  • 點閱點閱:528
  • 評分評分:*****
  • 下載下載:13
  • 收藏收藏:0
在切削工業中,添加一個柔軟的金屬介層已經成為一道標準程序來解決附著性的問題。本研究的目的在探討鈦介層厚度對氮化鈦鋯薄膜之各層殘留應力、附著力及耐磨性的影響,儲存能對薄膜耐磨性的影響也一併被探討。介層的影響藉由比較單層氮化鈦鋯及雙層氮化鈦鋯薄膜之機械性質來評估,結果顯示添加250奈米鈦介層可以略為降低上層氮化鈦鋯薄膜之殘留應力,及稍微提升耐磨性,但是會降低薄膜附著力,而氮化鈦鋯薄膜之磨耗率隨儲存能上升而線性增加。儲存能結合了薄膜殘留應力及膜厚的效應,故在相同材料中可以比H/E比更加精準的預測耐磨性。在本研究中,添加鈦介層效益不明顯的原因可以被歸咎於上層氮化鈦鋯薄膜的殘留應力太大,因此降低上層薄膜的殘留應力應該會是比添加介層更好的方法。
In the tooling industry, adding a soft metallic interlayer was a standard procedure to solve the adhesive problem. This study investigated the effect of Ti interlayer thickness on the residual stress of both layers, adhesion strength and wear resistance of TiZrN films. The applicability of stored energy on wear resistance of the coatings was also investigated. The effect of Ti interlayer thickness was evaluated by comparing the mechanical properties of TiZrN films with different Ti interlayer thickness. Introducing 250 nm Ti interlayer slightly reduced the residual stress of TiZrN top layer and the wear resistance slightly increased but lowered the adhesion strength. The wear rate of the TiZrN coatings linearly increased with stored energy. Stored energy combined effects of residual stress and thickness of the coatings and provided more accurate prediction of wear resistance than H/E ratio for the same kind of films materials. In our study, the insignificant benefits of Ti interlayer deposition were discussed and can be attributed to high level residual stress of TiZrN top layer. Therefore, instead of adding Ti interlayer, the decrease of residual stress of TiZrN top layer may be a better approach.
致謝 I
摘要 III
Abstract IV
Contents V
List of Figures VIII
List of Tables X
Chapter 1 Introduction 1
Chapter 2 Literature review 3
2.1. Characteristic of transition metal nitride coatings (binary metal nitride) 3
2.2. Characteristic of TiZrN coatings 6
2.2.1. Microstructure of TiZrN coatings 6
2.2.2. Properties of TiZrN coatings 7
2.3. Effect of metallic interlayer 8
2.3.1. Effect of metallic interlayer on microstructure 9
2.3.2. Effect of metallic interlayer on residual stress of coating 9
2.3.3. Effect of metallic interlayer on Adhesion improvement of coating 10
2.3.4. Effect of metallic interlayer on wear resistance of coating 11
2.4. Mechanical properties of coating 12
2.4.1. Adhesion strength of coating 12
2.4.2. Wear behavior of coating 12
Chapter 3 Experimental details 15
3.1. Substrate preparation 15
3.2. Deposition procedures 15
3.3. Analytical methods for composition and structure 19
3.3.1. Composition 19
3.3.2. Crystal structure 20
3.3.3. Microstructure 21
3.3.4. Surface morphology and roughness 22
3.3.5. Wettability 23
3.4. Characterization methods for properties 25
3.4.1. Hardness and Young’s modulus 25
3.4.2. Residual stress: AXS method 25
3.4.3. Adhesion 27
3.4.4. Wear resistance 28
Chapter 4 Results 31
4.1. Structures 34
4.1.1. Chemical composition 34
4.1.2. Crystal structure 34
4.1.3. Microstructure 38
4.1.4. Surface morphology and roughness 41
4.1.5. Wettability 43
4.2. Properties 45
4.2.1. Hardness and Young’s modulus 45
4.2.2. Residual stress 46
4.2.3. Adhesion 48
4.2.4. Wear resistance 52
Chapter 5 Discussion 60
5.1. Effect of Ti interlayer on coating 60
5.1.1. Effect of Ti interlayer on residual stress of coating 60
5.1.2. Effect of Ti interlayer on adhesion of coating 65
5.2. Wear resistance of coating 67
5.2.1. Stored energy of coating 68
5.2.2. Effect of stored energy and H/E ratio on wear resistance of coating 69
5.3. Effect Ti interlayer on wear resistance of coating 71
Chapter 6 Conclusions 72
Reference 73
Appendix A 80
Appendix B 82
[1] P.J. Kelly, T.V. Braucke, Z. Liu, R.D. Arnell, E.D. Doyle, Pulsed DC titanium nitride coatings for improved tribological performance and tool life, Surf. Coat. Technol. 202, 2007, 774-780
[2] J.X. Deng, F.F. Wu, Y.S. Lian, Y.Q. Xing, S.P. Li, Erosion wear of CrN, TiN, CrAlN, and TiAlN PVD nitride coatings, Int. J. Refract. Met. Hard Mater. 35, 2012, 10-16
[3] U.K. Wiiala, I.M. Penttinen, A.S. Korhonen, Improved corrosion resistance of physical vapour deposition coated TiN and ZrN, Surf. Coat. Technol. 41, 1990, 191-204
[4] L.A. Donohue, J. Cawley, J. S. Brooks, Deposition and characterization of arc-bond sputter TixZryN coatings from pure metallic and segmented targets, Surf. Coat. Technol. 72, 1995, 128-138
[5] Y.F. Chen, Effect of Composition on the Fracture Toughness of Ti1-xZrxN Hard Coatings, National Tsing Hua university, Master thesis, 2014
[6] G. Abadias, L.E. Koutsokeras, Ph. Guerin, P. Patsalas, Stress evolution in magnetron sputtered Ti–Zr–N and Ti–Ta–N films studied by in situ wafer curvature: Role of energetic particles, Thin Solid Films 518, 2009, 1532-1537
[7] S. J. Bull, P. R. Chalker, C. F. Ayres, D. S. Rickerby, The influence of titanium interlayers on the adhesion of titanium nitride coatings obtained by plasma-assisted chemical vapour deposition, Mater. Sci. Eng., A 139, 1991, 71-78
[8] K. A. Pischow, L. Eriksson, E. Harju, A. S. Korhonen, The influence of titanium interlayers on the adhesion of PVD TiN coatings on oxidized stainless steel substrates, Surf. Coat. Technol. 58, 1993, 163-172
[9] J.H. Huang, F.Y. Ouyang, G.P. Yu, Effect of film thickness and Ti interlayer on the structure and properties of nanocrystalline TiN thin films on AISI D2 steel, Surf. Coat. Technol. 201, 2007, 7043-7053
[10] J.H. Huang, C.H. Ma, H. Chen, Effect of Ti interlayer on the residual stress and texture development of TiN thin films, Surf. Coat. Technol. 200, 2006, 5937-5945
[11] J.H. Huang, C.H. Ma, H. Chen, Effect of Ti interlayer on the residual stress and texture development of TiN thin films deposited by unbalanced magnetron sputtering, Surf. Coat. Technol. 201, 2006, 3199-3204
[12] S.C. Lei, J.H. Huang, H.D. Chen, Measurement of residual stress on TiN/Ti bilayer thin films using average X-ray strain combined with laser curvature and nanoindentation methods, Mater. Chem. Phys. 199, 2017, 185-192
[13] W.J. Cheng, Effect of Ti interlayer on mechanical properties of TiZrN coatings on D2 steel, National Tsing Hua university, Master thesis, 2016
[14] S. Reinke, M. Kuhr, W. Kulisch, Investigation of stress and adhesion of cubic boron nitride films, Diamond Relat. Mater. 5, 1996, 508-513
[15] L. Hultman, J. Bareño, A. Flink, H. Söderberg, K. Larsson, V. Petrova, M. Odén, J. E. Greene, I. Petrov, Interface structure in superhard TiN-SiN nanolaminates and nanocomposites: Film growth experiments and ab initio calculations, Phys. Rev., B Condens. Matter 75, 2007, 155437-1- 155437-6
[16] A.A. Voevodin, J.P. O’Neill, J.S. Zabinski, Tribological performance and tribochemistry of nanocrystalline WC/amorphous diamond-like carbon composites, Thin Solid Films 342, 1999, 194-200
[17] J.H. Huang, K.W. Lau, G.P. Yu, “Effect of nitrogen flow rate on structure and properties of nanocrystalline TiN thin films produced by unbalanced magnetron sputtering”, Surf. Coat. Technol. 191, 2005, 17-24
[18] Z.B. Qi, P. Sun, F.P. Zhu, Z.C. Wang, D.L. Peng, C.H. Wu, The inverse Hall–Petch effect in nanocrystalline ZrN coatings, Surf. Coat. Technol. 205, 2011, 3692-3697
[19] B. O. Johansson, J.E. Sundgren, J. E. Greene. Rockett, S. A. Barnett, Growth and properties of single crystal TiN films deposited by reactive magnetron sputtering, J. Vac. Sci. Techno. A 3, 1985, 303-307
[20] P. Jin, S. Maruno, Evaluation of internal stress in reactively sputter-deposited ZrN thin films, Jpn. J. Appl. Phys. 30, 1991, 1463-1468
[21] H.O. Pierson, Handbook of Refractory Carbides and Nitrides, Noyes publications, New Jersey, 1996
[22] E. Budke, J. Krempel-Hesse, H. Maidhof, H. Schüssler, Decorative hard coatings with improved corrosion resistance, Surf. Coat. Technol. 112, 1999, 108-113
[23] G.L.N. Reddy, J.V. Ramana, S. Kumar, S. Vikram Kumar, V.S. Raju, Investigations on the oxidation of zirconium nitride films in air by nuclear reaction analysis and backscattering spectrometry, Appl. Surf. Sci. 253, 2007, 7230-7237
[24] A. Glaser, S. Surnev, F.P. Netzer, N. Fateh, G.A. Fontalvo, C. Mitterer, Oxidation of vanadium nitride and titanium nitride coatings, Surf. Sci. 601, 2007, 1153-1159
[25] M. Stoiber, E. Badisch, C. Lugmair, C. Mitterer, Low-friction TiN coatings deposited by PACVD, Surf. Coat. Technol. 163-164, 2003, 451-456
[26] D. Valerini, M.A. Signore, L. Tapfer, E. Piscopiello, U. Galietti, A. Rizzo, Adhesion and wear of ZrN films sputtered on tungsten carbide substrates, Thin Solid Films 538, 2013, 42-47
[27] H.A. Wriedt, J.L. Murray, The N-Ti (nitrogen-titanium) system, Bulletin of Alloy Phase Diagrams 8, 1987, 378-388
[28] H. Okamoto, N-Zr (nitrogen-zirconium), J Phase Equilib Diff 27, 2006, 551-551
[29] JCPDS pdf #65-0970
[30] JCPDS pdf #65-0972
[31] V.V. Uglova, V.M. Anishchik, V.V. Khodasevich, Zh.L. Prikhodko, S.V. Zlotski, G. Abadias, S.N. Dub, Structural characterization and mechanical properties of Ti–Zr–N coatings, deposited by vacuum arc, Surf. Coat. Technol. 180 – 181, 2004, 519-525
[32] V.V. Uglov, V.M. Anishchik, S.V. Zlotski, G. Abadias, S.N. Dub, Structural and mechanical stability upon annealing of arc-deposited Ti–Zr–N coatings, Surf. Coat. Technol. 202, 2008, 2394-2398
[33] C.Y. Chen, Characterization of structure and mechanical properties of nano-crystalline TiZrN films deposited by unbalanced magnetron sputtering: effect of Ti and Zr target current, National Tsing Hua university, Master thesis, 2012
[34] Y.W. Lin, J.H. Huang, G.P. Yu, Effect of nitrogen flow rate on properties of nanostructured TiZrN thin films produced by radio frequency magnetron sputtering, Thin Solid Films 518, 2010, 7308-7311
[35] Y.W. Lin, C.W. Lu, G.P. Yu, J.H. Huang, Structure and Properties of Nanocrystalline (TiZr)xN1−x Thin Films Deposited by DC Unbalanced Magnetron Sputtering, J Nanomater 2016, 2016, 1-12
[36] D. Gall, S. Kodambaka, M. A. Wall, I. Petrov, and J. E. Greene, Pathways of atomistic processes on TiN(001) and (111) surfaces during film growth: an ab initio study, J. Appl. Phys. 93, 2003, 9086-9094
[37] Y.W. Lin, J.H. Huang, G.P. Yu, C.N. Hsiao, F.Z. Chen, Influence of ion bombardment on structure and properties of TiZrN thin film, Appl. Surf. Sci. 354, 2015, 155-160
[38] C.-H. Ma, J.H. Huang, H.D. Chen, Nanohardness of nanocrystalline TiN thin films, Surf. Coat. Technol. 200, 2006, 3868-3875
[39] H. Oettel, R. Wiedemann, S. Preiβler, Residual stress in nitride hard coatings prepared by magnetron sputtering and arc evaporation, Surf. Coat. Technol. 74-75, 1995, 273-278
[40] H.L. Liu, Measurement of residual stress of TiZrN thin films by combining average X-ray strain (AXS) and nanoindentation methods, National Tsing Hua university, Master thesis, 2015
[41] F.S. Shieu, L.H. Cheng, M.H. Shiao, S.H. Lin, Effects of Ti interlayer on the microstructure of ion-plated TiN coatings on AISI 304 stainless steel, Thin Solid Films 311, 1997, 138-145
[42] C.H. Ma, J.H. Huang, H.D. Chen, Texture evolution of transition-metal nitride thin films by ion beam assisted deposition, Thin Solid Films 446, 2004, 184-193
[43] J.Y. Chen, G.P. Yu, J.H. Huang, Corrosion behavior and adhesion of ion-plated TiN films on AISI 304 steel, Mater. Chem. Phys. 65, 2000, 310-315
[44] K.S. Kim, H.K. Kim, J.H. La, S.Y. Lee, Effects of interlayer thickness and the substrate material on the adhesion properties of CrZrN coatings, Jpn. J. Appl. Phys. 55, 2016, 01AA02-1- 01AA02-5
[45] J. Gerth, U. Wiklund, The influence of metallic interlayers on the adhesion of PVD TiN coatings on high-speed steel, Wear 264, 2008, 885-892
[46] G.S. Kim, S.Y. Lee, J.H. Hahn, B.Y. Lee, J.G. Han, J.H. Lee, S.Y. Lee, Effects of the thickness of Ti buffer layer on the mechanical properties of TiN coatings, Surf. Coat. Technol. 171, 2003, 83-90
[47] G.A. Fontalvo, R. Daniel, C. Mitterer, Interlayer thickness influence on the tribological response of bi-layer coatings, Tribol. Int. 43, 2010, 108-112
[48] K.L. Mittal, Adhesion measurement of thin films, Electrocomponent Sci. Technol. 3, 1976, 21-42
[49] P.J. Burnett, D.S. Rickerby, The relationship between hardness and scratch adhesion, Thin Solid Films 154, 1987, 403-416
[50] B. Hammer, A.J. Perry, P. Laeng, P.A. Steinmann , The scratch test adhesion of TiC deposited industrially by chemical vapor-deposition on steel, Thin Solid Films 96, 1982, 45-51
[51] A.J. Perry, Adhesion studies of ion-plated TiN on steel, Thin Solid Films 81, 1981, 357-366
[52] J. Takadoum, H.H. Bennani, Influence of substrate roughness and coating thickness on adhesion, friction and wear TiN films, Surf. Coat. Technol. 96, 1997, 272-282
[53] C.I. Chiu, Effect of processing parameters on wear resistance and mechanical properties of thick TiN coatings on D2 steel deposited by unbalanced magnetron sputtering, National Tsing Hua university, Master thesis, 2014
[54] U. Helmersson, B.O. Johansson, J.E. Sundgren, H.T.G. Hentzell, and P. Billgren, Adhesion of titanium nitride coatings on high‐speed steels, J. Vac. Sci. Technol. A 3, 1985, 308-315
[55] P. A. Steinmann, Y. Tardy, H.E. Hintermann, Adhesion testing by the scratch test method: the influence of intrinsic and extrinsic parameters on the critical load, Thin Solid Films 154, 1987, 333-349
[56] M. Odén, C. Ericsson, G. Håkansson, H. Ljungcrantz, Microstructure and mechanical behavior of arc-evaporated Cr–N coatings, Surf. Coat. Technol. 114, 1999, 39-51
[57] ASTM International, Annual Book of ASTM Standards, 03.02, ASTM, U.S.A., 1987, 243-250
[58] T. Polcar, N.M.G. Parreira, R. Novák, Friction and wear behavior of CrN coating at temperatures up to 500°C, Surf. Coat. Technol. 201, 2007, 5228-5235
[59] S. Wilson, A.T. Alpas, Effect of temperature and sliding velocity on TiN coating wear, Surf. Coat. Technol. 91-95, 1997, 53-59
[60] P. Yan, J.X. Deng, Z. Wu, S.P. Li, Y.Q. Xing, J. Zhao, Friction and wear behavior of the PVD (Zr,Ti)N coated cemented carbide against 40Cr hardened steel, Int. J. Refract. Met. Hard Mater 35, 2012, 213-220
[61] S. Wilson, A.T. Alpas, TiN coating wear mechanisms in dry sliding contact against high speed steel, Surf. Coat. Technol. 108-109, 1998, 369-376
[62] S. Wilson, A.T. Alpas, Dry sliding wear of a PVD TiN coating against Si3N4 at elevated temperatures, Surf. Coat. Technol. 86-87, 1996, 75-81
[63] Z.P. Huang, Y. Sun, T. Bell, Friction behaviour of TiN, CrN and (TiAl)N coating, Wear 173, 1994, 13-20
[64] S. Wilson, A.T. Alpas, Wear mechanism maps for TiN-coated high speed steel, Surf. Coat. Technol. 120–121, 1999, 519-527
[65] E. Badisch, C. Mitterer, P.H. Mayrhofer, G. Mori, R.J. Bakker, J. Brenner, H. Störi, Characterization of tribo-layers on self-lubricating PACVD TiN coatings, Thin Solid Films 460, 2004, 125-132
[66] G. Gassner, P.H. Mayrhofer, K. Kutschej, C. Mitterer and M. Kathrein, A new low friction concept for high temperatures: lubricious oxide formation on sputtered VN coatings, Tribol. Lett. 17, 2004, 751-756
[67] A. Leyland, A. Matthews, On the significance of the H/E ratio in wear control: a nanocomposite coating approach to optimised tribological behavior, Wear 246, 2000, 1-11
[68] H.-H.S. I. Milosev, M. Gaberscek, B. Navinsek, Electrochemical Oxidation of ZrN Hard (PVD) Coatings Studied by XPS, Surf. Interface anal. 24, 1996, 449.
[69] B.K. L. Wicikowski, L. Murawski, KSzaniawska, B. Susla, AFM and XPS study of nitride TiO2 and SiO2-TiO2 sol-gel derived films, Vacuum. 54, 1999, 221.
[70] R.G. M. Del Re, J.-P. Dauchot, P.Leclere, G. Terwagne, M. Hecq, Study of ZrN layers deposited by reactive magnetron sputtering, Surf. Coat. Technol. 240, 2003, 174-175.
[71] P. Scherrer, Bestimmung der Grösse und der innern Struktur von Kolloidteilchen mittels Röntgenstrahlen, Gött. Nachr. 2, 1918, 98-100.
[72] JCPDS pdf #89-5009
[73] JCPDS pdf #01-1267
[74] D. K. Owens, R. C. Wendt, Estimation of the surface free energy of polymers, J. Appl. Polym. Sci 13, 1969, 1741-1747
[75] J.H Huang, T.C. Lin, G.P. Yu, Phase transition and mechanical properties of ZrNxOy thin films on AISI 304 stainless steel, Surf. Coat. Technol. 206, 2011, 107-116
[76] T. Young, An Essay on the Cohesion of Fluids, Phil. Trans. R. Soc. Lond., 1805, 65-87
[77] W.C. Oliver, G.M. Pharr, An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments, J. Mater. Res. 7, 1992, 1564-1583.
[78] G. Abadias, V.I. Ivashchenko, L. Belliard, Ph. Djemia, Structure, phase stability and elastic properties in the Ti1–xZrxN thin-film system: Experimental and computational studies, Acta Mater. 60, 2012, 5601-5614
[79] C.H. Ma, J.H. Huang, H.D. Chen, Residual stress measurement in textured thin film by grazing-incidence X-ray diffraction, Thin Solid Films 418, 2002, 73-78
[80] A.N. Wang, C.P. Chuang, G.P. Yu, J.H. Huang, Determination of average X-ray strain (AXS) on TiN hard coatings using cos2αsin2ψ X-ray diffraction method, Surf. Coat. Technol. 262, 2015, 40-47
[81] B.B. He, Two-dimensional X-ray diffraction, John Wiley & Sons, U.S.A., 2009, 312-312
[82] A.N. Wang, G.P. Yu, J.H. Huang, Fracture toughness measurement on TiN hard coatings using internal energy induced cracking, Surf. Coat. Technol. 239, 2014, 20-27
[83] S. Ma, J. Procházka, P. Karvánková, Q. Ma, X. Niu, X. Wang, D. Ma, K. Xu, S. Vepřek, Comparative study of the tribological behaviour of superhard nanocomposite coatings nc-TiN/a-Si3N4 with TiN, Surf. Coat. Technol. 194, 2005, 143-148
[84] ASM international, ASM Metals Handbook Desk Edition 2001, Properties and Selection Nonferrous Alloys and Special-Purpose Materials 2, ASM International, U.S.A., 2001, 3199-3204
[85] ASM international, ASM Metals Handbook Desk Edition 2001, Properties and Selection Irons Steels and High Performance Alloys 1, ASM International, U.S.A., 2001, 1816-1815
[86] N.J.M. Carvalho, E. Zoestbergen, B.J. Kooi, J.Th.M. D. Hosson, Stress analysis and microstructure of PVD monolayer TiN and multilayer TiN/(Ti,Al)N coatings, Thin Solid Films 429, 2003, 179-189
[87] Y. Natsume, T. Muramatsu and T. Miyamoto, Effect of Carbide Crack on Fatigue Strength of Alloy-tool Steel Under Cold Working, Proc. JSME Meeting 900 (86), 1990, 323-325
[88] C.H. Hsu, K.H. Huang, M.R. Lin, Annealing effect on tribological property of arc-deposited TiN film on 316L austenitic stainless steel, Surf. Coat. Technol. 259, 2014, 167-171
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *