帳號:guest(3.139.234.146)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):蕭佑陸
作者(外文):Hsiao, Yu-Lu
論文名稱(中文):304不鏽鋼、304低碳不鏽鋼與316低碳不鏽鋼於模擬沸水式反應器起爐過程中不同水化學環境下之電化學量測
論文名稱(外文):An Investigation into the Electrochemical Behavior of 304 SS, 304L SS and 316L SS in Simulated BWR Startup Environments
指導教授(中文):葉宗洸
指導教授(外文):Yeh, Tsung-Kuang
口試委員(中文):王美雅
黃俊源
馮克林
口試委員(外文):Wang, Mei-Ya
Huang, Jiunn-Yuan
Fong, Ke-Lin
學位類別:碩士
校院名稱:國立清華大學
系所名稱:工程與系統科學系
學號:104011511
出版年(民國):106
畢業學年度:106
語文別:中文
論文頁數:126
中文關鍵詞:應力腐蝕龜裂反應器啟動304不鏽鋼304低碳不鏽鋼316低碳不鏽鋼加氫水化學動態電位掃描
外文關鍵詞:Stress Corrosion CrackingStartupHydrogen Water Chemistry304 SS304L SS316L SSElectrochemical potentiodynamic polarizationElectrochemical corrosion potential
相關次數:
  • 推薦推薦:0
  • 點閱點閱:236
  • 評分評分:*****
  • 下載下載:35
  • 收藏收藏:0
在沸水式反應器中,主要作為組件的材料為不鏽鋼,在經過多年運轉後開始產生了沿晶應力腐蝕(Intergranular Stress Corrosion Cracking, IGSCC)的情況。組件的劣化不僅嚴重影響運轉安全,也提高了修復工程的耗費,為解決壓力槽內部組件的劣化情形,各國研究機構無不投入極大心力進行組件防蝕的研究。沸水式反應器在運轉時,爐心水中溶氧量約為200至400ppb,並且因為水的輻射分解效應而有過氧化氫產生,而高氧化性環境是造成IGSCC的主要環境因素,若採加氫水化學降低溶氧量,將可有效降低金屬組件的電化學腐蝕電位,降低發生IGSCC的風險。
本實驗為模擬沸水式反應器於啟動及停機過程的溫度及水化學條件,針對304不鏽鋼、304L不鏽鋼與316L不鏽鋼試片進行電化學量測,測試在這些材料在這些高溫純水環境中應力腐蝕劣化的敏感性,並探討起動階段加氫水化學之影響。
As the boiling water reactors (BWRs) age, incidents of intergranular stress corrosion cracking (IGSCC) are more readily seen in the vessel internals. To mitigate the problem of stress corrosion cracking (SCC) in the structural components, the technology of hydrogen water chemistry (HWC) has been widely adopted in BWRs around the world. The principle of HWC is to reduce the oxidizing power of the BWR coolant environment by injecting hydrogen into feedwater to recombine H2 with O2 or hydrogen peroxide (H2O2) under radiative environment. The recombination can decrease the concentration of the oxidants subsequently to lower the susceptibility of stainless steel components to SCC. As reactor startup begins, the Electrochemical Potential (ECP) is initially high in the oxygenated water environment established during a cold shutdown. Consequently, the components would show higher crack initiation and propagation rates of IGSCC during startup period than other periods of the cycle. Therefore, HWC during startup was applied and tested to demonstrate the suppression of SCC initiation.
For a safer operation of a new BWR, predicted water chemistry in the primary coolant circuit and corrosion behavior of structural materials in the BWR will be presented. The outcome would assist the reactor engineers in the design and the optimal operation of these types of reactors, ensuring nuclear safety in a proactive manner.
In this study, The corrosion potentials and corrosion current densities of 304 SS、304L SS and 316L SS will be tested in pure water at three different temperatures (200℃、250℃、288℃) with different dissolved oxygen, hydrogen peroxide or hydrogen concentrations. The results reveal that the corrosion potentials of these specimens in same water chemistry decrease while most of the current densities increase along with the increasing temperature. The outcomes also indicate the importance of adding hydrogen into feedwater while startup.
目錄
摘要 1
Abstract 2
致謝 4
目錄 6
圖目錄 8
表目錄 12
第一章 前言 14
1.1 研究背景 14
1.2 研究目的 15
第二章 基礎理論 18
2.1 混合電位理論 18
2.1.1 混合電位模式(Mixed Potential Model, MPM) 18
2.1.2 影響ECP大小的重要參數 21
2.3 伊凡斯圖(Evan’s Diagram) 22
2.3.1 伊凡斯圖 22
2.3.2 塔佛外插法(Tafel Extrapolation) 23
2.3.3 加氫水化學(HWC) 24
第三章 文獻回顧 26
3.1 應力腐蝕龜裂 26
3.1.1 材料龜裂肇因 27
3.1.2 應力腐蝕龜裂現代理論 29
3.1.3 應力腐蝕龜裂與電化學腐蝕電位關係 32
3.1.4 防治方法 35
3.1.5 應力腐蝕龜裂與沸水式反應器起爐過程 39
3.2 不鏽鋼於高溫水環境下的氧化模型態 41
3.2.1 高溫純水中不鏽鋼表面氧化層結構 42
3.2.2 雷射拉曼散射光譜分析 56
3.2.3 電化學阻抗分析 58
3.2.4 氧化膜結構對腐蝕電位的影響 60
第四章 研究方法 63
4.1 實驗方法與流程概述 63
4.2 試片準備 64
4.3 敏化程度分析 65
4.4 模擬BWR環境之水循環系統 67
4.5 參考電極製作 69
4.6 表面分析 71
4.7 高溫電化學分析 72
第五章 實驗結果 75
5.1 敏化程度 75
5.2 掃描式電子顯微鏡與雷射拉曼散射光譜結果 78
5.2.1 304不鏽鋼表面分析 80
5.2.2 304L不鏽鋼表面分析 84
5.2.3 316L不鏽鋼表面分析 89
5.3 高溫電化學分析 93
5.3.1 304不鏽鋼動態電位極化掃描 94
5.3.2 304L不鏽鋼動態電位極化掃描 101
5.3.3 316L不鏽鋼動態電位極化掃描 108
第六章 結論 118
第七章 未來工作 120
參考文獻 121

[1] Ehrnstén, U., IGSCC IN A BWR STEAM LINE AFTER 30 YEARS OF OPERATION. 2015
[2] Garcia, S.E., J.F. Giannelli, and M.L. Jarvis, Advances in BWR Water Chemistry, in Nuclear Plant Chemistry2012: Paris, France.
[3] Herbert H. Uhlig & R. Winston Revie , Corrosion and Corrosion Control,Chapter 7.
[4] Andresen, P., Emerging Issues and Fundamental Processes in Environmental Cracking in Hot Water, in National Association of Corrosion Engineers2007, NACE International: Nashville, Tennessee.
[5] Macdonald, D., Theoretical Estimation of Crack Growth Rates in Type 304 Stainless Steel in Boiling-Water Reactor Coolant Environment. Corrosion, 1996. 52.
[6] 葉宗洸, “核電廠水化學講義” 國立清華大學, 2014.
[7] Ford, F. and P. Andresen, Corrosion in Nuclear Systems: Environment Assisted Cracking in Light Water Reactors, 1994: New York. p. 501-546.
[8] Kazushige, I., W. Yoichi, and T. Masahiko, Hydrazine and Hydrogen Co-injection to Mitigate Stress Corrosion Cracking of Structural Materials in Boiling Water Reactors, (II) Reactivity of Hydrazine with Oxidant in High Temperature Water under Gamma-irradiation. Journal of Nucler Science and Technology, 2006.
[9] Garcia, S.E., A.D. Odell, and J.F. Giannelli, Early Hydrogen Water Chemistry in the Boiling Water Reactor: Industry-First Demonstration, in Nuclear Plant Chemistry Conference2012: Paris, France.
[10] Abe, A. and H. Tobita, Mitigation of SCC Initation on BWR Core Internals by Means of Hydrogen Water Chemistry During Start-up. Nuclear Science and Engeering, 2005. 149: p. 312-324.
[11] Stellwag, B., M. Pop, and B. Devrient, Effect of UV Irradiation on Low Concentration Methanol Solution in BWR Condition Loop Testing, in Nuclear Plant Chemistry2012: Paris, France.
[12] Kaesche, H., Die Korrosion der Metalle physikalisch-chemische Prinzipien und aktuelle Probleme. 1990: Springer.
[13] Winkler, R., F. Huttner, and F. Michel, Senkung der Korrosionsrate im Primarkreislauf von Druckwasserreaktoren zur Begrenzung radioaktiver Ablagerungen. VGB Kraftwerkstechnik, 1989. 69: p. 524-531.
[14] Winkler, R., H. Lehmann, and F. Michel, VGB Kraftwerkstechnik, 1989. 69: p. 527-531.
[15] Asakura, Y., et al., Relationships Between Corrosion Behavior of AISI 304 Stainless Steel in High-Temperature Water and Its Oxide Film Structure. Corrosion, 1989. 45: p. 119-124.
[16] Kim, Y.J., Analysis of Oxide Film Formed on Type 304 Stainless Steel in 288oC Water Containing Oxygen, Hydrogen, and Hydrogen Peroxide. Corrosion, 1999. 55.
[17] Kim, Y.J., Effect of Water Chemistry on Corrosion Behavior of 304 SS in 288℃ Water, in International Water Chemistry Conference2004: San Francisco.
[18] Andresen, P.L., Factors Governing the Prediction of LWR Component SCC Behavior From Laboratory Data, in National Association of Corrosion Engineers1999, NACE Interantional: San Antonio, Tx.
[19] Jr., W.D.C., Materials Science and Engineering - An Introduction, 5th Edition. 1999.
[20] Miyazawa, T., S. Uchida, and T. Satoh, Effects of Hydrogen Peroxide on Corrosion of Stainless Steel, (IV) Determination of Oxide Film Properties with Multilateral Surface Analyses. Journal of Nuclear Science and Technology, 2005. 42(2): p. 233-241.
[21] Murayama, Y., T. Satoh, and S. Uchida, Effects of Hydrogen Peroxide on Intergranular Stress Corrosion Cracking of Stainless Steel in High Temperature Water, (V). Journal of Nuclear Science and Technology, 2002. 39: p. 1199-1206.
[22] Wilde, B.E., Stress Corrosion Cracking. Vol. Failure Analysis and Prevention. 1986: American Society for Metals. 203.
[23] Uhlig, H.H. and R.W. Revie, Corrosion and corrosion control, ed. 3. 1985.
[24] Ford, P., Development and Use of a Predictive Model of Crack Propagation in 304/316L, A533B/A508 and Inconel 600/182 Alloys in 288oC water, in Environmental Degradation of Materials in Nuclear Power Systems-Water Reactors1988.
[25] Ford, P., Stress Corrosion Cracking of Low Alloy Steels Under BWR Conditions; Assessment of CHR Algorithms, in International Symposium on Environment Degradation of Materials in Nuclear Power Systems-Water Reactors1999.
[26] Angeliu, T.M., P.L. Andresen, and F.P. Ford, Apolying Slip-Oxidation to the SCC of Austenitic Materials in BWR/PWR Environments in National Association of Corrosion Engineers1998, NACE International: San Diego Ca.
[27] Miyazawa, T., T. Terachi, and S. Uchida, Effects of Hydrogen Peroxide on Corrosion of Stainless Steel, (V) Characterization of Oxide Film with Multilateral Surface Analyses. Journal of Nuclear Science and Technology, 2006. 43(8): p. 884-895.
[28] Kumai, C.S. and T.M. Devine, Oxidation of Iron in 288°C, Oxygen-Containing Water. Corrsion, 2005. 61: p. 201-218.
[29] Wada, Y., A. Watanabe, and M. Tachibana, Effects of Hydrogen Peroxide on Intergranular Stress Corrosion Cracking of Stainless Steel in High Tmeperature Water, (IV) Effects of Oxide Film on Electrochemical Corrosion Potential. Jounal of Nuclear Science and Technology, 2001. 38: p. 183-192.
[30] Oh, S.J., D. Cook, and H. Townsend, Characterization of iron oxides commonly formed as corrosion products on steel. Hyperfine interactions, 1998. 112(1-4): p. 59-66.
[31] Kim, Y.J., “In-Situ Electrochemical Impedance Measurement of Oxide Film Formed on Type 304 Stainless Steel in High-Temperature Water,” Corrosion Science, 2000.
[32] S. Uchida et al. “Effects of Hydrogen Peroxide on Corrosion of Stainless Steel, (II),” Journal of Nuclear Science and Technology, 2014.
[33] C.C. Lin, Y. J. Kim, L. W. Niedrach, M.Itow, Corrosion, vol. 48, p. 16, 1992.
[34] S. Uchida, N. Shigenaka, M. Tachibana, Y. Wada, M. Sakai, K. Akamine, et al., "Effects of Hydrogen Peroxide on Intergranular Stress Corrosion Cracking of Stainless Steel in High Temperature Water,(I) Effects of Hydrogen Peroxide on Electrochemical Corrosion Potential of Stainless Steel," Journal of Nuclear Science and Technology, vol. 35, pp. 301-308, 1998.
[35] Y. Wada, A. Watanabe, M. Tachibana, N. Uetake, S. Uchida, and K. Ishigure, "Effects of Hydrogen Peroxide on Intergranular Stress Corrosion Cracking of Stainless Steel in High Temperature Water,(III) Crack Growth Rates in Corrosive Environment Determined by Hydrogen Peroxide," Journal of Nuclear Science and Technology, vol. 37, pp. 901-912, 2000.
[36] S. Uchida et al. “Effects of Hydrogen Peroxide on Intergranular Stress Corrosion Cracking of Stainless Steel in High Temperature Water, (V),” Journal of Nuclear Science and Technology, 2014.
[37] S. Uchida, Y. Morishima, T. Hirose, T. Miyazawa, T. Satoh, Y. Satoh, "Effects of Hydrogen Peroxide on Corrosion of Stainless Steel (VI) —Effects of Hydrogen Peroxide and Oxygen on Anodic Polarization Properties of Stainless Steel in High Temperature Pure Water,” Journal of Nuclear Science and Technology, vol. 44, pp. 758-766, 2007.
[38] 董育銘, “應用於超臨界水環境中耐高溫參考電極之進階研究,” 國立清華大學碩士論文, 2013.
[39] Mulford, R., E. Hall, and C. Briant, Sensitization of austenitic stainless steels II. Commercial purity alloys. Corrosion, 1983. 39(4): p. 132-143.
[40] D. D. Macdonald, Corrosion, vol. 48, p. 194, 1992.
[41] Kim, Y.J., Characterization of the oxide film formed on type 316 stainless steel in 288 C water in cyclic normal and hydrogen water chemistries. Corrosion, 1995, 51.11: 849-860.
[42] SOMA, Y.; KATO, C.; YAMAMOTO, M. Surface Oxide Layers on 316L Stainless Steel Formed in 561 K Pure Water at Different Potentials. Journal of The Electrochemical Society, 2012, 159.8: C334-C340.
[43] R.S Greeley, Journal of Physical Chemistry, vol. 64, p. 625, 1960
[44] R. Leiva-García, M.J. Muñoz-Portero, J. García-Antón, “In-Situ Study of Single and Double Loop Reactivation Methods During the Characterisation of the Degree of Sensitisation of a Duplex Stainless Steel (UNS 1.4462) Using a Minicell and a Confocal Microscope,” International Journal of Electrochemical Science, 2011.
[45] Andresen, P.L., Y. J. Kim, Developments in SCC mitigation by electrocatalysis. In: Proceedings of the 15th International Conference on Environmental Degradation of Materials in Nuclear Power Systems—Water Reactors. Springer, Cham, 2011. p. 1967-1991.
[46] W. E. Ruther, W. K. Soppet, T. F. Kassner, Corrosion , Vol.44, 1988,p.791.
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *