帳號:guest(3.15.21.120)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):林政翰
作者(外文):Lin, Cheng-Han
論文名稱(中文):氮化釩薄膜織構演變之研究
論文名稱(外文):Texture Evolution of VN Thin Films
指導教授(中文):黃嘉宏
喻冀平
指導教授(外文):Huang, Jia-Hong
Yu, Ge-Ping
口試委員(中文):謝章興
林郁洧
口試委員(外文):Hsieh, Jang-Hsing
Lin, Yu-Wei
學位類別:碩士
校院名稱:國立清華大學
系所名稱:工程與系統科學系
學號:104011510
出版年(民國):106
畢業學年度:105
語文別:英文
論文頁數:80
中文關鍵詞:織構氮化釩薄膜非平衡磁控濺鍍
外文關鍵詞:TextureVNThinFilmsUnbalancedMagnetronSputtering
相關次數:
  • 推薦推薦:0
  • 點閱點閱:379
  • 評分評分:*****
  • 下載下載:7
  • 收藏收藏:0
本研究目的在於探討競爭成長理論於氮化釩薄膜織構演變之適用性以及織構對於薄膜機械性質之影響。考量到相似的原子排列,岩鹽結構的氮化釩(200)面可能會隨著BCC結構的釩金屬(110)模板成長,除了競爭成長機制之外,底材金屬的模板效應也可能是一個影響其氮化物織構的重要因子。對於有著(200)到隨機織構的氮化釩薄膜(區域I),隨著氮氣流量的提升,氮化釩薄膜逐漸由(200)轉變為隨機織構。具有強烈(111)織構的氮化釩薄膜(區域II)則可透過提升氮氣流量和降低鍍膜溫度以及基板偏壓等低能量參數下製備。
區域I的薄膜微結構為具有緻密柱狀晶以及平滑表面的zone T結構,而區域II的薄膜微結構屬於具有鬆散的柱狀晶以及粗糙表面的zone I結構。在區域I的薄膜硬度均超過30 GPa且和織構關係不大,而區域II的硬度相當低且與織構相關,僅有5.7到11.4 GPa。區域I的殘留應力隨著(111)織構係數增加由-5.66 GPa降至-2.66 GPa,而區域II的殘留應力則因為鬆散的結構而大部分被釋放,其值落在-0.44 GPa到0.45 GPa。排除純(111)織構的試片,不足計量比的試片其電阻率均比計量比的試片高,此外鬆散的微結構也會造成電阻率提升。
The purposes of this study were to investigate the applicability of competitive growth theory on the texture evolution of VN thin films and the effect of texture on the mechanical properties of VN thin films. Considering the similarity of atomic configuration, the formation of (200) plane of VN (NaCl structure) may follow the (110) template in vanadium metal (BCC structure). In addition to the competitive growth theory, the template effect due to base metal may be an important factor for the texture evolution of the corresponding transition-metal nitrides. For the VN thin films with texture ranging from (200) to random (region I), the preferred orientation gradually changes from (200) to random texture with increasing nitrogen flow rate. VN thin films with (111)-dominant texture can be deposited with increasing nitrogen flow rate and under low energy conditions with low temperature and low substrate bias.
The microstructure of VN thin films and mechanical properties were divided into two regions according to texture coefficient. The film microstructure in region I belongs to zone T structure with dense columnar structure and smooth surface, while that in region II has zone I structure with loose columnar structure and rough surface. The film hardness of in region I is about 30 GPa and weakly texture-dependent, while that in region II is quite low and texture dependent ranging from 5.7 to 11.4 GPa. The residual stress of films in region I decreases from -5.66 to -2.66 GPa with increasing (111) texture coefficient, while that in region II is mostly relieved due to loose microstructure, ranging from -0.44 to 0.45 GPa. The electrical resistivity of the understoichiometric samples is higher than that of stoichiometric samples except for the sample with (111)-dominant texture. In addition, loose-packed microstructure also causes higher electrical resistivity.
摘要 i
Abstract ii
Content iii
List of Figures vi
List of Tables viii
Chapter 1 Introduction 1
Chapter 2 Literature Review 3
2.1 Deposition Method 3
2.2 Structure Zone Models 3
2.3 Characteristics of VN Thin Films 8
2.4 Superior Properties of VN 10
2.4.1 Self-lubricant Property of VN for High Temperature Wear Applications 10
2.4.2 Toughness Enhancement of VN-based Nitride 11
2.5 Theories of Texture Evolution 13
2.5.1 Overall Energy Model 13
2.5.2 Competitive Growth Theory 13
2.6 Effects of Process Parameters on Texture and Crystal Structure of VN Thin Films 15
2.7 Effect of Texture on Mechanical Properties 17
2.7.1 Hardness 17
2.7.2 Residual Stress 18
Chapter 3 Experimental Details 20
3.1 Specimen Preparation and Deposition Process 20
3.2 Characterization of Composition and Film Structure 24
3.2.1 Chemical Composition 24
3.2.2 Crystal Structure and Preferred Orientation 25
3.2.3 Cross-sectional Microstructure and Top-View Morphology 27
3.2.4 Surface Roughness and Morphology 27
3.3 Characterization of Film Properties 28
3.3.1 Hardness and Young’s Modulus 28
3.3.2 Residual Stress 28
3.3.3 Electrical Resistivity 30
3.3.4 Coloration 32
Chapter 4 Results 33
4.1 Chemical Compositions and Structure 33
4.1.1 Chemical Compositions 33
4.1.2 Cross-Sectional and Surface Morphology 35
4.1.3 Crystal Structure and Texture 37
4.1.4 Surface Roughness 40
4.2 Properties 42
4.2.1 Hardness and Young’s Modulus 42
4.2.2 Residual Stress 45
4.2.3 Electrical Resistivity 45
4.2.4 Coloration 46
Chapter 5 Discussion 48
5.1 Texture Evolution of VN Thin Films 48
5.1.1 The Formation of VN(200) Texture 48
5.1.2 The Formation of VN(111) Texture 52
5.2 Microstructure and Surface Morphology 53
5.3 Effect of Texture on Mechanical Properties 54
5.3.1 Effect of Texture on Hardness 54
5.3.2 Effect of Texture on Residual Stress 55
5.4 Electrical Resistivity 56
Chapter 6 Conclusions 58
Reference 59
Appendix A Deconvolution Results of XPS Spectra 67
Appendix B SEM Images 75
Appendix C AFM Images 77
[1] B.M. Howe, E. Sammann, J.G. Wen, T. Spila, J.E. Greene, L. Hultman, I. Petrov, Real-time control of AlN incorporation in epitaxial Hf1-xAlxN using high-flux, low-energy (10-40 eV) ion bombardment during reactive magnetron sputter deposition from a Hf0.7Al0.3 alloy target, Acta Mater. 59 (2011) 421-428.
[2] P.H. Mayhofer, F.D. Fischer, H.J. Böhm, C. Mitterer, J.M. Schneider, Energetic balance and kinetics for the decomposition of supersaturated Ti1-xAlxN, Acta Mater. 55 (2007) 1441-1446.
[3] E. Budke, J. Krempel-Hesse, H. Maidhof, H. Schüssler, Decorative hard coatings with improved corrosion resistance, Surf. Coat. Technol., 112 (1999) 108-113.
[4] U.K. Wiiala, I.M. Penttinen, A.S. Korhonen, J. Aromaa, E. Ristolainen, Improved corrosion resistance of physical vapour deposition coated TiN and ZrN, Surf. Coat. Technol., 41 (1990) 191-204.
[5] J.-S. Chun, I. Petrov, J.E. Greene, Dense fully 111-textured TiN diffusion barriers: Enhanced lifetime through microstructure control during layer growth, J. Appl. Phys. 86, (1999) 3633-3641.
[6] J.-E. Sundgren, Structure and properties of TiN coatings, Thin Solid Films 128 (1985) 21-44.
[7] R. Hübler, Hardness and corrosion protection enhancement behaviour of surgical implant surfaces treated with ceramic thin films, Surf. Coat. Technol., 116-119 (1999) 1111-1115.
[8] G. Gassner, P.H. Mayrhofer, K. Kutschej, C. Mitterer, M. Kathrein, A new low friction concept for high temperatures: lubricious oxide formation on sputtered VN coatings, Tribol. Lett., 17, 4, (2004) 751-755.
[9] R. Franz, J. Neidhardt, B. Sartory, R. Kaindl, R. Tessadri, P. Polcik, V.H. Derflinger, C. Mitterer, High-temperature low-friction properties of vanadium-alloyed AlCrN coatings, Tribol. Lett 23(2) (2006) 101-107.
[10] D.G. Sangiovanni, L. Hultman, V. Chirita, Supertoughening in B1 transition metal nitride alloys by increased valence electron concentration, Acta Mater., 59 (2011) 2121-2134.
[11] W.J Chou, G.P. Yu, J.H. Huang, Mechanical properties of TiN thin film coatings on 304 stainless steel substrates, Surf. Coat. Technol., 149 (2002) 7-13.
[12] C.-H. Ma, J.-H. Huang, Haydn Chen, Nanohardness of nanocrystalline TiN thin films, Surf. Coat. Technol 200 (2006) 3868-3875.
[13] M. Kobayashi, Y. Doi, TiN and TiC coating on cemented carbides by ion plating, Thin Solid Films, 54 (1978) 67-74.
[14] J.H. Huang, Y.H. Chen, A.N. Wang, G.P. Yu, H. Chen, Evaluation of fracture toughness of ZrN hard coatings by internal energy induced cracking method, Surf. Coat. Technol., 258 (2014) 211-218.
[15] H.W. Hsiao, J.H. Huang, G.P. Yu, Effect of oxygen on fracture toughness of Zr(N,O) hard coatings, Surf. Coat. Technol., 304 (2016) 330-339.
[16] J. Pelleg, L.Z. Zevin, S. Lungo, N. Croitoru, Reactive-sputter-deposited TiN films on glass substrates, Thin Solid Films 197 (1991) 117-128.
[17] D. Gall, S. Kodambaka, M. Wall, I. Petrov, J.E. Greene, Pathways of atomistic processes on TiN(001) and (111) surfaces during film growth: an ab initio study, J. Appl. Phys., 93 (2003) 9086-9094.
[18] G. Abadias, W.P. Leory, S. Mahieu. D. Depla, Influence of particle and energy flux on stress and texture development in magnetron sputtered TiN films, J. Phys. D: Appl. Phys. 46 (2013) 055301.
[19] H.K. Kim, J.H. La, K.S. Kim, S.Y. Lee, The effects of the H/E ratio of various Cr-N interlayers on the adhesion strength of CrZrN coatings on tungsten carbide substrates, Surf. Coat. Technol. 284 (2015) 230-234.
[20] Z.G. Zhang, O. Rapaud, N. Bonasso, D. Mercs, C. Dong, C. Coddet, Control of microstructures and properties of dc magnetron sputtering deposited chromium nitride films, Vacuum 82 (2008) 501-509.
[21] X. Chu, S.A. Barnett, M.S. Wong, W.D. Sproul, Reactive magnetron sputter deposition of polycrystalline vanadium nitride films, J. Vac. Sci. Technol. A, 14 (1996) 3124-3129.
[22] C.-H. Ma, J.-H. Huang, Haydn Chen, A study of preferred orientation of vanadium nitride and zirconium nitride coatings on silicon prepared by ion beam assisted deposition, Surf. Coat. Technol., 133-134 (2000) 289-294.
[23] B. Window, N. Savvides, Unbalanced dc magnetrons as sourses of high ion fluxes, J. Vac. Sci. Technol. A4, (1986) 196-202.
[24] B.A. Movchan, A.V. Demchishin, Study of the structure and properties of thick vacuum condensates of nickel, titanium, tungsten, aluminum oxide and zirconium dioxide, Phys. Met. Metallogr., 28 (1969) 83-90.
[25] J.A.Thornton, High rate thick film growth, Ann. Rev. Mater. Sci. 7, (1977) 239-260.
[26] R. Messier, A.P. Giri, R.A. Roy, Revised structure zone model for thin film physical structure, J. Vac. Sci. Technol. A2, (1984) 500-503.
[27] J.E. Yehoda, B. Yang, K. Vedam, R. Messier, Investigation of the void structure in amorphous germanium thin films as a function of low‐energy ion bombardment, J. Vac. Sci. Technol. A6, (1988) 1631-1635.
[28] V. Poulek, J. Musil, R. Cerny, R. Kuzel, ε-Ti2N phase growth control in titanium nitride films, Thin Solid Films 170, (1989) L55-L58.
[29] S.J. Bull, A.M. Jones, A.R. McCabe, Residual stress in ion-assisted coatings, Surf. Coatings Technol. 54, (1992) 173-179.
[30] L. Hultman, J.-E. Sundgren, J.E. Greene, D.B. Bergstrom, I. Petrov, High-flux low-energy (-20 eV) N2+ ion irradiation during TiN depositionby reactive magnetron sputtering: Effects on microstructure and preferred orientation, J. Appl. Phys. 78, (1995) 5395-5403.
[31] A. Anders, A structure zone diagram including plasma-based deposition and ion etching, Thin Solid Films 518, (2010) 4087-4090.
[32] JCPDS file 65-0437.
[33] Hugh O. Pierson, Handbook of Refractory Carbides and Nitrides, 1st edition, Noyes Publications, 1996.
[34] Y. Qiu, S. Zhang, B. Li, J-W Lee, D. Zhao, Influence of Nitrogen Partial Pressure and Substrate Bias on the Mechanical Properties of VN Coatings, Procedia Eng., 36 (2012) 217-225.
[35] A.B. Mei, R.B. Wilson, D. Li, David G. Cahill, A. Rockett, J. Birch, L. Hultman, J.E. Greene, I. Petrov, Elastic constants, Poisson ratios, and the elastic anisotropy of VN(001), (011), and (111) epitaxial layers grown by reactive magnetron sputter deposition, J.Appl. Phys., 115 (2014) 214908.
[36] H. Okamoto, N-V (Nitrogen-Vanadium), J. Phase Equilib., 22 (2001) 362-362.
[37] A. Magnéli, Structures of the ReO3-type with Recurrent Dislocations of Atoms Homologous Series of Molybdenum and Tungsten Oxides, Acta Crystallogr., 6 (1953) 495-500.
[38] L. Hultman. Thermal stability of nitride thin films, Vacuum 57 (2000) 1-30.
[39] U. Helmersson, S. Todorova, S.A. Barnett, J.-E. Sundgren, L.C. Maekert, J.E. Greene, Growth of single-crystal TiN/VN strained-layer superlattices with extremely high mechanical hardness, J. Appl. Phys., 62 (1987) 481-484.
[40] G. Li, J. Lao, J. Tian, Z. Han, M. Gu, Coherent growth and mechanical properties of AlN/VN multilayers, J. Appl. Phys., 95 (2004) 92-96.
[41] X. Chu, M.S. Wong, W.D. Sproul, S.A. Barnett, Deposition, structure, and hardness of polycrystalline transition-metal nitride superlattice films, J. Mater. Res., 14 (1999) 2500-2507.
[42] U.C. Oh, J.H. Je, Effects of strain energy on the preferred orientation of TiN thin films, J. Appl. Phys. 74 (1993) 1692-1696.
[43] J.P. Zhao, X. Wang, Z.Y. Chen, S.Q. Yang, T.S. Shi, X.H. Liu, Overall energy model for preferred growth of TiN films during filtered arc deposition, J. Phys. D 30 (1997) 5-12.
[44] C.-K. Wu, Master Thesis, Department of Engineering System and Science, National Tsing Hua University, Taiwan, (R.O.C.), 2016.
[45] C.T. Chen, Y.C. Song, G.-P. Yu, J.-H. Huang, Microstructure and Hardness of Hollow Cathode Discharge Ion-Plated Titanium Nitride Film, J. Mater. Eng. Perform., 7(1998) 324-328.
[46] H. Ljungcrantz, M. Oden, L. Hultman, J.E. Greene, J.E. Sundgren, Nanoindentation studies of single-crystal (001)-,(011)-, and (111)-oriented TiN layers on MgO, J. Appl. Phys. 80 (12) (1996) 6725-6733.
[47] J.D. Eshelby, F.C. Frank, F.R.N. Nabarro, The equilibrium of linear arrays of dislocations, Philos. Mag., 42 (1951) 351-364.
[48] Jakob Schiøtz, Karsten W. Jacobsen, A Maximun in the Strength of Nanocrystalline Copper, Science 301 (2003) 1357-1359.
[49] G. Abadias, Y.Y. Tse, Diffraction stress analysis in fiber-textured TiN thin films grown by ion-beam sputtering: Application to (001) and mixed (001)+(111) texture, J. Appl. Phys. 95, (2004) 2414-2428.
[50] D.A. Shirley, High-resolution X-ray photoemission spectrum of the valance bands of gold, Phys. Rev. B, 5 (1972) 4709-4714.
[51] M.Y. Liao, Y. Gotoh, H. Tsuji, J. Ishikawa, Crystallographic structure and composition of vanadium nitride thin films deposited by direct sputtering of a compound target, J. Vac. Sci. Technol. A, 22 (2004) 146-150.
[52] R.T. Haasch, T,-Y. Lee, D. Gall, J.E. Greene, I. Petrov, Epitaxial VN(001) Grown and Analyzed In situ by XPS and UPS. I. Analysis of As-deposited Layers, Surf. Sci. Spectra, 7 (2000) 221-232.
[53] A.M. Glushenkov, D. Hulicova-Jurcakova, D. Llewellyn, G.Q. Lu, Y. Chen, Structure and Capactive Properties of Porous Nanocrystalline VN Prepared by Temperature-Programmed Ammonia Reduction of V2O5, Chem. Mater., 22 (2010) 914-921.
[54] Z. Zhao, Y. Liu, H. Cao, J. Ye, S. Gao, M. Tu, Synthesis of VN nanopowders by thermal nitridation of the precursor and their characterization, J. Alloys Compd., 464 (2008) 75-80.
[55] J.-G. Choi, The surface properties of vanadium compounds by X-ray photoelectron spectroscopy, Appl. Surf. Sci. 148 (1999) 64-72.
[56] P. Scherrer, Bestimmung der Grösse und der inner Struktur von Kolloidteilchen mittels Röntgenstrahlen, Gött. Nachr., 2 (1918) 98-100.
[57] L.V. Azaroff, M.J. Buerger, The power method in X-ray crystallography, McGraw-Hill, 1958.
[58] W.C. Oliver, G.M. Pharr, An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments, J. Mater. Res., 7 (1992) 1564-1583.
[59] G.G. Stoney, The tension of metallic films deposited by electrolysis, Proc. Roy. Soc. Lond. A Mat., 82 (1909) 172-175.
[60] W. Nix, Mechanical properties of thin films, Metall. Trans. A, 20 (1989) 2217-2245.
[61] S.M. Sze, VLSI technology, McGraw-Hill, 1983.
[62] CIE, Colorimetry, Tech. Rept., 15, Bureau Central de la CIE, Paris, 1971.
[63] CIE, Recommendations on uniform color spaces, color difference equation and psychometric terms, Supplement No.2 to CIE publication No.15, Tech. Rept., Bureau Central dela CIE, Paris, 1978.
[64] ASTM, Symposium on Color, American Society for Testing Materials, Philadelphia, 1941.
[65] JCPDS file 22-1058.
[66] W. Ensinger, Low energy ion assist during deposition - an effective tool for controlling thin film microstructure, Nucl. Instr. Meth. Phys. Res. B127/128 (1997) 796-808.
[67] L. Hultman, J.-E. Sundgren, L.C. Markert, J.E. Greene, Ar and excess N incorporation in epitaxial TiN films grown by reactive bias sputtering in mixed Ar/N2 and pure N2 discharges, J. Vac. Sci. Technol. A 7 (3) (1989) 1187-1193.
[68] Z.B. Qi, F.P. Zhu, Z.T. Wu, B. Liu, Z.C. Wang, D.L. Peng, C.H. Wu, Influence of yttrium addition on microstructure and mechanical properties of ZrN coatings, Surf. Coat. Technol., 231 (2013) 102-106.
[69] G.E. Dieter, D. Bacon, Mechanical metallurgy, McGraw-Hill New York, 1986.
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *