帳號:guest(18.118.198.81)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):莊凡誼
作者(外文):Chuang, Fan-Yi.
論文名稱(中文):鎳基超合金在含雜質氦氣環境下之氧化行為研究
論文名稱(外文):Oxidation Behavior of Nickel Based Superalloys in Helium Environments Containing Impurities
指導教授(中文):葉宗洸
王美雅
指導教授(外文):Yeh, Tsung-Kuang
Wang, Mei-Ya
口試委員(中文):開物
董曉明
口試委員(外文):Kai, Wu
Tung, Hsiao-Ming
學位類別:碩士
校院名稱:國立清華大學
系所名稱:工程與系統科學系
學號:104011508
出版年(民國):107
畢業學年度:106
語文別:中文
論文頁數:86
中文關鍵詞:鎳基超合金超高溫反應器高溫腐蝕行為氧化鋁保護層合金氧化鉻保護層合金
外文關鍵詞:Nickel based superalloyVery-high-temperature reactor (VHTR)High temperature oxidation behaviorAlumina formerChromia former
相關次數:
  • 推薦推薦:0
  • 點閱點閱:503
  • 評分評分:*****
  • 下載下載:18
  • 收藏收藏:0
第四代核反應器之一的超高溫氣冷式反應器(VHTR),其設計以氦氣作為工作流體,爐心出口溫度達700℃至950℃,且為了達到更高的發電效率(>50%),最終目標為1000℃以上的操作溫度。在這樣的高溫環境下,冷卻劑中的微量雜質,或發生進氣事故中流入的氣體,都可能加速結構材料的腐蝕速率。被開發應用於飛機渦輪引擎元件的鎳基超合金,便因其在700℃以上高溫的熱阻抗性與抗腐蝕性,成為新型核電廠中間熱交換管(IHX)的候選結構材料。本研究選用以氧化鉻作為其防護層的Inconel 625與Hastelloy C4,以及以氧化鋁作為保護層的HR-224三種鎳基超合金作為待測材料,探討其在850與950℃的氦氣環境下,不同濃度之氧氣水氣雜質所造成的氧化行為影響。而氧化測試的結果顯示,溫度的提高使三種合金的氧化速率均上升,Inconel 625在950℃下表現出三合金中最大的單位質量變化。而在所有測試條件下Inconel 625、Hastelloy C4都在表面形成連續的氧化鉻層,其下則可見氧化鋁內氧化的出現。但僅有Hastelloy C4,在特定氧化條件中被發現有孔洞出現於氧化層與基材界面處。而以形成氧化鋁作為保護層的HR-224合金,則隨著氧化條件的差異在表面出現氧化鉻、氧化矽等其他氧化物,氧化層剝落的情形也在水氣條件中更為嚴重。本研究亦會利用分析所得結果與相關文獻討論三種合金的氧化機制。
The Very-high-temperature Reactor (VHTR) is one of the Gen-IV reactors. Helium is used as the coolant of a VHTR and the core outlet temperature can achieve 700-950°C, which might reach up to 1000°C for higher efficiency in the future. At such high temperature, the impurities from original coolant or a loss-of-coolant accident (LOCA) may have a significant impact on the performance of structural materials. As the promising candidate materials for Intermediate Heat Exchanger (IHX), chromia formers Inconel 625 and Hastelloy C4 alloys and alumina former HR-224 alloy should be tested in further studies to prove their corrosion resistant ability. In this research, three alloys were tested at 850°C and 950°C in helium environments with various concentrations of O2 and H2O. In general, the oxidation rates of all the alloys increased with the increasing temperature, and Inconel 625 alloy showed the highest mass gain among the alloys at 950℃. Continuous chromium oxide layer with internal alumina was formed on the surface of Inconel 625 and Hastelloy C4 alloys in all conditions, while the alumina scale spalled and other oxides could be found on the surface of HR-224 alloy under specific conditions. Further analyses and oxidation mechanisms of these alloys would be presented in this study.
摘要 i
Abstract ii
致謝 iii
總目錄 v
表目錄 viii
圖目錄 ix
第一章 緒論 1
1.1前言 1
1.2 研究動機 2
第二章 文獻回顧 4
2.1 超高溫反應器 4
2.1.1第四代核反應器發展歷程 4
2.1.2超高溫反應器之結構設計 5
2.1.3氣冷式反應器之操作溫度 6
2.1.4氦氣冷卻劑 8
2.2 鎳基超合金之高溫氧化 8
2.2.1 鎳基超合金 8
2.2.2 鎳基超合金的抗腐蝕能力 9
2.2.3 合金氧化層之氧化與擴散機制 10
2.2.4 水氣雜質對氧化層成長之影響 13
2.2.5 揮發性氧化物之生成 17
2.2.6少數元素之影響 18
2.2.7氧化層的失效 20
第三章 實驗原理與方法 32
3.1 實驗設計與流程 32
3.1.1實驗試片製備 32
3.1.2高溫腐蝕實驗系統 33
3.2 分析儀器與原理 33
3.2.1輝光放電分析儀(GDS) 33
3.2.2掃描式電子顯微鏡(SEM)與能量散布能譜儀(EDS) 34
3.2.3低掠角薄膜繞射儀(GIXRD) 34
第四章 結果與討論 40
4.1 試片之單位質量變化分析 40
4.1.1溫度對單位面積質量變化之影響 40
4.1.2含氧環境下之單位質量變化 41
4.1.3含水氣環境下之單位質量變化 42
4.2 氧化鉻保護層合金(Inconel 625、Hastelloy C4)之腐蝕機制 43
4.2.1氧化層表面形貌分析(Inconel 625、Hastelloy C4) 43
[1] International Energy Outlook 2017 (No. DOE/EIA--0484 (2017)). USDOE Energy Information Administration (EIA), Washington, DC (United States). Office of Energy Analysis.
[2] Hu, W. C., Lin, J. C., Fan, C. T., Lien, C. A., & Chung, S. M. (2016). A booming green business for Taiwan׳ s climate perspective. Renewable and Sustainable Energy Reviews, 59, 876-886.
[3]台灣電力公司電業年報105年度.台灣電力公司.
[4] A Technology Roadmap for Generation IV Nuclear Energy Systems, Issued by the US DOE Nuclear Energy Research Advisory committee and the Generation IV International Forum, December 2002
[5] Hoffelner, W. (2012). Materials for nuclear plants: from safe design to residual life assessments. Springer Science & Business Media.
[6] Technology Roadmap Update for Generation IV Nuclear Energy Systems, Issued by the US DOE Nuclear Energy Research Advisory committee and the Generation IV International Forum, 2014
[7] GIF R&D Outlook for Generation IV Nuclear Energy Systems,2009
[8] Carré, F., Yvon, P., Lee, W. J., Dong, Y., Tachibana, Y., & Petti, D. (2009). VHTR–ongoing international projects. Paris, France 9-10 September 2009, 93.
[9] O'Connor, T. J. (2009). Gas Reactors-A Review of the Past, an Overview of the Present and a View of the Future.
[10] GIF annual report, 2016
[11] Burnette, R. D., & Baldwin, N. L. (1980). Primary coolant chemistry of the Peach Bottom and Fort St. Vrain high-temperature gas-cooled reactors (No. GA-A-16163; CONF-801225-2). General Atomic Co., San Diego, CA (USA).
[12] Simon, R. A., & Capp, P. D. (2002). Operating experience with the dragon high temperature reactor experiment. Proceedings on High Temperature Reactors, 1-6.
[13] Nieder, R., & Stroter, W. (1988). Long-term behavior of Impurities in an HTR primary circuit. VGB Kraftwerstechnik, 68(7), 671-676.
[14] Nieder, R. (1980, December). Prediction on an HTR Coolant Composition After Operational Experience with Experimental Reactors. In Specialists Meeting on Coolant Chemistry, Plate-out and Decontamination in Gas Cooled Reactors, Juelich, FRG (pp. 144-152).
[15] Fujikawa, S., Hayashi, H., Nakazawa, T., Kawasaki, K., Iyoku, T., Nakagawa, S., & Sakaba, N. (2004). Achievement of reactor-outlet coolant temperature of 950° C in HTTR. Journal of Nuclear Science and Technology, 41(12), 1245-1254.
[16] Yao, M. S., Wang, R. P., Liu, Z. Y., He, X. D., & Li, J. (2002). The helium purification system of the HTR-10. Nuclear Engineering and Design, 218(1-3), 163-167.
[17] Reed, R. C. (2008). The superalloys: fundamentals and applications. Cambridge university press.
[18] Tomaszewicz, P., & Wallwork, G. R. (1983). The oxidation of high-purity iron-chromium-aluminum alloys at 800° C. Oxidation of Metals, 20(3-4), 75-109.
[19] Brady, M. P., Wright, I. G., & Gleeson, B. (2000). Alloy design strategies for promoting protective oxide-scale formation. Jom, 52(1), 16-21.
[20] Sims, C. T., Stoloff, N. S., & Hagel, W. C. (Eds.). (1987). superalloys II (p. 198). New York: Wiley.
[21] Wallwork, G. R., & Hed, A. Z. (1971). Some limiting factors in the use of alloys at high temperatures. Oxidation of Metals, 3(2), 171-184.
[22] Caplan, D., & Sproule, G. I. (1975). Effect of oxide grain structure on the high-temperature oxidation of Cr. Oxidation of Metals, 9(5), 459-472.
[23] Skeldon, M., Calvert, J. M., & Lees, D. G. (1987). An investigation of the growth-mechanism of Cr 2 O 3 on pure chromium in 1 atm oxygen at 950° C. Oxidation of metals, 28(1-2), 109-125.
[24] Lees, D. G., & Calvert, J. M. (1976). The use of 18O as a tracer to study the growth mechanisms of oxide scales. Corrosion Science, 16(10), 767-774.
[25] Zurek, J., Young, D. J., Essuman, E., Hänsel, M., Penkalla, H. J., Niewolak, L., & Quadakkers, W. J. (2008). Growth and adherence of chromia based surface scales on Ni-base alloys in high-and low-pO2 gases. Materials Science and Engineering: A, 477(1-2), 259-270.
[26] Stott, F. H., Wood, G. C., & Stringer, J. (1995). The influence of alloying elements on the development and maintenance of protective scales. Oxidation of metals, 44(1-2), 113-145.
[27] Tedmon, C. S. (1966). The effect of oxide volatilization on the oxidation kinetics of Cr and Fe‐Cr alloys. Journal of the Electrochemical Society, 113(8), 766-768.
[28] Wood, G. C., & Chattopadhyay, B. (1970). Transient oxidation of Ni-base alloys. Corrosion Science, 10(7), 471-480.
[29] Chattopadhyay, B., & Wood, G. C. (1970). The transient oxidation of alloys. Oxidation of Metals, 2(4), 373-399.
[30] Smialek, J. L., & Gibala, R. (1983). Structure of transient oxides formed on nicrai alloys. Metallurgical Transactions A, 14(10), 2143-2161.
[31] Rybicki, G. C., & Smialek, J. L. (1989). Effect of theθ-α-Al 2 O 3 transformation on the oxidation behavior ofβ-NiAl+ Zr. Oxidation of Metals, 31(3-4), 275-304.
[32] Deodeshmukh, V. P., Matthews, S. J., & Klarstrom, D. L. (2011). High-temperature oxidation performance of a new alumina-forming Ni–Fe–Cr–Al alloy in flowing air. international journal of hydrogen energy, 36(7), 4580-4587.
[33] Tien, J. K., & Pettit, F. S. (1972). Mechanism of oxide adherence on Fe-25Cr-4Al (Y or Sc) alloys. Metallurgical Transactions, 3(6), 1587-1599.
[34] Reddy, K. P. R., Smialek, J. L., & Cooper, A. R. (1982). 18 O Tracer studies of Al 2 O 3 scale formation on NiCrAl alloys. Oxidation of Metals, 17(5-6), 429-449.
[35] Young, E. W. A., & De Wit, J. H. W. (1985). The use of a 18O tracer and Rutherford backscattering spectrometry to study the oxidation mechanism of NiAl. Solid State Ionics, 16, 39-46.
[36] Prescott, R., & Graham, M. J. (1992). The formation of aluminum oxide scales on high-temperature alloys. Oxidation of metals, 38(3-4), 233-254.
[37] Saunders, S. R. J., Monteiro, M., & Rizzo, F. (2008). The oxidation behaviour of metals and alloys at high temperatures in atmospheres containing water vapour: A review. Progress in Materials Science, 53(5), 775-837.
[38] Wright, I. G., & Dooley, R. B. (2010). A review of the oxidation behaviour of structural alloys in steam. International Materials Reviews, 55(3), 129-167.
[39] Rahmel, A. (1965). Einfluss von wasserdampf und kohlendioxyd auf die oxydation von nickel in sauerstoff bei hohen temperaturen. Corrosion Science, 5(12), 815-820.
[40] Wood, G. C., Wright, I. G., Hodgkiess, T., & Whittle, D. P. (1970). A Comparison of the Oxidation of Fe&&bond; Cr, Ni-Cr and Co-Cr alloys in oxygen and water vapour. Materials and Corrosion, 21(11), 900-910.
[41] England, D. M., & Virkar, A. V. (2001). Oxidation kinetics of some nickel-based superalloy foils in humidified hydrogen and electronic resistance of the oxide scale formed part II. Journal of the Electrochemical Society, 148(4), A330-A338.
[42] England, D. M., & Virkar, A. V. (1999). Oxidation Kinetics of Some Nickel‐Based Superalloy Foils and Electronic Resistance of the Oxide Scale Formed in Air Part I. Journal of the Electrochemical Society, 146(9), 3196-3202.
[43] Chyrkin, A., Huczkowski, P., Shemet, V., Singheiser, L., & Quadakkers, W. J. (2011). Sub-scale depletion and enrichment processes during high temperature oxidation of the nickel base alloy 625 in the temperature range 900–1000 C. Oxidation of Metals, 75(3-4), 143-166.
[44] Hussain, N., Shahid, K. A., Khan, I. H., & Rahman, S. (1994). Oxidation of high-temperature alloys (superalloys) at elevated temperatures in air: I. Oxidation of Metals, 41(3-4), 251-269.
[45] Hussain, N., Shahid, K. A., Khan, I. H., & Rahman, S. (1995). Oxidation of high-temperature alloys (superalloys) at elevated temperatures in air. II. Oxidation of Metals, 43(3-4), 363-378.
[46] Hussain, N., Qureshi, A. H., Shahid, K. A., Chughtai, N. A., & Khalid, F. A. (2004). High-temperature oxidation behavior of HASTELLOY C-4 in steam. Oxidation of metals, 61(5-6), 355-364.
[47] Douglass, D. L., Kofstad, P., Rahmel, P., & Wood, G. C. (1996). International workshop on high-temperature corrosion. Oxidation of Metals, 45(5-6), 529-620.
[48] Onal, K., Maris-Sida, M. C., Meier, G. H., & Pettit, F. S. (2003). Water vapor effects on the cyclic oxidation resistance of alumina forming alloys. Materials at high temperatures, 20(3), 327-337.
[49] Young, D. J. (2016). High temperature oxidation and corrosion of metals 2nd Edition (Vol. 1). Elsevier.
[50] N’dah, E., Hierro, M. P., Borrero, K., & Perez, F. J. (2007). Study of the cyclic oxidation resistance of superalloy IN-625: lifetime predicted by COSP-modelling program. Oxidation of metals, 68(1-2), 9-21.
[51] Young, D. J., & Pint, B. A. (2006). Chromium volatilization rates from Cr 2 O 3 scales into flowing gases containing water vapor. Oxidation of Metals, 66(3-4), 137-153.
[52] Opila, E. J. (2004). Volatility of common protective oxides in high-temperature water vapor: current understanding and unanswered questions. In Materials Science Forum (Vol. 461, pp. 765-774). Trans Tech Publications.
[53] Wouters, Y., Bamba, G., Galerie, A., Mermoux, M., & Petit, J. P. (2004). Oxygen and water vapour oxidation of 15Cr ferritic stainless steels with different silicon contents. In Materials Science Forum (Vol. 461, pp. 839-848). Trans Tech Publications.
[54] Ishitsuka, T., Inoue, Y., & Ogawa, H. (2004). Effect of silicon on the steam oxidation resistance of a 9% Cr heat resistant steel. Oxidation of Metals, 61(1-2), 125-142.
[55] Holcomb, G. R., & Alman, D. E. (2006). The effect of manganese additions on the reactive evaporation of chromium in Ni–Cr alloys. Scripta materialia, 54(10), 1821-1825.
[56] Pint, B. A. (1996). Experimental observations in support of the dynamic-segregation theory to explain the reactive-element effect. Oxidation of metals, 45(1-2), 1-37.
[57] Naoumidis, A., Schulze, H. A., Jungen, W., & Lersch, P. (1991). Phase studies in the chromium-manganese-titanium oxide system at different oxygen partial pressures. Journal of the European Ceramic Society, 7(1), 55-63.
[58] Chyrkin, A., Swadźba, R., Pillai, R., Galiullin, T., Wessel, E., Grüner, D., & Quadakkers, W. J.(2017). Stability of External α-Al 2 O 3 Scales on Alloy 602 CA at 1100–1200° C. Oxidation of Metals, 1-15.
[59] Boggs, W. E. (1971). The Oxidation of Iron‐Aluminum Alloys from 450° to 900° C. Journal of the Electrochemical Society, 118(6), 906-913.
[60] Wagner, C. (1952). Theoretical analysis of the diffusion processes determining the oxidation rate of alloys. Journal of the Electrochemical Society, 99(10), 369-380.
[61] Barin, I., & Platzki, G. (1989). Thermochemical data of pure substances (Vol. 304, No. 334, p. 1117). Weinheim: VCH.
[62] Rapp, R. A. (1965). Kinetics, microstructures and mechanism of internal oxidation-its effect and prevention in high temperature alloy oxidation. Corrosion, 21(12), 382-401.
[63] Xu, C., & Gao, W. (2000). Pilling-Bedworth ratio for oxidation of alloys. Material Research Innovations, 3(4), 231-235.
[64] Whittle, D. P., Shida, Y., Wood, G. C., Stott, F. H., & Bastow, B. D. (1982). Enhanced diffusion of oxygen during internal oxidation of nickel-base alloys. Philosophical Magazine A, 46(6), 931-949.
[65] Park, J. W., & Altstetter, C. J. (1987). The diffusion and solubility of oxygen in solid nickel. Metallurgical Transactions A, 18, 43-50.
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *