|
Reference [1] K.A. Terrani, S.J. Zinkle, L.L. Snead, Advanced oxidation-resistant iron-based alloys for LWR fuel cladding, J. Nucl. Mater. 448 (2014) 420-435. [2] L. Hallstadius, S. Johnson, E. Lahoda, Cladding for high performance fuel, Prog. Nucl. Energy 57 (2012) 71-76. [3] K. Barrett, S. Bragg-Sitton, D. Galicki, Advanced LWR Nuclear Fuel Cladding System Development Trade-off Study, Idaho National Laboratory, 2012. [4] T.R. Allen, J.T. Busby, R.L. Klueh, S.A. Maloy, M.B. Toloczko, Cladding and duct materials for advanced nuclear recycle reactors, JOM 60 (2008) 15-23 [5] F. Khatkhatay, J. Jian, L. Jiao, Q. Su, J. Gan, J.I. Cole, H. Wang, Diffusion barrier properties of nitride-based coatings on fuel cladding, J. Alloys Compd. 580 (2013) 442-448. [6] F. Khatkhatay, L. Jiao, J. Jian, W. Zhang, Z. Jiao, J. Gan, H. Zhang, X. Zhang , H. Wang, Superior corrosion resistance properties of TiN-based coatings on Zircaloy tubes in supercritical water, J. Nucl. Mater. 451 (2014) 346-351. [7] I. Kim, F. Khatkhatay, L. Jiao, G. Swadener, J.I. Cole, J. Gan, H. Wang, TiN-based coatings on fuel cladding tubes for advanced nuclear reactors, J. Nucl. Mater. 429 (2012) 143-148. [8] E. Alat, A.T. Motta, R.J. Comstock, J.M. Partezana, D.E. Wolfe, Ceramic coating for corrosion (c3) resistance of nuclear fuel cladding, Surf. Coat. Technol. 281 (2015) 133-143. [9] E. Alat, A.T. Motta, R.J. Comstock, J.M. Partezana, D.E. Wolfe, Multilayer (TiN, TiAlN) ceramic coatings for nuclear fuel cladding, J. Nucl. Mater. 478 (2016) 236-244. [10] W.J. Chou, G.P. Yu, J.H. Huang, Corrosion behavior of TiN-coated 304 stainless steel, Corros. Sci. 43 (2001) 2023-2035. [11] J.H. Huang, C.Y. Hsu, S.S. Chen, G.P. Yu, Effect of substrate bias on the structure and properties of ion-plated ZrN on Si and stainless steel substrates, Mater. Chem. Phys. 77 (2002) 14-21. [12] J.H. Huang, T.C. Lin, G.P. Yu, Phase transition and mechanical properties of ZrNxOy thin films on AISI 304 stainless steel, Surf. Coat. Technol. 206 (2011) 107-116. [13] J.H. Park, H.G. Kim, J.Y. Park, Y.I. Jung, D.J. Park, Y.H. Koo, High temperature steam-oxidation behavior of arc ion plated Cr coatings for accident tolerant fuel claddings, Surf. Coat. Technol. 280 (2015) 256-259. [14] ASM, Metal Handbook, Vol. 2, ninth ed., ASM International, Materials Park, 1988. [15] D.R. Lide, CRC Handbook of Chemistry and Physics, 90th ed., CRC Press, Boca Raton, FL, (2010) 12-204. [16] J.R. Lamarsh, A.J. Baratta, Introduction to Nuclear Engineering, third ed., Prentice Hall, New Jersey, 2001. [17] International Atomic Energy Agency, Waterside corrosion of zirconium alloys in nuclear power plants, IAEA-TECDOC-996, (1998) 12-18. [18] L.E. Steele, Radiation Embrittlement of Nuclear Reactor Pressure Vessel Steels: An International Review, 4th volume, (1993) 30. [19] G. Bart, J. Bertsch, Zirconium alloys for fuel element structures, Chimia 59 (2005) 938-943. [20] National Academies of Sciences, Engineering, and Medicine, Lessons Learned from the Fukushima Nuclear Accident for Improving Safety and Security of U.S. Nuclear Plants: Phase 2, Washington, DC: The National Academies Press, (2016) 36. [21] A.T. Motta, Waterside corrosion in zirconium alloys, JOM 63 (2011) 59-63. [22] R.S. Daum, Y.S. Chu, A.T. Motta, Identification and quantification of hydride phases in Zircaloy-4 cladding using synchrotron X-ray diffraction, J. Nucl. Mater. 392 (2009) 453-463. [23] R. Dutton, K. Nuttall, M.P. Puls, L.A. Simpson, Mechanisms of hydrogen induced delayed cracking in hydride forming materials, Metall. Trans. A 8 (1977) 1553-1562. [24] P. Efsing, K. Pettersson, Delayed Hydride Cracking in Irradiated Zircaloy Cladding, in: G.P. Sabol and G.D. Moan (Eds.), Zirconium in the Nuclear Industry: Twelfth International Symposium, ASTM STP 1354, West Conshohocken, PA, 2000, pp. 340-355. [25] International Atomic Energy Agency, Delayed Hydride Cracking of Zirconium Alloy Fuel Cladding, IAEA-TECDOC-1649, IAEA, Vienna (2010). [26] A.T. Motta, A. Yilmazbayhan, M.J.G. da Silva, R.J. Comstock, G.S. Was, J.T. Busby, E. Gartner, Q. Peng, Y.H. Jeong, J.Y. Park, Zirconium alloys for supercritical water reactor applications: Challenges and possibilities, J. Nucl. Mater. 371 (2007) 61-75. [27] G.S. Was, P. Ampornrat, G. Gupta, S. Teysseyre, E.A. West, T.R. Allen, K. Sridharan, L. Tan, Y. Chen, X. Ren, C. Pister, Corrosion and stress corrosion cracking in supercritical water, J. Nucl. Mater., 371 (2007) 176-201. [28] D. Guzonas, F. Brosseau, P. Tremaine, J. Meesungnoen, J.P. Jay-Gerin, Water chemistry in a supercritical water-cooled pressure tube reactor, Nucl. Technol. 179 (2012) 205-219. [29] D.Q. Peng, X.D. Bai, F. Pan, H. Sun, B.S. Chen, Influence of aluminum ions implanted on oxidation behavior of ZIRLO alloy at 500℃, Vacuum 80 (2006) 530-536. [30] J. Xu, X. Bai, Y. Fan, Studies on the corrosion behavior of yttrium-implanted zircaloy-4, J. Mater. Sci. 35 (2000) 6225-6229. [31] D.Q. Peng, X.D. Bai, X.W. Chen, Q.G. Zhou, X.Y. Liu, R.H. Yu, Effect of cerium ion implantation on the aqueous corrosion behavior of zircaloy-4, Appl. Surf. Sci. 218 (2003) 7-11. [32] S.J. Lee, H.S. Kwon, W. Kim, B.H. Choi, Effects of compositional and structural change on the corrosion behaviour of nitrogen implanted Zircaloy-4, Mater. Sci. Eng., A A263 (1999) 23-31. [33] X. Bai, J. Xu, F. He, Y. Fan, The air oxidation of yttrium ion implanted zircaloy-4 at 500℃, Nucl. Instrum. Methods Phys. Res., Sect. B 160 (2000) 49-53. [34] N. Claussen, M. Rühle, A.H. Heuer, Advances in ceramics, Science and Technology of Zirconia II, vol. 12, American Ceramic Society, Columbus, OH, 1984. [35] J. Abriata, J. Garcés, R. Versaci, The O-Zr (Oxygen-Zirconium) system, J. Phase Equil. 7 (1986) 116-124. [36] P. Li, I.W. Chen, J.E. Penner-Hahn, X-ray-absorption studies of zirconia polymorphs. I. Characteristic structures, Phys. Rev. B 48 (1993) 10063-10073. [37] E.C. Subbarao, Zirconia-an overview, Adv. Ceram. 3 (1981) 1-24. [38] K. Tanabe, T. Yamaguchi, Acid-base bifunctional catalysis by ZrO2 and its mixed oxides, Catal. Today 20 (1994) 185-197. [39] D.R. Clarke, C.G. Levi, Materials design for the next generation thermal barrier coatings, Annu. Rev. Mater. Res. 33 (2003) 383-417. [40] P. Li, I.W. Chen, J.E. Penner-Hahn, Effect of dopants on zirconia stabilization-an X-ray absorption study: I, trivalent dopants, J. Am. Ceram. Soc. 77 (1994) 118-128. [41] Y.B. Cheng, D.P. Thompson, Role of anion vacancies in nitrogen-stabilized zirconia, J. Am. Ceram. Soc. 76 (1993) 683-688. [42] S. Fabris, A.T. Paxton, M.W. Finnis, A stabilization mechanism of zirconia based on oxygen vacancies only, Acta Mater. 50 (2002) 5171-5178. [43] Y.M. Chiang, D. Birnie III, W.D. Kingery, PHYSICAL CERAMICS, Principles for Ceramic Science and Engineering, John Wiley & Sons, New York, 1997. [44] Y. Kanno, Stability of metastable tetragonal ZrO2 in compound powders and nucleation arguments, J. Mater. Sci. 25 (1990) 1987-1990. [45] P. Floratos, A. Goulas, Martensitic transformation analysis and transformation toughness on zirconia (ZrO2) ceramics. [46] X.J. Chen, K.A. Khor, S.H. Chan, L.G. Yu, Influence of microstructure on the ionic conductivity of yttria-stabilized zirconia electrolyte, Mater. Sci. Eng., A 335 (2002) 246. [47] H.J. Cho, Y.D. Kim, D.S. Park, E. Lee, C.H. Park, J.S. Jang, K.B. Lee, H.W. Kim, Y.J. Ki, I.K. Han, Y.W. Song, New TIT capacitor with ZrO2/Al2O3/ZrO2 dielectrics for 60nm and below DRAMs, Solid-State Electron. 51 (2007) 1529-1533. [48] W. Guan, S. Long, R. Jia, M. Liu, Nonvolatile resistive switching memory utilizing gold nanocrystals embedded in zirconium oxide, Appl. Phys. Lett. 91 (2007) 062111. [49] S.W. Nam, J.H. Yoo, H.Y. Kim, S.K. Kang, D.H. Ko, C.W. Yang, H.J. Lee, M.H. Cho, J.H. Ku, Study of ZrO2 thin films for gate oxide applications, J. Vac. Sci. Technol., A 19 (2001) 1720-1724. [50] J. Robertson, Band offsets of wide-band-gap oxides and implications for future electronic devices, J. Vac. Sci. Technol., B: Microelectron. Nanometer Struct. Process., Meas., Phenom. 18 (2000) 1785-1791. [51] M.V. Fischetti, D.A. Neumayer, E.A. Cartier, Effective electron mobility in Si inversion layers in metal-oxide-semiconductor systems with a high-κ insulator: The role of remote phonon scattering, J. Appl. Phys. 90 (2001) 4587-4608. [52] H. Li, K. Liang, L. Mei, S. Gu, S. Wang, Oxidation protection of mild steel by zirconia sol-gel coatings, Mater. Lett. 51 (2001) 320-324. [53] S. Venkataraj, O. Kappertz, C. Liesch, R. Detemple, R. Jayavel, M. Wuttig, Thermal stability of sputtered zirconium oxide films, Vacuum 75 (2004) 7-16. [54] E.W. Leib, U. Vainio, R.M. Pasquarelli, J. Kus, C. Czaschke, N. Walter, R. Janssen, M. Müller, A. Schreyer, H. Weller, T. Vossmeyer, Synthesis and thermal stability of zirconia and yttria-stabilized zirconia microspheres, J. Colloid Interface Sci. 448 (2015) 582-592. [55] C. Piconi, G. Maccauro, Zirconia as a ceramic biomaterial, Biomaterials 20 (1999) 1-25. [56] C. Piconi, G. Maccauro, L. Pilloni, W. Burger, F. Muratori, H.G. Richter, On the fracture of a zirconia ball head, J. Mater. Sci.: Mater. Med. 17 (2006) 289-300. [57] M. Ohring, The Materials Science of Thin Films, Academic Press Inc, San Diego, 1992. [58] JCPDS file 89-9066. [59] JCPDS file 89-7710. [60] JCPDS file 89-9069. [61] W.A. Roth, G. Becker, Thermochemical revisions, Z. Physik. Chem. A, 145 (1929) 461-469. [62] O. Ruff, F. Ebert, Refractory ceramics: 1, the forms of zirconia dioxide, Z. Anorg. Allgem. Chem. 180 (1929) 19-41. [63] L. Passerini, Isomorphism among oxides of different tetravalent metals: CeO2-ThO2; CeO2-ZrO2; CeO2-HfO2, Gazz. Chim. Ital., 60 (1930) 762. [64] F.C. Nonamaker, Technology of zirconium and its compounds, Chem. Met. Eng. 31 (1924) 151-155. [65] K. Maca, H. Hadraba, J. Cihlar, Electrophoretic deposition of alumina and zirconia: I. Single-component systems, Ceram. Int. 30 (2004) 843-851. [66] B. Hatton, P.S. Nicholson, Design and fracture of layered Al2O3/TZ3Y composites produced by electrophoretic deposition, J. Am. Ceram. Soc. 84 (2001) 571-576. [67] J.F. Shackelford, W. Alexander, CRC Materials Science and Engineering Handbook, third ed., CRC Press, Boca Raton, 2001. [68] C.B. Alcock, K.T. Jacobk, S. Zador, Zirconium: Physicochemical Properties of its Compounds and Alloys, International Atomic Energy Agency, Vienna, 1976. [69] A. Hidaka, J. Nakamura, J. Sugimoto, Influence of thermal properties of zirconia shroud on analysis of PHEBUS FPT0 bundle degradation test with ICARE2 code, Nucl. Eng. Des. 168 (1997) 361-371. [70] F. Cernuschi, S. Ahmaniemi, P. Vuoristo, T. Mäntylä, Modelling of thermal conductivity of porous materials: application to thick thermal barrier coatings, J. Eur. Ceram. Soc. 24 (2004) 2657-2667. [71] S. Venkataraj, O. Kappertz, H. Weis, R. Jayavel, M. Wutting, Structural and optical properties of thin zirconium oxide films prepared by reactive direct current magnetron sputtering, J. Appl. Phys. 92 (2002) 3599-3607. [72] Z.W. Zhao, B.K. Tay, G.Q. Yu, S.P. Lau, Optical properties of filtered cathodic vacuum arc-deposited zirconium oxide thin films, J. Phys.: Condens. Matter 15 (2003) 7707-7715. [73] X.J. Chen, K.A. Khor, S.H. Chan, L.G. Yu, Influence of microstructure on the ionic conductivity of yttria-stabilized zirconia electrolyte, Mater. Sci. Eng., A 335 (2002) 246-252. [74] B. Králik, E.K. Chang, S.G. Louie, Structural properties and quasiparticle band structure of zirconia, Phys. Rev. B: Condens. Matter Mater. Phys. 57 (1998) 7027-7036. [75] C.S. Hwang, H.J. Kim, Deposition and characterization of ZrO2 thin films on silicon substrate by MOCVD, J. Mater. Res. 8 (1993) 1361-1367. [76] International Atomic Energy Agency, Corrosion of zirconium alloys in nuclear power plants, IAEA-TECDOC-684, IAEA, Vienna, 1993. [77] Y.S. Kim, K.S. Rheem, D.K. Min, Phenomenological Study of In-Reactor Corrosion of Zircaloy-4 in Pressurized Water Reactors, in: A.M. Garde, E.R. Bradley (Eds.), Zirconium in the Nuclear Industry: Tenth International Symposium, ASTM STP 1245, Philadelphia, PA, 1994, pp. 745-759. [78] D.L. Douglass, C. Wagner, The Oxidation of oxygen-deficient zirconia and its relationship to the oxidation of zirconium, J. Electrochem. Soc. 113 (1966) 671-676. [79] C. H. Ma, J. H. Huang, H. Chen, Residual stress measurement in textured thin film by grazing-incidence X-ray diffraction, Thin Solid Films 418 (2002) 73-78. [80] B.D. Cullity, S.R. Stock, Elements of X-ray Diffraction, third ed., Prentice Hall, New Jersey, 2001. [81] A.N. Wang, C.P. Chuang, G.P. Yu, J.H. Huang, Determination of average X-ray strain (AXS) on TiN hard coatings using cos2αsin2 X-ray diffraction method, Surf. Coat. Technol. 262 (2015) 40-47. [82] A.N. Wang, J.H. Huang, H.W. Hsiao, G.P. Yu, H. Chen, Residual stress measurement on TiN thin films by combing nanoindentation and average X-ray strain (AXS) method, Surf. Coat. Technol. 280 (2015) 43-49. [83] L. Baker, L.C. Just, Studies of Metal-water Reactions at High Temperatures. III. Experimental and Theoretical Studies of the Zirconium-water Reaction, ANL-6548, Argonne National Laboratory, 1962. [84] H.M. Chung, G.R. Thomas, High-Temperature Oxidation of Zircaloy in Hydrogen-Steam Mixtures, in: D.G. Franklin, R.B. Adamson (Eds.), Zirconium in the Nuclear Industry: Sixth International Symposium, ASTM STP 824, Philadelphia, PA, 1984, pp. 793-809. [85] V.F. Urbanic, T.R. Heidrick, High-temperature oxidation of Zircaloy-2 and Zircaloy-4 in steam, J. Nucl. Mater. 75 (1978) 251-261. [86] A.F. Brown, T. Healey, The kinetics of total oxygen uptake in steam-oxidised zircaloy-2 in the range 1273-1673 K, J. Nucl. Mater. 88 (1980) 1-6. [87] R.G. Ballinger, W.G. Dobson, R.R. Biederman, Oxidation reaction kinetics of Zircaloy-4 in an unlimited steam environment, J. Nucl. Mater. 62 (1976) 213-220. [88] H. Uetsuka, P. Hofman, High-temperature oxidation kinetics of Zircaloy-4 in oxygen/argon mixtures, J. Nucl. Mater. 168 (1989) 47-57. [89] C. Wagner, Beitrag zur theorie des anlaufvorgangs, Z. Phys. Chem., Abt. B 21 (1933) 25-41. [90] F. Nagase, T. Otomo, H. Uetsuka, Oxidation kinetics of low-Sn Zircaloy-4 at the temperature range from 773 to 1,573K, J. Nucl. Sci. Technol. 40 (2003) 213-219. [91] J.H. Baek, K.B. Park, Y.H. Jeong, Oxidation kinetics of Zircaloy-4 and Zr-1Nb-1Sn-0.1Fe at temperatures of 700-1200°C, J. Nucl. Mater. 335 (2004) 443-456. [92] C. Morant, J.M. Sanz, L. Galán, L. Soriano, F. Rueda, An XPS study of the interaction of oxygen with zirconium, Surf. Sci. 218 (1989) 331-345. [93] M. Matsuoka, S. Isotani, W. Sucasaire, N. Kuratani, K. Ogata, X-ray photoelectron spectroscopy analysis of zirconium nitride-like films prepared on Si(100) substrates by ion beam assisted deposition, Surf. Coat. Technol. 202 (2008) 3129-3135. [94] I. Milošev, H.H. Strehblow, M. Gaberšček, B. Navinšek, Electrochemical oxidation of ZrN hard (PVD) coatings studied by XPS, Surf. Interface Anal. 24 (1996) 448-458. [95] M. Del Re, R. Gouttebaron, J.P. Dauchot, P. Leclère, G. Terwagne, M. Hecq, Study of ZrN layers deposited by reactive magnetron sputtering, Surf. Coat. Technol., 174-175 (2003) 240-245. [96] J. Chastain, J.F. Moulder, Handbook of X-ray Photoelectron Spectroscopy: A Reference Book of Standard Spectra for Identification and Interpretation of XPS Data, Physical Electronics Division, Perkin-Elmer Corp, Minnesota, 1992. [97] G. Bakradze, L.P.H. Jeurgens, E.J. Mittemeijer, The different initial oxidation kinetics of Zr(0001) and Zr(101 ̅0) surfaces, J. Appl. Phys. 110 (2011) 024904. [98] A. Lyapin, L.P.H. Jeurgens, P.C.J. Graat, E.J. Mittemeijer, Ellipsometric and XPS study of the initial oxidation of zirconium at room temperature, Surf. Interface Anal. 36 (2004) 989-992. [99] D.A. Shirley, High-Resolution X-Ray photoemission spectrum of the valence bands of gold, Phys. Rev. B 5 (1972) 4709-4714. [100] P. Scherrer, Bestimmung der Größe und der inneren Struktur von Kolloidteilchen mittels Röntgenstrahlen, Gött. Nachr. 1918 (1918) 98-100. [101] L.V. Azároff, M.J. Buerger, The powder method in X-ray crystallography, McGraw-Hill, 1958. [102] W.C. Oliver, G.M. Pharr, An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments, J. Mater. Res. 7 (1992) 1564-1583. [103] D.K. Owens, R.C. Wendt, Estimation of the surface free energy of polymers, J. Appl. Polym. Sci. 13 (1969) 1741-1747. [104] T. Young, An Essay on the Cohesion of Fluids, Philos. Trans. R. Soc. London 95 (1805) 65-87. [105] E. Lugscheider, K. Bobzin, M. Möller, The effect of PVD layer constitution on surface free energy, Thin Solid Films 355-356 (1999) 367-373. [106] H. Oettel, R. Wiedemann, S. Preißler, Residual stresses in nitride hard coatings prepared by magnetron sputtering and arc evaporation, Surf. Coat. Technol. 74-75 (1995) 273-278. [107] F. Cardarelli, Materials Handbook: A Concise Desktop Reference, second ed., Springer, London, New York, 2008. [108] M. Harada, M. Kimpara, K. Abe, Effect of Alloying Elements on Uniform Corrosion Resistance of Zirconium-Based Alloys in 360°C Water and 400°C Steam, in: C.M. Eucken, A.M. Garde (Eds.), Zirconium in the Nuclear Industry: Ninth International Symposium, ASTM STP 1132, Philadelphia, PA, 1991, pp. 368-391. [109] D. Pêcheur, F. Lefebvre, A.T. Motta, C. Lemaignan, J.F. Wadier, Precipitate evolution in the Zircaloy-4 oxide layer, J. Nucl. Mater. 189 (1992) 318-332. [110] D. Pêcheur, F. Lefebvre, A.T. Motta, C. Lemaignan, D. Charquet, Oxidation of Intermetallic Precipitates in Zircaloy-4: Impact of Irradiation, in: A.M. Garde, E.R. Bradley (Eds.), Zirconium in the Nuclear Industry: Tenth International Symposium, ASTM STP 1245, Philadelphia, PA, 1994, pp. 687-705. [111] P. Barberis, E. ahlberg, N. Simic, D. Charquet, C. Lemaignan, G. Wikmark, M. Dahlbäck, M. Limbäck, P. Tägtström, B. Lehtinen, Role of the Second-Phase Particles in Zirconium Binary Alloys, in: G.D. Moan, P. Rudling (Eds.), Zirconium in the Nuclear Industry: Thirteenth International Symposium, ASTM STP 1423, West Conshohocken, PA, 2002, pp. 33-58. [112] T. Forgeron, J.C. Brachet, F. Barcelo, A. Castaing, J. Hivroz, J.P. Mardon, C. Bernaudat, Experiment and Modeling of Advanced Fuel Rod Cladding Behavior Under LOCA Conditions: Alpha-Beta Phase Transformation Kinetics and EDGAR Methodology, in: G.P. Sabol and G.D. Moan (Eds.), Zirconium in the Nuclear Industry: Twelfth International Symposium, ASTM STP 1354, West Conshohocken, PA, 2000, pp. 256-278. [113] I.L. Bramwell, T.J. Haste, D. Worswick, P.D. Parsons, An Experimental Investigation into the Oxidation of Zircaloy-4 at Elevated Pressures in the 750 to 1000°C Temperature Range, in: A.M. Garde, E.R. Bradley (Eds.), Zirconium in the Nuclear Industry: Tenth International Symposium, ASTM STP 1245, Philadelphia, PA, 1994, pp. 450-465. [114] D. Charquet, R. Hahn, E. Ortlieb, J.P. Gros, J.F. Wadier, Solubility Limits and Formation of intermetallic Precipitates in ZrSnFeCr Alloys, in: L.F.P. Van Swam, C.M. Eucken (Eds.), Zirconium in the Nuclear Industry: Eighth Symposium, ASTM STP 1023, Philadelphia, PA, 1988, pp. 405-422. [115] V.S. Tong, T.B. Britton, Formation of very large ‘blocky alpha’ grains in Zircaloy-4, Acta Mater. 129 (2017) 510-520. [116] S. Leistikow, Comparison of High-Temperature Steam Oxidation Kinetics Under LWR Accident Conditions: Zircaloy-4 Versus Austenitic Stainless Steel No. 1.4970, in: D.G. Franklin, R.B. Adamson (Eds.), Zirconium in the Nuclear Industry: Sixth Symposium, ASTM STP 824, Philadelphia, PA, 1984, pp. 763-779. [117] J.W. Hsieh, Growth of ZrO2 by Heat Treating ZrN Thin Film under Controlled Atmosphere, 2012, Master Thesis, National Tsing Hua University, R.O.C. [118] S.A. Chou, The Oxidation Behavior and Corrosion Resistance of ZrN Thin Films Heat Treated in Vacuum, 2014, Master Thesis, National Tsing Hua University, R.O.C. [119] K.L. Kuo, The Oxidation Behavior and Corrosion Resistance of ZrN Thin Films Annealed in Vacuum, 2015, Master Thesis, National Tsing Hua University, R.O.C. [120] JCPDS file 89-5269. [121] A.J. Perry, A contribution to the study of poisson's ratios and elastic constants of TiN, ZrN and HfN, Thin Solid Films 193-194 (1990) 463-471.
|