帳號:guest(3.133.135.8)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):丁奕盛
作者(外文):Ting, I-Sheng
論文名稱(中文):氧化鋯覆膜鋯四合金之初期氧化行為研究
論文名稱(外文):The Incipient Oxidation Behavior of ZrO2-Coated Zircaloy-4
指導教授(中文):黃嘉宏
喻冀平
指導教授(外文):Huang, Jia-Hong
Yu, Ge-Ping
口試委員(中文):呂福興
董曉明
口試委員(外文):Lu, Fu-Hsing
Tung, Hsiao-Ming
學位類別:碩士
校院名稱:國立清華大學
系所名稱:工程與系統科學系
學號:104011507
出版年(民國):106
畢業學年度:105
語文別:英文
論文頁數:147
中文關鍵詞:二氧化鋯薄膜鋯四合金氧化行為殘留應力
外文關鍵詞:ZrO2 thin filmZircaloy-4Oxidation behaviorResidual stress
相關次數:
  • 推薦推薦:0
  • 點閱點閱:516
  • 評分評分:*****
  • 下載下載:22
  • 收藏收藏:0
本研究目的在於探討鍍著於鋯四合金上之二氧化鋯薄膜的初期氧化行為,並與未鍍膜之鋯四合金比較。利用非平衡磁控濺鍍系統,鍍著正方晶與單斜晶結構之二氧化鋯薄膜於鋯四合金。潤濕性測試顯示,正方晶與單斜晶結構之二氧化鋯與鋯四合金間的接觸角皆小於30°,其交互擴散區間皆大於150 nm。這也代表兩結構之二氧化鋯薄膜在鋯四合金上沒有吸附性不佳的問題。在經過700°C、800°C,以及900°C氬氣環境下之氧化熱重分析,X光繞射結果顯示兩種結構濺鍍之薄膜與表面自然形成之二氧化鋯均呈現單斜晶為主的結構。在700°C之下的氧化增重,有無二氧化鋯覆膜的鋯四合金間並沒有顯著的差異,並且氧化增重與時間符合拋物線關係。當氧化溫度為800°C時,單斜晶二氧化鋯覆膜之鋯四合金具有最少的增重,然而氧化指數n值為0.78。當氧化溫度提升至高於鋯四合金相變化溫度以上之900°C時,正方晶二氧化鋯覆膜之鋯四合金具有較佳的抗氧化能力。然而當溫度高於800°C時,氧化增重曲線不再遵守拋物線關係。在高於700°C的氧化熱重分析中,於鋯四合金上自然形成之二氧化鋯發現到有瘤狀氧化物。由預先濺鍍形成的正方晶與單斜晶結構之二氧化鋯覆膜均可以避免表面瘤狀氧化物的產生。藉由azimuthal cos2(alpha)sin2(psi)方法量測正方晶與單斜晶結構的二氧化鋯的殘留應力分布,可以發現殘留應力隨方位角的不同,並不一定呈現均勻分布。此外,azimuthal cos2(alpha)sin2(psi)方法為一種便利的非破壞性方法,可應用於檢測表面氧化物的分布均勻性,且適用於多種相同時存在的狀況。
The purpose of this study was to investigate the incipient oxidation behavior of ZrO2-coated Zircaloy-4 (Zry-4) and compare with that of uncoated Zry-4. ZrO2 thin films with tetragonal (t) and monoclinic (m) dominant phases were deposited on Zry-4 by unbalanced magnetron sputtering (UBMS). The wettability tests showed that the contact angles of both t-ZrO2 and m-ZrO2 on Zry-4 were less than 30°, and the corresponding widths of interdiffusion zones were larger than 150 nm, indicating that there would be no adhesion problem between ZrO2 film and Zry-4 substrate. Thermogravimetric analysis (TGA) tests were carried out at 700, 800 and 900°C in argon atmosphere. X-ray diffraction (XRD) patterns showed that both naturally formed ZrO2 and the deposited ZrO2 on Zry-4 possessed a m-ZrO2 dominant structure after oxidation. The results of weight gain at 700°C showed that there was no significant difference in oxidation behavior between uncoated and ZrO2-coated Zry-4, and the oxidation kinetics obeyed parabolic law. At 800°C, m-ZrO2-coated Zry-4 possessed the least weight gain, while the oxidation rate deviated from parabolic law with an exponent n value of 0.78. As the oxidation temperature increased to 900°C, above the phase transformation temperature of Zry-4, t-ZrO2-coated Zry-4 displayed a better oxidation resistance. However, the oxidation kinetics of all series of specimens no longer obeyed parabolic law above 800°C. Oxide nodules were observed on the uncoated Zry-4 after TGA oxidation test at 700°C and above. The pre-deposited ZrO2 thin films, both monoclinic or tetragonal phases, can act as a protective layer to prevent the formation of oxide nodules. The azimuthal cos2(alpha)sin2(psi) technique was used to show the distribution of residual stress of t-ZrO2 and m-ZrO2 phases in the specimens. The results indicated that the oxide phases were not always uniformly distributed in the specimens. Moreover, the azimuthal cos2(alpha)sin2(psi) technique can be one of the convenient and nondestructive methods to examine the uniformity of multi-phase oxide layer on the sample surface.
Content
致謝 i
摘要 iv
Abstract v
Content vi
List of Figures ix
List of Tables xiv
Chapter 1 Introduction 1
Chapter 2 Literature Review 3
2.1 Severe Oxidizing Environments in PWR 4
2.2 Improvements of Zirconium-based Alloys 5
2.2.1 Alternative Cladding Materials 5
2.2.2 Compositional Modification of Zirconium-based Alloys 5
2.2.3 Coating Technology 6
2.3 Candidate Protective Coating Material for Zry-4: ZrO2 7
2.3.1 Characteristics of ZrO2 7
2.3.2 Applications of ZrO2 8
2.4 The Stress Distribution of ZrO2 Thin Films 13
2.5 Oxidation of Zirconium-based Alloys at High Temperature 14
Chapter 3 Experimental Details 15
3.1 Substrate Preparation and Deposition Process 15
3.2 Characterization of Composition and Structure 19
3.2.1 Chemical Composition 19
3.2.2 Compositional Depth Profiles 20
3.2.3 Crystal Structure and Preferred Orientation 21
3.2.4 Topography and Cross-sectional Morphology 22
3.2.5 Surface Roughness 24
3.3 Characterization of Thin Films Properties 24
3.3.1 Hardness and Elastic Constant 25
3.3.2 Residual Stress 25
3.3.3 Wettability 26
3.3.4 Oxidation Behavior 28
Chapter 4 Results 31
4.1 Chemical Compositions 34
4.1.1 Surface Compositions and Compositional Depth Profiles for the As-deposited Specimens 34
4.1.2 Surface Compositions after TGA Oxidation Test 36
4.2 Structure 37
4.3 Characterization of Thin Film Properties 58
Chapter 5 Discussion 73
5.1 The Structure of the As-deposited ZrO2 on Zry-4 73
5.2 The Oxidation Behavior of ZrO2-coated Zry-4 73
5.2.1 The Structure of ZrO2 Films 73
5.2.2 Surface Morphology 75
5.2.3 Weight Gain of TGA Oxidation Test 77
5.3 Distribution of Residual Stress: Azimuthal cos2(alpha)sin2(psi) 81
Chapter 6 Conclusions 83
References 84
Appendix A Grinding and Polishing Procedures of Zircaloy-4 93
Appendix B Deconvolution of XPS 95
Appendix C Azimuthal cos2(alpha)sin2(psi) 107
Appendix D Vacuum Annealing of ZrN-coated Zry-4 127
Appendix E Enlarged SEM Images after Oxidation 144

Reference
[1] K.A. Terrani, S.J. Zinkle, L.L. Snead, Advanced oxidation-resistant iron-based alloys for LWR fuel cladding, J. Nucl. Mater. 448 (2014) 420-435.
[2] L. Hallstadius, S. Johnson, E. Lahoda, Cladding for high performance fuel, Prog. Nucl. Energy 57 (2012) 71-76.
[3] K. Barrett, S. Bragg-Sitton, D. Galicki, Advanced LWR Nuclear Fuel Cladding System Development Trade-off Study, Idaho National Laboratory, 2012.
[4] T.R. Allen, J.T. Busby, R.L. Klueh, S.A. Maloy, M.B. Toloczko, Cladding and duct materials for advanced nuclear recycle reactors, JOM 60 (2008) 15-23
[5] F. Khatkhatay, J. Jian, L. Jiao, Q. Su, J. Gan, J.I. Cole, H. Wang, Diffusion barrier properties of nitride-based coatings on fuel cladding, J. Alloys Compd. 580 (2013) 442-448.
[6] F. Khatkhatay, L. Jiao, J. Jian, W. Zhang, Z. Jiao, J. Gan, H. Zhang, X. Zhang , H. Wang, Superior corrosion resistance properties of TiN-based coatings on Zircaloy tubes in supercritical water, J. Nucl. Mater. 451 (2014) 346-351.
[7] I. Kim, F. Khatkhatay, L. Jiao, G. Swadener, J.I. Cole, J. Gan, H. Wang, TiN-based coatings on fuel cladding tubes for advanced nuclear reactors, J. Nucl. Mater. 429 (2012) 143-148.
[8] E. Alat, A.T. Motta, R.J. Comstock, J.M. Partezana, D.E. Wolfe, Ceramic coating for corrosion (c3) resistance of nuclear fuel cladding, Surf. Coat. Technol. 281 (2015) 133-143.
[9] E. Alat, A.T. Motta, R.J. Comstock, J.M. Partezana, D.E. Wolfe, Multilayer (TiN, TiAlN) ceramic coatings for nuclear fuel cladding, J. Nucl. Mater. 478 (2016) 236-244.
[10] W.J. Chou, G.P. Yu, J.H. Huang, Corrosion behavior of TiN-coated 304 stainless steel, Corros. Sci. 43 (2001) 2023-2035.
[11] J.H. Huang, C.Y. Hsu, S.S. Chen, G.P. Yu, Effect of substrate bias on the structure and properties of ion-plated ZrN on Si and stainless steel substrates, Mater. Chem. Phys. 77 (2002) 14-21.
[12] J.H. Huang, T.C. Lin, G.P. Yu, Phase transition and mechanical properties of ZrNxOy thin films on AISI 304 stainless steel, Surf. Coat. Technol. 206 (2011) 107-116.
[13] J.H. Park, H.G. Kim, J.Y. Park, Y.I. Jung, D.J. Park, Y.H. Koo, High temperature steam-oxidation behavior of arc ion plated Cr coatings for accident tolerant fuel claddings, Surf. Coat. Technol. 280 (2015) 256-259.
[14] ASM, Metal Handbook, Vol. 2, ninth ed., ASM International, Materials Park, 1988.
[15] D.R. Lide, CRC Handbook of Chemistry and Physics, 90th ed., CRC Press, Boca Raton, FL, (2010) 12-204.
[16] J.R. Lamarsh, A.J. Baratta, Introduction to Nuclear Engineering, third ed., Prentice Hall, New Jersey, 2001.
[17] International Atomic Energy Agency, Waterside corrosion of zirconium alloys in nuclear power plants, IAEA-TECDOC-996, (1998) 12-18.
[18] L.E. Steele, Radiation Embrittlement of Nuclear Reactor Pressure Vessel Steels: An International Review, 4th volume, (1993) 30.
[19] G. Bart, J. Bertsch, Zirconium alloys for fuel element structures, Chimia 59 (2005) 938-943.
[20] National Academies of Sciences, Engineering, and Medicine, Lessons Learned from the Fukushima Nuclear Accident for Improving Safety and Security of U.S. Nuclear Plants: Phase 2, Washington, DC: The National Academies Press, (2016) 36.
[21] A.T. Motta, Waterside corrosion in zirconium alloys, JOM 63 (2011) 59-63.
[22] R.S. Daum, Y.S. Chu, A.T. Motta, Identification and quantification of hydride phases in Zircaloy-4 cladding using synchrotron X-ray diffraction, J. Nucl. Mater. 392 (2009) 453-463.
[23] R. Dutton, K. Nuttall, M.P. Puls, L.A. Simpson, Mechanisms of hydrogen induced delayed cracking in hydride forming materials, Metall. Trans. A 8 (1977) 1553-1562.
[24] P. Efsing, K. Pettersson, Delayed Hydride Cracking in Irradiated Zircaloy Cladding, in: G.P. Sabol and G.D. Moan (Eds.), Zirconium in the Nuclear Industry: Twelfth International Symposium, ASTM STP 1354, West Conshohocken, PA, 2000, pp. 340-355.
[25] International Atomic Energy Agency, Delayed Hydride Cracking of Zirconium Alloy Fuel Cladding, IAEA-TECDOC-1649, IAEA, Vienna (2010).
[26] A.T. Motta, A. Yilmazbayhan, M.J.G. da Silva, R.J. Comstock, G.S. Was, J.T. Busby, E. Gartner, Q. Peng, Y.H. Jeong, J.Y. Park, Zirconium alloys for supercritical water reactor applications: Challenges and possibilities, J. Nucl. Mater. 371 (2007) 61-75.
[27] G.S. Was, P. Ampornrat, G. Gupta, S. Teysseyre, E.A. West, T.R. Allen, K. Sridharan, L. Tan, Y. Chen, X. Ren, C. Pister, Corrosion and stress corrosion cracking in supercritical water, J. Nucl. Mater., 371 (2007) 176-201.
[28] D. Guzonas, F. Brosseau, P. Tremaine, J. Meesungnoen, J.P. Jay-Gerin, Water chemistry in a supercritical water-cooled pressure tube reactor, Nucl. Technol. 179 (2012) 205-219.
[29] D.Q. Peng, X.D. Bai, F. Pan, H. Sun, B.S. Chen, Influence of aluminum ions implanted on oxidation behavior of ZIRLO alloy at 500℃, Vacuum 80 (2006) 530-536.
[30] J. Xu, X. Bai, Y. Fan, Studies on the corrosion behavior of yttrium-implanted zircaloy-4, J. Mater. Sci. 35 (2000) 6225-6229.
[31] D.Q. Peng, X.D. Bai, X.W. Chen, Q.G. Zhou, X.Y. Liu, R.H. Yu, Effect of cerium ion implantation on the aqueous corrosion behavior of zircaloy-4, Appl. Surf. Sci. 218 (2003) 7-11.
[32] S.J. Lee, H.S. Kwon, W. Kim, B.H. Choi, Effects of compositional and structural change on the corrosion behaviour of nitrogen implanted Zircaloy-4, Mater. Sci. Eng., A A263 (1999) 23-31.
[33] X. Bai, J. Xu, F. He, Y. Fan, The air oxidation of yttrium ion implanted zircaloy-4 at 500℃, Nucl. Instrum. Methods Phys. Res., Sect. B 160 (2000) 49-53.
[34] N. Claussen, M. Rühle, A.H. Heuer, Advances in ceramics, Science and Technology of Zirconia II, vol. 12, American Ceramic Society, Columbus, OH, 1984.
[35] J. Abriata, J. Garcés, R. Versaci, The O-Zr (Oxygen-Zirconium) system, J. Phase Equil. 7 (1986) 116-124.
[36] P. Li, I.W. Chen, J.E. Penner-Hahn, X-ray-absorption studies of zirconia polymorphs. I. Characteristic structures, Phys. Rev. B 48 (1993) 10063-10073.
[37] E.C. Subbarao, Zirconia-an overview, Adv. Ceram. 3 (1981) 1-24.
[38] K. Tanabe, T. Yamaguchi, Acid-base bifunctional catalysis by ZrO2 and its mixed oxides, Catal. Today 20 (1994) 185-197.
[39] D.R. Clarke, C.G. Levi, Materials design for the next generation thermal barrier coatings, Annu. Rev. Mater. Res. 33 (2003) 383-417.
[40] P. Li, I.W. Chen, J.E. Penner-Hahn, Effect of dopants on zirconia stabilization-an X-ray absorption study: I, trivalent dopants, J. Am. Ceram. Soc. 77 (1994) 118-128.
[41] Y.B. Cheng, D.P. Thompson, Role of anion vacancies in nitrogen-stabilized zirconia, J. Am. Ceram. Soc. 76 (1993) 683-688.
[42] S. Fabris, A.T. Paxton, M.W. Finnis, A stabilization mechanism of zirconia based on oxygen vacancies only, Acta Mater. 50 (2002) 5171-5178.
[43] Y.M. Chiang, D. Birnie III, W.D. Kingery, PHYSICAL CERAMICS, Principles for Ceramic Science and Engineering, John Wiley & Sons, New York, 1997.
[44] Y. Kanno, Stability of metastable tetragonal ZrO2 in compound powders and nucleation arguments, J. Mater. Sci. 25 (1990) 1987-1990.
[45] P. Floratos, A. Goulas, Martensitic transformation analysis and transformation toughness on zirconia (ZrO2) ceramics.
[46] X.J. Chen, K.A. Khor, S.H. Chan, L.G. Yu, Influence of microstructure on the ionic conductivity of yttria-stabilized zirconia electrolyte, Mater. Sci. Eng., A 335 (2002) 246.
[47] H.J. Cho, Y.D. Kim, D.S. Park, E. Lee, C.H. Park, J.S. Jang, K.B. Lee, H.W. Kim, Y.J. Ki, I.K. Han, Y.W. Song, New TIT capacitor with ZrO2/Al2O3/ZrO2 dielectrics for 60nm and below DRAMs, Solid-State Electron. 51 (2007) 1529-1533.
[48] W. Guan, S. Long, R. Jia, M. Liu, Nonvolatile resistive switching memory utilizing gold nanocrystals embedded in zirconium oxide, Appl. Phys. Lett. 91 (2007) 062111.
[49] S.W. Nam, J.H. Yoo, H.Y. Kim, S.K. Kang, D.H. Ko, C.W. Yang, H.J. Lee, M.H. Cho, J.H. Ku, Study of ZrO2 thin films for gate oxide applications, J. Vac. Sci. Technol., A 19 (2001) 1720-1724.
[50] J. Robertson, Band offsets of wide-band-gap oxides and implications for future electronic devices, J. Vac. Sci. Technol., B: Microelectron. Nanometer Struct. Process., Meas., Phenom. 18 (2000) 1785-1791.
[51] M.V. Fischetti, D.A. Neumayer, E.A. Cartier, Effective electron mobility in Si inversion layers in metal-oxide-semiconductor systems with a high-κ insulator: The role of remote phonon scattering, J. Appl. Phys. 90 (2001) 4587-4608.
[52] H. Li, K. Liang, L. Mei, S. Gu, S. Wang, Oxidation protection of mild steel by zirconia sol-gel coatings, Mater. Lett. 51 (2001) 320-324.
[53] S. Venkataraj, O. Kappertz, C. Liesch, R. Detemple, R. Jayavel, M. Wuttig, Thermal stability of sputtered zirconium oxide films, Vacuum 75 (2004) 7-16.
[54] E.W. Leib, U. Vainio, R.M. Pasquarelli, J. Kus, C. Czaschke, N. Walter, R. Janssen, M. Müller, A. Schreyer, H. Weller, T. Vossmeyer, Synthesis and thermal stability of zirconia and yttria-stabilized zirconia microspheres, J. Colloid Interface Sci. 448 (2015) 582-592.
[55] C. Piconi, G. Maccauro, Zirconia as a ceramic biomaterial, Biomaterials 20 (1999) 1-25.
[56] C. Piconi, G. Maccauro, L. Pilloni, W. Burger, F. Muratori, H.G. Richter, On the fracture of a zirconia ball head, J. Mater. Sci.: Mater. Med. 17 (2006) 289-300.
[57] M. Ohring, The Materials Science of Thin Films, Academic Press Inc, San Diego, 1992.
[58] JCPDS file 89-9066.
[59] JCPDS file 89-7710.
[60] JCPDS file 89-9069.
[61] W.A. Roth, G. Becker, Thermochemical revisions, Z. Physik. Chem. A, 145 (1929) 461-469.
[62] O. Ruff, F. Ebert, Refractory ceramics: 1, the forms of zirconia dioxide, Z. Anorg. Allgem. Chem. 180 (1929) 19-41.
[63] L. Passerini, Isomorphism among oxides of different tetravalent metals: CeO2-ThO2; CeO2-ZrO2; CeO2-HfO2, Gazz. Chim. Ital., 60 (1930) 762.
[64] F.C. Nonamaker, Technology of zirconium and its compounds, Chem. Met. Eng. 31 (1924) 151-155.
[65] K. Maca, H. Hadraba, J. Cihlar, Electrophoretic deposition of alumina and zirconia: I. Single-component systems, Ceram. Int. 30 (2004) 843-851.
[66] B. Hatton, P.S. Nicholson, Design and fracture of layered Al2O3/TZ3Y composites produced by electrophoretic deposition, J. Am. Ceram. Soc. 84 (2001) 571-576.
[67] J.F. Shackelford, W. Alexander, CRC Materials Science and Engineering Handbook, third ed., CRC Press, Boca Raton, 2001.
[68] C.B. Alcock, K.T. Jacobk, S. Zador, Zirconium: Physicochemical Properties of its Compounds and Alloys, International Atomic Energy Agency, Vienna, 1976.
[69] A. Hidaka, J. Nakamura, J. Sugimoto, Influence of thermal properties of zirconia shroud on analysis of PHEBUS FPT0 bundle degradation test with ICARE2 code, Nucl. Eng. Des. 168 (1997) 361-371.
[70] F. Cernuschi, S. Ahmaniemi, P. Vuoristo, T. Mäntylä, Modelling of thermal conductivity of porous materials: application to thick thermal barrier coatings, J. Eur. Ceram. Soc. 24 (2004) 2657-2667.
[71] S. Venkataraj, O. Kappertz, H. Weis, R. Jayavel, M. Wutting, Structural and optical properties of thin zirconium oxide films prepared by reactive direct current magnetron sputtering, J. Appl. Phys. 92 (2002) 3599-3607.
[72] Z.W. Zhao, B.K. Tay, G.Q. Yu, S.P. Lau, Optical properties of filtered cathodic vacuum arc-deposited zirconium oxide thin films, J. Phys.: Condens. Matter 15 (2003) 7707-7715.
[73] X.J. Chen, K.A. Khor, S.H. Chan, L.G. Yu, Influence of microstructure on the ionic conductivity of yttria-stabilized zirconia electrolyte, Mater. Sci. Eng., A 335 (2002) 246-252.
[74] B. Králik, E.K. Chang, S.G. Louie, Structural properties and quasiparticle band structure of zirconia, Phys. Rev. B: Condens. Matter Mater. Phys. 57 (1998) 7027-7036.
[75] C.S. Hwang, H.J. Kim, Deposition and characterization of ZrO2 thin films on silicon substrate by MOCVD, J. Mater. Res. 8 (1993) 1361-1367.
[76] International Atomic Energy Agency, Corrosion of zirconium alloys in nuclear power plants, IAEA-TECDOC-684, IAEA, Vienna, 1993.
[77] Y.S. Kim, K.S. Rheem, D.K. Min, Phenomenological Study of In-Reactor Corrosion of Zircaloy-4 in Pressurized Water Reactors, in: A.M. Garde, E.R. Bradley (Eds.), Zirconium in the Nuclear Industry: Tenth International Symposium, ASTM STP 1245, Philadelphia, PA, 1994, pp. 745-759.
[78] D.L. Douglass, C. Wagner, The Oxidation of oxygen-deficient zirconia and its relationship to the oxidation of zirconium, J. Electrochem. Soc. 113 (1966) 671-676.
[79] C. H. Ma, J. H. Huang, H. Chen, Residual stress measurement in textured thin film by grazing-incidence X-ray diffraction, Thin Solid Films 418 (2002) 73-78.
[80] B.D. Cullity, S.R. Stock, Elements of X-ray Diffraction, third ed., Prentice Hall, New Jersey, 2001.
[81] A.N. Wang, C.P. Chuang, G.P. Yu, J.H. Huang, Determination of average X-ray strain (AXS) on TiN hard coatings using cos2αsin2 X-ray diffraction method, Surf. Coat. Technol. 262 (2015) 40-47.
[82] A.N. Wang, J.H. Huang, H.W. Hsiao, G.P. Yu, H. Chen, Residual stress measurement on TiN thin films by combing nanoindentation and average X-ray strain (AXS) method, Surf. Coat. Technol. 280 (2015) 43-49.
[83] L. Baker, L.C. Just, Studies of Metal-water Reactions at High Temperatures. III. Experimental and Theoretical Studies of the Zirconium-water Reaction, ANL-6548, Argonne National Laboratory, 1962.
[84] H.M. Chung, G.R. Thomas, High-Temperature Oxidation of Zircaloy in Hydrogen-Steam Mixtures, in: D.G. Franklin, R.B. Adamson (Eds.), Zirconium in the Nuclear Industry: Sixth International Symposium, ASTM STP 824, Philadelphia, PA, 1984, pp. 793-809.
[85] V.F. Urbanic, T.R. Heidrick, High-temperature oxidation of Zircaloy-2 and Zircaloy-4 in steam, J. Nucl. Mater. 75 (1978) 251-261.
[86] A.F. Brown, T. Healey, The kinetics of total oxygen uptake in steam-oxidised zircaloy-2 in the range 1273-1673 K, J. Nucl. Mater. 88 (1980) 1-6.
[87] R.G. Ballinger, W.G. Dobson, R.R. Biederman, Oxidation reaction kinetics of Zircaloy-4 in an unlimited steam environment, J. Nucl. Mater. 62 (1976) 213-220.
[88] H. Uetsuka, P. Hofman, High-temperature oxidation kinetics of Zircaloy-4 in oxygen/argon mixtures, J. Nucl. Mater. 168 (1989) 47-57.
[89] C. Wagner, Beitrag zur theorie des anlaufvorgangs, Z. Phys. Chem., Abt. B 21 (1933) 25-41.
[90] F. Nagase, T. Otomo, H. Uetsuka, Oxidation kinetics of low-Sn Zircaloy-4 at the temperature range from 773 to 1,573K, J. Nucl. Sci. Technol. 40 (2003) 213-219.
[91] J.H. Baek, K.B. Park, Y.H. Jeong, Oxidation kinetics of Zircaloy-4 and Zr-1Nb-1Sn-0.1Fe at temperatures of 700-1200°C, J. Nucl. Mater. 335 (2004) 443-456.
[92] C. Morant, J.M. Sanz, L. Galán, L. Soriano, F. Rueda, An XPS study of the interaction of oxygen with zirconium, Surf. Sci. 218 (1989) 331-345.
[93] M. Matsuoka, S. Isotani, W. Sucasaire, N. Kuratani, K. Ogata, X-ray photoelectron spectroscopy analysis of zirconium nitride-like films prepared on Si(100) substrates by ion beam assisted deposition, Surf. Coat. Technol. 202 (2008) 3129-3135.
[94] I. Milošev, H.H. Strehblow, M. Gaberšček, B. Navinšek, Electrochemical oxidation of ZrN hard (PVD) coatings studied by XPS, Surf. Interface Anal. 24 (1996) 448-458.
[95] M. Del Re, R. Gouttebaron, J.P. Dauchot, P. Leclère, G. Terwagne, M. Hecq, Study of ZrN layers deposited by reactive magnetron sputtering, Surf. Coat. Technol., 174-175 (2003) 240-245.
[96] J. Chastain, J.F. Moulder, Handbook of X-ray Photoelectron Spectroscopy: A Reference Book of Standard Spectra for Identification and Interpretation of XPS Data, Physical Electronics Division, Perkin-Elmer Corp, Minnesota, 1992.
[97] G. Bakradze, L.P.H. Jeurgens, E.J. Mittemeijer, The different initial oxidation kinetics of Zr(0001) and Zr(101 ̅0) surfaces, J. Appl. Phys. 110 (2011) 024904.
[98] A. Lyapin, L.P.H. Jeurgens, P.C.J. Graat, E.J. Mittemeijer, Ellipsometric and XPS study of the initial oxidation of zirconium at room temperature, Surf. Interface Anal. 36 (2004) 989-992.
[99] D.A. Shirley, High-Resolution X-Ray photoemission spectrum of the valence bands of gold, Phys. Rev. B 5 (1972) 4709-4714.
[100] P. Scherrer, Bestimmung der Größe und der inneren Struktur von Kolloidteilchen mittels Röntgenstrahlen, Gött. Nachr. 1918 (1918) 98-100.
[101] L.V. Azároff, M.J. Buerger, The powder method in X-ray crystallography, McGraw-Hill, 1958.
[102] W.C. Oliver, G.M. Pharr, An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments, J. Mater. Res. 7 (1992) 1564-1583.
[103] D.K. Owens, R.C. Wendt, Estimation of the surface free energy of polymers, J. Appl. Polym. Sci. 13 (1969) 1741-1747.
[104] T. Young, An Essay on the Cohesion of Fluids, Philos. Trans. R. Soc. London 95 (1805) 65-87.
[105] E. Lugscheider, K. Bobzin, M. Möller, The effect of PVD layer constitution on surface free energy, Thin Solid Films 355-356 (1999) 367-373.
[106] H. Oettel, R. Wiedemann, S. Preißler, Residual stresses in nitride hard coatings prepared by magnetron sputtering and arc evaporation, Surf. Coat. Technol. 74-75 (1995) 273-278.
[107] F. Cardarelli, Materials Handbook: A Concise Desktop Reference, second ed., Springer, London, New York, 2008.
[108] M. Harada, M. Kimpara, K. Abe, Effect of Alloying Elements on Uniform Corrosion Resistance of Zirconium-Based Alloys in 360°C Water and 400°C Steam, in: C.M. Eucken, A.M. Garde (Eds.), Zirconium in the Nuclear Industry: Ninth International Symposium, ASTM STP 1132, Philadelphia, PA, 1991, pp. 368-391.
[109] D. Pêcheur, F. Lefebvre, A.T. Motta, C. Lemaignan, J.F. Wadier, Precipitate evolution in the Zircaloy-4 oxide layer, J. Nucl. Mater. 189 (1992) 318-332.
[110] D. Pêcheur, F. Lefebvre, A.T. Motta, C. Lemaignan, D. Charquet, Oxidation of Intermetallic Precipitates in Zircaloy-4: Impact of Irradiation, in: A.M. Garde, E.R. Bradley (Eds.), Zirconium in the Nuclear Industry: Tenth International Symposium, ASTM STP 1245, Philadelphia, PA, 1994, pp. 687-705.
[111] P. Barberis, E. ahlberg, N. Simic, D. Charquet, C. Lemaignan, G. Wikmark, M. Dahlbäck, M. Limbäck, P. Tägtström, B. Lehtinen, Role of the Second-Phase Particles in Zirconium Binary Alloys, in: G.D. Moan, P. Rudling (Eds.), Zirconium in the Nuclear Industry: Thirteenth International Symposium, ASTM STP 1423, West Conshohocken, PA, 2002, pp. 33-58.
[112] T. Forgeron, J.C. Brachet, F. Barcelo, A. Castaing, J. Hivroz, J.P. Mardon, C. Bernaudat, Experiment and Modeling of Advanced Fuel Rod Cladding Behavior Under LOCA Conditions: Alpha-Beta Phase Transformation Kinetics and EDGAR Methodology, in: G.P. Sabol and G.D. Moan (Eds.), Zirconium in the Nuclear Industry: Twelfth International Symposium, ASTM STP 1354, West Conshohocken, PA, 2000, pp. 256-278.
[113] I.L. Bramwell, T.J. Haste, D. Worswick, P.D. Parsons, An Experimental Investigation into the Oxidation of Zircaloy-4 at Elevated Pressures in the 750 to 1000°C Temperature Range, in: A.M. Garde, E.R. Bradley (Eds.), Zirconium in the Nuclear Industry: Tenth International Symposium, ASTM STP 1245, Philadelphia, PA, 1994, pp. 450-465.
[114] D. Charquet, R. Hahn, E. Ortlieb, J.P. Gros, J.F. Wadier, Solubility Limits and Formation of intermetallic Precipitates in ZrSnFeCr Alloys, in: L.F.P. Van Swam, C.M. Eucken (Eds.), Zirconium in the Nuclear Industry: Eighth Symposium, ASTM STP 1023, Philadelphia, PA, 1988, pp. 405-422.
[115] V.S. Tong, T.B. Britton, Formation of very large ‘blocky alpha’ grains in Zircaloy-4, Acta Mater. 129 (2017) 510-520.
[116] S. Leistikow, Comparison of High-Temperature Steam Oxidation Kinetics Under LWR Accident Conditions: Zircaloy-4 Versus Austenitic Stainless Steel No. 1.4970, in: D.G. Franklin, R.B. Adamson (Eds.), Zirconium in the Nuclear Industry: Sixth Symposium, ASTM STP 824, Philadelphia, PA, 1984, pp. 763-779.
[117] J.W. Hsieh, Growth of ZrO2 by Heat Treating ZrN Thin Film under Controlled Atmosphere, 2012, Master Thesis, National Tsing Hua University, R.O.C.
[118] S.A. Chou, The Oxidation Behavior and Corrosion Resistance of ZrN Thin Films Heat Treated in Vacuum, 2014, Master Thesis, National Tsing Hua University, R.O.C.
[119] K.L. Kuo, The Oxidation Behavior and Corrosion Resistance of ZrN Thin Films Annealed in Vacuum, 2015, Master Thesis, National Tsing Hua University, R.O.C.
[120] JCPDS file 89-5269.
[121] A.J. Perry, A contribution to the study of poisson's ratios and elastic constants of TiN, ZrN and HfN, Thin Solid Films 193-194 (1990) 463-471.
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *