帳號:guest(18.225.56.51)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):廖志堂
作者(外文):Liao, Chih-Tang
論文名稱(中文):晶格波茲曼法模擬微米流中的紅血球懸浮液
論文名稱(外文):The Lattice Boltzmann Modeling of Red Blood Cell Suspensions in Microflows
指導教授(中文):陳彥龍
蕭百沂
指導教授(外文):Chen, Yang-Long
Hsiao, Pai-Yi
口試委員(中文):黃仲仁
魏憲鴻
游琇伃
口試委員(外文):Huang, Jung-Ren
Wei, Hsien-Hung
Yu, Hsiu-Yu
學位類別:博士
校院名稱:國立清華大學
系所名稱:工程與系統科學系
學號:104011461
出版年(民國):112
畢業學年度:111
語文別:英文
論文頁數:100
中文關鍵詞:紅血球懸浮液晶格波茲曼流變學
外文關鍵詞:red blood cellsuspensionlattice Boltzmannrheology
相關次數:
  • 推薦推薦:0
  • 點閱點閱:37
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
微循環是指心血管系統的終端血管網路的血液循環,其中血管尺寸可小至幾微米。血液和組織細胞之間的物質交換,例如氧氣、二氧化碳和營養物質皆發生在微循環中。此外,微流體裝置以被顯示具有按照細胞大小或硬度對細胞進行分類的潛力。因此,更好地了解微米流中的血液流動實屬重要。此論文使用一個離散描述來模擬紅血球,結合晶格波茲曼法與沈浸邊界法來研究微流通道中的血流。

本論文研究翻滾或皮划艇似的紅血球在剪切流的影響下在侷限微流道中的組態重組。在小雷諾數 (Re = 0.1) 和小毛細管數 (Ca) 的條件下,考慮流體與懸浮 粒子的流體力學耦合但不額外引進紅血球間的黏附作用,這項研究揭示了盤狀 似的紅血球之間的流體動力學交互作用促使紅血球排列成行,並且行與行、細胞與細胞之間的間隔規律,此外細胞行列間可見同步旋轉的紅血球配對,在此 稱為華爾滋配對。此剪切誘發的紅血球組態重組並未明顯地改變這個可形變粒子懸浮夜的剪切稀化特性。然而,特性黏度對微觀結構重組特別敏感。特性黏 度對細胞體積分率 𝜙 和Ca 的關聯性與紅血球配對體積分率相關。經由與一個雙細胞系統的比較,其中細胞的體積分率經由改變模擬場域體積來控制,此稀薄紅血球懸浮液中的血球集體運動進一步獲得驗證。

本論文也檢視在微流通道中的可黏聚性紅血球懸浮液的紅血球細胞空乏層厚度。數個因素會影響懸浮液黏度、紅細胞空乏層厚度和在微流道中的細胞分 佈,其中包括紅血球細胞比容、血管大小、紅細胞硬度、黏聚交互作用和剪切 速率。特別是,剪切速率對紅細胞空乏層厚度的影響尚有分歧。本論文研究發現,在低剪切速率的極限下,隨著剪切速率的增加,可黏聚性紅血球懸浮液的 相對粘度首先增加,接著降低。只要剪切速率足夠強,相對粘度就會隨著剪切 速率的進一步增加而減小。紅血球細胞空乏層厚度可以闡明此相對黏度對剪切 速率非單調的相依性。
Microcirculation is the blood circulation in the terminal vascular network of the cardiovascular system where the vessel size can be down to a few micrometers. The exchange of substances, such as oxygen, carbon dioxide, and nutrients, between the blood and tissue cells takes place in the microcirculation. Additionally, microfluidic devices have shown the potential to sort cells by size or by stiffness. Therefore, it is vital to have a better understanding of blood perfusion in microflows. Herein, a discrete model for the red blood cell (RBC) and the lattice Boltzmann method coupled with the immersed boundary method are applied to investigate blood flow in microchannels.

This thesis examines the shear-induced reorganization of tumbling/kayaking red blood cells (RBCs) in confined shear flow. For small Reynolds (Re = 0.1) and capillary numbers (Ca), with fully coupled hydrodynamic interaction and without intercellular adhesion, this study reveals that hydrodynamic interaction between disk-like RBCs prompts the formation of well-spaced RBC files and synchronized rotating RBC pairs, referred as "waltzing doublets". This shear-induced reorganization of RBCs does not significantly change the shear-thinning nature of this deformable particle suspension. Nevertheless, the intrinsic viscosity is particularly sensitive to microstructural rearrangements. The dependence of the intrinsic viscosity on the cell volume fraction 𝜙 and Ca is correlated with the change in the RBC doublet fraction. The shear-induced collective motion of RBCs in this dilute suspension is verified by comparison with a two-cell system where 𝜙 is controlled by varying the domain volume.

The cell-free layer thickness δ of an aggregating RBC suspension in microchannels is also investigated. Several factors affect the suspension viscosity, δ, and cell distribution in the microchannel, including the hematocrit, vessel size, red cell stiffness, aggregation interaction, and shear rate. In particular, the shear rate effect on δ is controversial. This study indicates that as the shear rate increases, the relative viscosity η of the aggregating RBC suspension first increases followed by a decrease in the low shear rate regime. As long as the shear rate is strong enough, η decreases as the shear rate further increases. This non-monotonic dependence of η on the shear rate can be elucidated by δ of this aggregating RBC suspension.
Abstract (Chinese) I
Abstract II
Acknowledgments IV
Contents V
List of Figures VIII
List of Tables XVI

1 General Introduction 1
1.1 Research Objectives........................... 1
1.2 Thesis Outline.............................. 2
1.3 Human Blood.............................. 2
1.4 Cardiovascular System ......................... 6
1.5 Microcirculation............................. 6
1.6 Blood Flow in Microcirculation .................... 7
1.7 Cell-Free Layer Formation ....................... 9
1.8 Red Blood Cell Aggregation ...................... 10
1.8.1 Bridging Model ......................... 11
1.8.2 Depletion Model ........................ 12
1.8.3 Recent Progress......................... 13

2 Red Blood Cell Modeling 14
2.1 Red Blood Cell Structure........................ 14
2.2 Modeling Approaches.......................... 15
2.3 Discrete Spring Network Model .................... 17
2.3.1 Discretization of the RBC Surface. . . . . . . . . . . . . . . 17
2.3.2 In-plane Elasticity ....................... 18
2.3.3 Bending Resistance....................... 19
2.3.4 Area and Volume Constraints ................. 19
2.3.5 Macroscopic Quantities..................... 20
2.3.6 Scaling of Model and Physical Units . . . . . . . . . . . . . 21

3 Fluid Solver 23
3.1 Lattice Boltzmann Method in a Nutshell . . . . . . . . . . . . . . . 23
3.2 Boundary and Initial Conditions.................... 26
3.2.1 Periodic Boundary Condition ................. 27
3.2.2 Solid Boundary ......................... 28
3.2.3 Immersed Boundary Method.................. 29
3.2.4 Initial Condition ........................ 32
3.2.5 Multi-relaxation-time Collision Operator . . . . . . . . . . . 32
3.2.6 External Forces......................... 39
3.3 Choice of Parameter Values ...................... 41

4 Waltzing Red Blood Cells Induced by Confined Shear Flow 43
4.1 Introduction............................... 43
4.2 Methods and Parameters........................ 45
4.3 Results and Discussion ......................... 48
4.3.1 Waltzing Red Blood Cells ................... 48
4.3.2 Dynamics Analysis ....................... 52
4.3.3 State Diagram.......................... 55
4.3.4 Suspension Viscosity ...................... 56
4.4 Summary ................................ 59

5 Cell-Free Layer of RBCs in a Microchannel 62
5.1 Introduction............................... 62
5.2 Methods and Parameters........................ 65
5.3 Results and Discussion ......................... 68
5.3.1 RBC Aggregate Structure under Shear . . . . . . . . . . . . 68
5.3.2 Cell Aggregation Effects on Viscosity and CFL . . . . . . . . 70
5.3.3 Boundary Condition Effects .................. 72
5.3.4 Volume Fraction Dependence ................. 74
5.4 Summary ................................ 78

6 Summary and Outlook 79
6.1 Summary ................................ 79
6.2 Outlook ................................. 80

A Details of the Red Blood Cell Model 82
Publications 86
1. Medical, B. Medical gallery of blausen medical 2014. WikiJournal of Medicine 1, 1–79 (2014).

2. Biga, L. M. et al. Anatomy & Physiology (OpenStax/Oregon State University, 2020).

3. Guven, G., Hilty, M. P. & Ince, C. Microcirculation: physiology, pathophysiology, and clinical application. Blood Purification 49, 143–150 (2020).

4. Popel, A. S. & Johnson, P. C. Microcirculation and hemorheology. Annual Review of Fluid Mechanics 37, 43–69 (2005).

5. Pries, A. R., Neuhaus, D. & Gaehtgens, P. Blood viscosity in tube flow: dependence on diameter and hematocrit. American Journal of Physiology-Heart and Circulatory Physiology 263, H1770–H1778 (1992).

6. Caro, C. G., Pedley, T. J., Schroter, R. C. & Seed, W. A. The mechanics of the circulation 2nd ed. (Cambridge University Press, 2012).

7. Sherwood, J. M., Kaliviotis, E., Dusting, J. & Balabani, S. Hematocrit, viscosity and velocity distributions of aggregating and non-aggregating blood in a bifurcating microchannel. Biomechanics and Modeling in Mechanobiology 13, 259–273 (2014).

8. Fahraeus, R. The suspension stability of the blood. Physiological Reviews 9, 241–274 (1929).

9. Fahraeus, R. & Lindqvist, T. The viscosity of the blood in narrow capillary tubes. American Journal of Physiology-Legacy Content 96, 562–568 (1931).

10. Svanes, K. & Zweifach, B. Variations in small blood vessel hematocrits produced in hypothermic rats by micro-occlusion. Microvascular Research 1, 210–220 (1968).

11. Fung, Y.-C. Stochastic flow in capillary blood vessels. Microvascular Research 5, 34–48 (1973).

12. Secomb, T. W. Blood Flow in the Microcirculation. Annual Review of Fluid Mechanics 49, 443–461 (2017).

13. Shen, Z. et al. Inversion of hematocrit partition at microfluidic bifurcations. Microvascular Research 105, 40–46 (2016).

14. Enjalbert, R., Hardman, D., Krueger, T. & Bernabeu, M. O. Compressed vessels bias red blood cell partitioning at bifurcations in a hematocrit- dependent manner: Implications in tumor blood flow. Proceedings of the National Academy of Sciences of the United States of America 118, e2025236118 (2021).

15. Wu, Y.-F., Hsu, P.-S., Tsai, C.-S., Pan, P.-C. & Chen, Y.-L. Significantly increased low shear rate viscosity, blood elastic modulus, and RBC aggregation in adults following cardiac surgery. Scientific Reports 8, 7173 (2018).

16. Merrill, E. et al. Rheology of human blood, near and at zero flow: effects of temperature and hematocrit level. Biophysical Journal 3, 199–213 (1963).

17. Viallat, A. & Abkarian, M. Dynamics of blood cell suspensions in microflows (CRC Press, 2019).

18. Merrill, E. W., Gilliland, E. R., Lee, T. S. & Salzman, E. W. Blood rheology: effect of fibrinogen deduced by addition. Circulation Research 18, 437–446 (1966).

19. Chien, S. & Jan, K.-m. Ultrastructural basis of the mechanism of rouleaux formation. Microvascular Research 5, 155–166 (1973).

20. Flormann, D. A. D. Physical characterization of red blood cell aggregation PhD thesis (Saarland University, 2017).

21. Asakura, S. & Oosawa, F. Interaction between particles suspended in solutions of macromolecules. Journal of Polymer Science 33, 183–192 (1958).

22. Neu, B. & Meiselman, H. J. Depletion-mediated red blood cell aggregation in polymer solutions. Biophysical Journal 83, 2482–2490 (2002).

23. Carvalho, F. A. et al. Atomic force microscopy-based molecular recognition of a fibrinogen receptor on human erythrocytes. ACS Nano 4, 4609–4620 (2010).

24. Chien, S. & Jan, K.-M. Red cell aggregation by macromolecules: roles of surface adsorption and electrostatic repulsion. Journal of Supramolecular Structure 1, 385–409 (1973).

25. Chien, S., Simchon, S., Abbott, R. E. & Jan, K.-M. Surface adsorption of dextrans on human red cell membrane. Journal of Colloid and Interface Science 62, 461–470 (1977).

26. Fantoni, R., Giacometti, A. & Santos, A. Bridging and depletion mechanisms in colloid-colloid effective interactions: A reentrant phase diagram. The Journal of Chemical Physics 142, 224905 (2015).

27. Gompper, G. & Schick, M. Soft Matter, Volume 4: Lipid Bilayers and Red Blood Cells (Wiley-VCH, 2006).

28. Linss, W., Pilgrim, C. & Feuerstein, H. How thick is the glycocalyx of human erythrocytes? Acta Histochemica 91, 101–104 (1991).

29. Heinrich, V., Ritchie, K., Mohandas, N. & Evans, E. Elastic thickness compressibility of the red cell membrane. Biophysical Journal 81, 1452–1463 (2001).

30. Skalak, R., Tozeren, A., Zarda, R. & Chien, S. Strain energy function of red blood cell membranes. Biophysical Journal 13, 245–264 (1973).

31. Hansen, J., Skalak, R., Chien, S. & Hoger, A. Influence of network topology on the elasticity of the red blood cell membrane skeleton. Biophysical Journal 72, 2369–2381 (1997).

32. Discher, D. E., Boal, D. H. & Boey, S. K. Simulations of the erythrocyte cytoskeleton at large deformation. II. Micropipette aspiration. Biophysical Journal 75, 1584–1597 (1998).

33. Li, J., Dao, M., Lim, C. & Suresh, S. Spectrin-level modeling of the cytoskeleton and optical tweezers stretching of the erythrocyte. Biophysical Journal 88, 3707–3719 (2005).

34. Pivkin, I. V. & Karniadakis, G. E. Accurate coarse-grained modeling of red blood cells. Physical Review Letters 101, 118105 (2008).

35. Fedosov, D. A., Caswell, B. & Karniadakis, G. E. Systematic coarse-graining of spectrin-level red blood cell models. Computer Methods in Applied Mechanics and Engineering 199, 1937–1948 (2010).

36. Freund, J. B. Numerical simulation of flowing blood cells. Annual Review of Fluid Mechanics 46, 67–95 (2014).

37. Imai, Y., Omori, T., Shimogonya, Y., Yamaguchi, T. & Ishikawa, T. Numerical methods for simulating blood flow at macro, micro, and multi scales. Journal of Biomechanics 49, 2221–2228 (2016).

38. Evans, E. & Fung, Y.-C. Improved measurements of the erythrocyte geometry. Microvascular Research 4, 335–347 (1972).

39. Fedosov, D. A., Pan, W., Caswell, B., Gompper, G. & Karniadakis, G. E. Predicting human blood viscosity in silico. Proceedings of the National Academy of Sciences of the United States of America 108, 11772–11777 (2011).

40. Qian, Y.-H., d’Humieres, D. & Lallemand, P. Lattice BGK models for Navier- Stokes equation. Europhysics Letters 17, 479–484 (1992).

41. Ladd, A. & Verberg, R. Lattice-Boltzmann simulations of particle-fluid suspensions. Journal of Statistical Physics 104, 1191–1251 (2001).

42. Bhatnagar, P. L., Gross, E. P. & Krook, M. A model for collision processes in gases. I. Small amplitude processes in charged and neutral one-component systems. Physical Review 94, 511–525 (1954).

43. Ladd, A. J. Numerical Simulations of Particulate Suspensions Via a Discretized Boltzmann Equation. Part 1. Theoretical Foundation. Journal of Fluid Mechanics 271, 285–309 (1994).

44. Krueger, T. et al. The lattice Boltzmann method (Springer Cham, 2017).

45. Peskin, C. S. The immersed boundary method. Acta numerica 11, 479–517
(2002).

46. Mittal, R. & Iaccarino, G. Immersed boundary methods. Annual Review of
Fluid Mechanics 37, 239–261 (2005).

47. Krueger, T., Varnik, F. & Raabe, D. Efficient and accurate simulations of deformable particles immersed in a fluid using a combined immersed boundary lattice Boltzmann finite element method. Computers and Mathematics with Applications 61, 3485–3505 (2011).

48. Mountrakis, L., Lorenz, E. & Hoekstra, A. Revisiting the use of the immersed-boundary lattice-Boltzmann method for simulations of suspended particles. Physical Review E 96, 013302 (2017).

49. d’Humieres, D. & Ginzburg, I. Viscosity independent numerical errors for Lattice Boltzmann models: From recurrence equations to “magic” collision numbers. Computers & Mathematics with Applications 58, 823–840 (2009).

50. d’Humieres, D. Multiple–relaxation–time lattice Boltzmann models in three dimensions. Philosophical Transactions of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences 360, 437–451 (2002).

51. Duenweg, B. & Ladd, A. J. C. in Advanced computer simulation approaches for soft matter sciences III (eds Holm, C. & Kremer, K.) 89–166 (Springer, Berlin, Heidelberg, 2009).

52. Adhikari, R., Stratford, K., Cates, M. & Wagner, A. Fluctuating lattice Boltzmann. Europhysics Letters 71, 473–479 (2005).

53. Ginzburg, I. & d’Humieres, D. Multireflection boundary conditions for lattice Boltzmann models. Physical Review E 68, 066614 (2003).

54. Schiller, U. D. Thermal fluctuations and boundary conditions in the lattice Boltzmann method PhD thesis (Johannes Gutenberg University Mainz, 2008).

55. Chun, B. & Ladd, A. Interpolated boundary condition for lattice Boltzmann simulations of flows in narrow gaps. Physical Review E 75, 066705 (2007).

56. Ginzbourg, I. & Adler, P. Boundary flow condition analysis for the three-dimensional lattice Boltzmann model. Journal de Physique II 4, 191–214 (1994).

57. Guo, Z., Zheng, C. & Shi, B. Discrete lattice effects on the forcing term in the lattice Boltzmann method. Physical Review E 65, 046308 (2002).

58. Russel, W. B., Russel, W., Saville, D. A. & Schowalter, W. R. Colloidal Dispersions (Cambridge University Press, 1991).

59. Manoharan, V. N. Colloidal matter: Packing, geometry, and entropy. Science 349, 1253751 (2015).

60. Driscoll, M. & Delmotte, B. Leveraging collective effects in externally driven colloidal suspensions: Experiments and simulations. Current Opinion in Colloid & Interface Science 40, 42–57 (2019).

61. Snezhko, A. Complex collective dynamics of active torque-driven colloids at interfaces. Current Opinion in Colloid & Interface Science 21, 65–75 (2016).

62. Aouane, O. et al. Hydrodynamic pairing of soft particles in a confined flow. Physical Review Fluids 2, 063102 (2017).

63. Iss, C. et al. Self-organization of red blood cell suspensions under confined 2D flows. Soft Matter 15, 2971–2980 (2019).

64. Shen, Z. et al. Blood Crystal: Emergent Order of Red Blood Cells under Wall-Confined Shear Flow. Physical Review Letters 120, 268102 (2018).

65. Singha, S. et al. Mechanisms of spontaneous chain formation and subsequent microstructural evolution in shear-driven strongly confined drop monolayers. Soft Matter 15, 4873–4889 (2019).

66. Zoettl, A. & Stark, H. Emergent behavior in active colloids. Journal of Physics Condensed Matter 28, 253001 (2016).

67. Fornari, W. et al. Rheology of Confined Non-Brownian Suspensions. Physical Review Letters 116, 018301 (2016).

68. Gallier, S., Lemaire, E., Lobry, L. & Peters, F. Effect of confinement in wall-bounded non-colloidal suspensions. Journal of Fluid Mechanics 799, 100–127 (2016).

69. Ramaswamy, M. et al. How confinement-induced structures alter the contribution of hydrodynamic and short-ranged repulsion forces to the viscosity of colloidal suspensions. Physical Review X 7, 041005 (2017).

70. Liao, C. T., Wu, Y. F., Chien, W., Huang, J. R. & Chen, Y. L. Modeling shear-induced particle ordering and deformation in a dense soft particle suspension. Journal of Physics Condensed Matter 29, 435101 (2017).

71. Razavi Bazaz, S. et al. Computational inertial microfluidics: a review. Lab on a Chip 20, 1023–1048 (2020).

72. Varga, Z. et al. Hydrodynamics control shear-induced pattern formation in attractive suspensions. Proceedings of the National Academy of Sciences of the United States of America 116, 12193–12198 (2019).

73. Catarino, S. O. et al. Blood cells separation and sorting techniques of passive microfluidic devices: From fabrication to applications. Micromachines 10, 593 (2019).

74. Suresh, S. et al. Connections between single-cell biomechanics and human disease states: Gastrointestinal cancer and malaria. Acta Biomaterialia 1, 15–30 (2005).

75. Palange, A. L., Palomba, R., Rizzuti, I. F., Ferreira, M. & Decuzzi, P. De- formable discoidal polymeric nanoconstructs for the precise delivery of therapeutic and imaging agents. Molecular Therapy 25, 1514–1521 (2017).

76. Fahraeus, R. The Influence of the Rouleau Formation of the Erythrocytes on the Rheology of the Blood. Acta Medica Scandinavica 161, 151–165 (1958).

77. Chien, S. et al. Blood viscosity: influence of erythrocyte aggregation. Science 157, 829–831 (1967).

78. Lipowsky, H. H. Microvascular rheology and hemodynamics. Microcirculation 12, 5–15 (2005).

79. Reinke, W., Gaehtgens, P. & Johnson, P. C. Blood viscosity in small tubes: effect of shear rate, aggregation, and sedimentation. American Journal of Physiology-Heart and Circulatory Physiology 253, H540–H547 (1987).

80. Liao, C. T. & Chen, Y. L. Shear-induced non-monotonic viscosity dependence for model red blood cell suspensions in microvessels. Biomicrofluidics 13, 064115 (2019).

81. Mauer, J. et al. Flow-Induced Transitions of Red Blood Cell Shapes under Shear. Physical Review Letters 121, 118103 (2018).

82. Thiebaud, M., Shen, Z., Harting, J. & Misbah, C. Prediction of anomalous blood viscosity in confined shear flow. Physical Review Letters 112, 238304 (2014).

83. Shen, Z., Farutin, A., Thiebaud, M. & Misbah, C. Interaction and rheology of vesicle suspensions in confined shear flow. Physical Review Fluids 2, 103101 (2017).

84. McWhirter, J. L., Noguchi, H. & Gompper, G. Ordering and arrangement of deformed red blood cells in flow through microcapillaries. New Journal of Physics 14, 085026 (2012).

85. Karnis, A. & Mason, S. G. Particle motions in sheared suspensions. XXIII. Wall migration of fluid drops. Journal of Colloid and Interface Science 24, 164–169 (1967).

86. Chan, P. C. & Leal, L. G. An experimental study of drop migration in shear flow between concentric cylinders. International Journal of Multiphase Flow 7, 83–99 (1981).

87. Smart, J. R. & Leighton, D. T. Measurement of the drift of a droplet due to the presence of a plane. Physics of Fluids A 3, 21–28 (1991).

88. Doddi, S. K. & Bagchi, P. Lateral migration of a capsule in a plane Poiseuille flow in a channel. International Journal of Multiphase Flow 34, 966–986 (2008).

89. Zhao, H., Spann, A. P. & Shaqfeh, E. S. The dynamics of a vesicle in a wall-bound shear flow. Physics of Fluids 23, 121901 (2011).

90. Hur, S. C., Henderson-Maclennan, N. K., McCabe, E. R. & Di Carlo, D. Deformability-based cell classification and enrichment using inertial microfluidics. Lab on a Chip 11, 912–920 (2011).

91. Kumar, A. & Graham, M. D. Mechanism of margination in confined flows of blood and other multicomponent suspensions. Physical Review Letters 109, 108102 (2012).

92. Chen, Y.-L. Inertia- and deformation-driven migration of a soft particle in confined shear and Poiseuille flow. RSC Advances 4, 17908–17916 (2014).

93. Fedosov, D. A., Caswell, B., Popel, A. S. & Karniadakis, G. E. Blood Flow and Cell-Free Layer in Microvessels. Microcirculation 17, 615–628 (2010).

94. Ishida, S., Matsumoto, R., Matsunaga, D. & Imai, Y. Particle segregation using crystal-like structure of capsules in wall-bounded shear flow. Physical Review Fluids 7, 063601 (2022).

95. Gross, M., Krueger, T. & Varnik, F. Rheology of dense suspensions of elastic capsules: Normal stresses, yield stress, jamming and confinement effects. Soft Matter 10, 4360–4372 (2014).

96. Sinha, K. & Graham, M. D. Dynamics of a single red blood cell in simple shear flow. Physical Review E 92, 042710 (2015).

97. Vahidkhah, K., Diamond, S. L. & Bagchi, P. Platelet dynamics in three-dimensional simulation of whole blood. Biophysical Journal 106, 2529–2540 (2014).

98. Goldsmith, H., Marlow, J. & MacIntosh, F. C. Flow behaviour of erythrocytes I. Rotation and deformation in dilute suspensions. Proceedings of the Royal Society of London. Series B: Biological Sciences 182, 351–384 (1972).

99. Jeffery, G. B. & Filon, L. N. G. The motion of ellipsoidal particles immersed in a viscous fluid. Proceedings of the Royal Society of London. Series A, Containing Papers of a Mathematical and Physical Character 102, 161–179 (1922).

100. Noguchi, H. Swinging and synchronized rotations of red blood cells in simple shear flow. Physical Review E 80, 021902 (2009).

101. Yazdani, A. Z., Kalluri, R. M. & Bagchi, P. Tank-treading and tumbling frequencies of capsules and red blood cells. Physical Review E 83, 046305 (2011).

102. Takeishi, N., Rosti, M. E., Imai, Y., Wada, S. & Brandt, L. Hemorheology in dilute, semi-dilute and dense suspensions of red blood cells. Journal of Fluid Mechanics 872, 818–848 (2019).

103. Nait Ouhra, A. et al. Shear thinning and shear thickening of a confined suspension of vesicles. Physical Review E 97, 012404 (2018).

104. Brust, M. et al. Rheology of human blood plasma: Viscoelastic versus Newtonian behavior. Physical Review Letters 110, 078305 (2013).

105. Chien, S., Usami, S., Dellenback, R. & Gregersen, M. Shear-dependent interaction of plasma proteins with erythrocytes in blood rheology. American Journal of Physiology-Legacy Content 219, 143–153 (1970).

106. Baskurt, O., Neu, B. & Meiselman, H. J. Red blood cell aggregation (CRC Press, 2011).

107. Lanotte, L. et al. Red cells’ dynamic morphologies govern blood shear thinning under microcirculatory flow conditions. Proceedings of the National Academy of Sciences of the United States of America 113, 13289–13294 (2016).

108. Hsu, C. W. & Chen, Y.-L. Migration and fractionation of deformable particles in microchannel. Journal of Chemical Physics 133, 034906 (2010).

109. Goldsmith, H. L., Cokelet, G. R. & Gaehtgens, P. Robin Fahraeus: evolution of his concepts in cardiovascular physiology. American Journal of Physiology-Heart and Circulatory Physiology 257, H1005–H1015 (1989).

110. Pries, A. R., Neuhaus, D. & Gaehtgens, P. Blood viscosity in tube flow: dependence on diameter and hematocrit. American Journal of Physiology-Heart and Circulatory Physiology 263, H1770–H1778 (1992).

111. Namgung, B., Liang, L. H. & Kim, S. in Visualization and Simulation of Complex Flows in Biomedical Engineering (eds Lima, R., Imai, Y., Ishikawa, T. & Oliveira, M. S. N.) 75–87 (Springer Netherlands, Dordrecht, 2014).

112. Fedosov, D. A. & Gompper, G. White blood cell margination in microcirculation. Soft Matter 10, 2961–2970 (2014).

113. Zhao, H., Shaqfeh, E. S. & Narsimhan, V. Shear-induced particle migration and margination in a cellular suspension. Physics of Fluids 24, 011902 (2012).

114. Kim, S., Ong, P. K., Yalcin, O., Intaglietta, M. & Johnson, P. C. The cell-free layer in microvascular blood flow. Biorheology 46, 181–189 (2009).

115. Mielczarek, W. S., Obaje, E., Bachmann, T. & Kersaudy-Kerhoas, M. Microfluidic blood plasma separation for medical diagnostics: is it worth it? Lab on a Chip 16, 3441–3448 (2016).

116. Sharan, M. & Popel, A. S. A two-phase model for flow of blood in narrow tubes with increased effective viscosity near the wall. Biorheology 38, 415– 428 (2001).

117. Vladimir, V. Viscosity of Solutions and Suspensions. I. Theory. The Journal of Physical and Colloid Chemistry 52, 277–299 (1948).

118. Katanov, D., Gompper, G. & Fedosov, D. A. Microvascular blood flow resistance: role of red blood cell migration and dispersion. Microvascular Research 99, 57–66 (2015).

119. Zhang, J., Johnson, P. C. & Popel, A. S. Effects of erythrocyte deformability and aggregation on the cell free layer and apparent viscosity of microscopic blood flows. Microvascular Research 77, 265–272 (2009).

120. Tan, J., Sinno, T. R. & Diamond, S. L. A parallel fluid–solid coupling model using LAMMPS and Palabos based on the immersed boundary method. Journal of Computational Science 25, 89–100 (2018).

121. Zavodszky, G., Van Rooij, B., Azizi, V. & Hoekstra, A. Cellular level in-silico modeling of blood rheology with an improved material model for red blood cells. Frontiers in Physiology 8, 563 (2017).

122. Balogh, P. & Bagchi, P. The cell-free layer in simulated microvascular networks. Journal of Fluid Mechanics 864, 768–806 (2019).

123. Kim, S., Kong, R. L., Popel, A. S., Intaglietta, M. & Johnson, P. C. Temporal and spatial variations of cell-free layer width in arterioles. American Journal of Physiology-Heart and Circulatory Physiology 293, H1526–H1535 (2007).

124. Sampaio, D., Lopes, D. & Semiao, V. Horse and dog blood flows in PDMS rectangular microchannels: experimental characterization of the plasma layer under different flow conditions. Experimental Thermal and Fluid Science 68, 205–215 (2015).

125. Brust, M. et al. The plasma protein fibrinogen stabilizes clusters of red blood cells in microcapillary flows. Scientific Reports 4, 4348 (2014).

126. Pries, A., Fritzsche, A., Ley, K. & Gaehtgens, P. Redistribution of red blood cell flow in microcirculatory networks by hemodilution. Circulation Research 70, 1113–1121 (1992).

127. McWhirter, J. L., Noguchi, H. & Gompper, G. Flow-induced clustering and alignment of vesicles and red blood cells in microcapillaries. Proceedings of the National Academy of Sciences of the United States of America 106, 6039–6043 (2009).
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top

相關論文

無相關論文
 
* *