帳號:guest(3.149.234.188)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):巴強達
作者(外文):Navaneethan, Balchandar
論文名稱(中文):以自控單噴流靜電紡絲製作具有形狀記憶和結構完整性的人體器官尺度之多孔 3D 拓撲 PCL 細胞支架於組織工程應用
論文名稱(外文):Autopilot Jet Electrospinning of Human-organ-scale Porous 3D Topographic PCL Scaffolds with Shape Memory and Structural Integrity for Tissue Engineering Applications
指導教授(中文):周家復
曾繁根
指導教授(外文):Chou, Chia-Fu
Tseng, Fan-Gang
口試委員(中文):林耿慧
董奕鍾
郭青齡
口試委員(外文):Lin, Keng-Hui
Tung, Yi-Chung
Guo, Chin-Lin
學位類別:博士
校院名稱:國立清華大學
系所名稱:工程與系統科學系
學號:104011457
出版年(民國):111
畢業學年度:111
語文別:英文
論文頁數:135
中文關鍵詞:靜電紡絲組織工程3D支架聚己內酯形狀記憶
外文關鍵詞:electrospinningtissue engineering3D scaffoldspolycaprolactoneshape memory
相關次數:
  • 推薦推薦:0
  • 點閱點閱:34
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
人體由軟組織和硬組織組成。 遺傳和外源因素,如衰老、疾病和損傷等,對人體造成的的影響非常迫切需要通過臨床修復來恢復受損組織或器官的功能和形態。 組織工程是一個新興的多學科領域,涉及生物學、醫學和工程學,旨在通過方法的現代化來恢復、維持或增強組織和器官功能,從而改善病人的健康和生活質量。 成功的支架構造需要在生理學和解剖學方面來模仿天然組織。 3D 列印是公認可行的技術,因為它具有可控的支架建構、再現性且更緊密地模仿在解剖學上感興趣的形狀。 然而,即使以該技術目前的最新水平亦無法產生可模擬生理學的微觀結構,即人體組織的天然細胞外基質 (ECM)。
另一方面,靜電紡絲是從各種可生物降解的聚合物和具有不同形態的生物材料構建 ECM 模擬纖維支架中最成熟的技術之一。 然而,由於複雜的射流-電場相互作用,導致射流路徑的可控性差,而產生細胞無法滲入的片狀二維支架。 在這篇論文中,我們的第一項工作裡,報告了一種“新型自導向/自駕式聚合物單射流 (AJ) 靜電紡絲技術”,由於已沉積纖維上的電荷餘留和耗散過程,致使射流在懸臂式運動 (M1) 和鞭打運動 (M2) 之間自行切換。這種獨特的自噴射切換工藝將纖維沉積在收集器上,隨著此過程的持續,可產生具有不同屈曲程度的纖維形態及堆積密度的差異,並因此而共同引入了孔隙大小梯度和力學強度。 因此,只要使用簡單且成本低廉的自製常規靜電紡絲裝置,經單一步驟即可成功地構建多孔但力學強度堅韌的微纖維支架 (MFS)。各項物理表徵顯示,其與傳統的隨機多噴射流 (RJ) 生產的奈米纖維支架 (NFS) 相比,AJ 生產的微纖維支架具有近10 倍的多孔性和 8 倍的力學可拉伸性。 通過 M1 模式用高階屈曲構造的基礎層提供了出色的形狀記憶和力學魯棒性,可見於補充視頻資料。 對 3T3 小鼠胚胎纖維母細胞進行的體外研究結果表明,與通過多噴射流靜電紡絲的傳統奈米纖維支架相比,AJ 生產的支架有助於更高的細胞附著、滲透和增殖到支架的內層。 在這項研究中,我們還展示了 AJ 靜電紡絲具有可重複性、穩健性和可調性,並且史上首次為靜電紡絲技術生產的支架帶來了一致性。
雖然我們的第一個工作成功地構建了模擬生理的支架,但我們在第二個工作中展示了 AJ 在各種三維模板上的自我導向建構過程,試圖在符合解剖學的原則下製造模擬人體器官的三維支架時。 AJ 採用各種三維彎曲路徑,這些路徑遵循最佳場力線,將纖維沉積在三維收集器的不同側面,從而實現共形纖維沉積,產生精確的三維複製品。當採用了新穎的書寫建構策略,即可避免具有複雜三維幾何形狀模板而致的場力線競爭,例如本研究中的人臉模板。 模擬(COMSOL-Multiphysics 軟件)和實驗結果均表明,AJ 顯示出高目標鑑識率和解析度,圖案特徵可小至100微米(µm) 大至數十公分,並且能夠直接寫入極具挑戰性的圖案化二維及三維支架,包括人體器官尺寸的三維臉部、女性乳房和乳頭以及血管支架。 物理和生物學特性亦表明,紡成的支架呈海綿狀,並顯示出通過 AJ 靜電紡絲的 M1/M2 切換所實現的特殊形狀記憶性,且具有多向 3T3 細胞之附著、增殖和遷移能力,且細胞穿透深度超過 250 µm。 活細胞和死細胞的熒光染色表明,AJ 紡絲支架可以成功地將三維細胞網絡形成到支架中; 而膠原蛋白和細胞核的天狼星紅染色顯示細胞外基質的分泌和擴散以及細胞的共定位,並有掃描式電鏡影像佐證。我們的方法第一次展示將具有百年歷史的靜電紡絲技術引入可重複性的研究,並能將具有良好形狀記憶的三維支架直接寫出,從而為將該技術添加到3D支架製造技術中開啟了新路。
Human body is made up of both soft and hard tissues. Genetics and exogenous factors, such as aging, diseases and injury, affecting the human body highly demand clinical repairs to restore the functions and morphologies of the damaged tissues or organs. Tissue engineering is an emerging multidisciplinary field involving biology, medicine, and engineering to modernize the ways, which can improve the health and quality of life of affected people, by restoring, maintaining or enhancing tissue and organ functions. A successful scaffold construction requires to mimic the native tissue in terms of both physiologically and anatomically. 3D printing is the well-recognized technique for its controllable scaffold writing, reproducibility, and imitating shapes of interest more closely, in other words anatomically. However, the current state-of-art of this technique is unable to produce its microstructures mimicking physiologically i.e. the native extracellular matrix (ECM) of human tissues.
On the other hand, electro(static) spinning is one of the most established techniques for constructing ECM mimicking fibrous scaffolds from various biodegradable polymers and biomaterials with diverse morphologies. However, the poor controllability over its jet path due to complex jet-field interactions produce cell-impermeable sheet-like 2D scaffolds. In this thesis, in our first work, we report a “novel self-directing/autopilot polymer single jet (AJ) electrospinning” that self-switched between cantilever-like armed jet motion (M1) and whipping motion (M2) due to charge-retention and dissipation of pre-deposited fibers. This unique self-jet switching process deposited fibers on the collector with distinct fiber morphologies of high-order and low-order buckling and difference in packing density together introduced gradient porosity and mechanical strength as the process continued. Thereby, it successfully constructed porous yet mechanically robust microfibrous scaffolds (MFS) using the simple and cost-effective, homemade conventional electrospinning setup in a single-step. The physical characterizations revealed that the AJ-produced MFS showed nearly 10X porous and 8X mechanically stretchable as compared to the conventional random jet (RJ) produced nanofibrous scaffolds (NFS). The base layer constructed with high-order buckling by M1 mode provided excellent shape memory and mechanical robustness, bestowed with supporting videos. The in-vitro study carried out with 3T3 mouse embryonic fibroblasts results show AJ-produced scaffolds allow higher cell attachment, penetration and proliferation into inner layers of scaffold compared to the conventional nanofibrous scaffolds by multi-jets electrospinning. In this study, we also show the AJ-electrospinning is reproducible, robust and tunable, and that first time brings consistency to electrospinning produced scaffolds.
Whilst our first work successfully constructed scaffolds mimicking physiologically, we demonstrate the self-searched writing of AJ on various 3D templates in an attempt of fabricating 3D scaffolds mimicking human organs anatomically in our second work. The AJ took various 3D bending paths which followed optimal field lines to deposit fibers on the different sides of the 3D collectors, thereby achieving conformal fiber deposition that produced exact 3D replicas. Novel writing strategies were adopted thus avoiding the competitive field lines to templates having complex 3D geometries, for example human face in this study. Both the simulation (COMSOL-Multiphysics software) and experimental results show the AJ displayed high target recognition/specificity and resolution with pattern features as small as 100 µm to 10’s cm and is capable of direct writing challenging patterned-2D and 3D scaffolds, including human-organ-scale 3D face, female breast & nipple and vascular graft. The physical and biological characteristics revealed as-spun scaffolds were spongy and showed exceptional shape memory achieved through M1/M2 switching of AJ-electrospinning with multi-directional 3T3 cells attachment, proliferation and migration with deeper cell penetration over 250 µm. The live and dead cell fluorescent staining showed the AJ-spun scaffolds allowed successful formation of 3D cell networks into the scaffold; whereas, Sirius red staining of collagen and cell nucleus showed the secretion and spreading of ECM and co-localization of cells along with SEM imaging. By doing so, this is the first study to introduce reproducibility, capable of direct-writing 3D scaffolds with good shape memory to the century-old electrospinning technique thus paving the path to add this technique to the new list of 3D scaffolds fabrication techniques.
Abstract…………………………………………………………………………………………....i
Acknowledgements………………………………………………………………………………vi
Chapter 1: Motivation…………………………………………………………………………...1
1.1 Introduction………………………………………………………………………1
1.2 Motivation………………………………………………………………………...2
1.2.1 Novel Self-directing/autopilot Polymer Jet Developing Layered-like 3D Buckled Microfibrous Scaffolds for Tissue Engineering Applications…...2
1.2.2 Self-searched Writing of Human-organ-scale 3D Topographic Scaffolds with Shape Memory by Silkworm-like Electrospun Autopilot Jet………..6
1.3 Outline of the thesis……...………….…………………………………………...7
Chapter 2: Literature review……………………………………………………………………8
2.1 Background…………………………………………………………………………..8
2.1.1 Extracellular matrix…………………………………………………………8
2.1.2 Tissue Engineering…………………………………………………………10
2.1.3 Need for the fabrication of 3D porous scaffolds…………………………...12
2.2 Introduction to the electrospinning technique……………………………………14
2.2.1 Working principle………………………………………………………….14
2.2.2 Factors influencing electrospinning process……………………………….16
2.2.2.1 Solution properties……………………………………………….16
2.2.2.2 Processing parameters……………………………………………17
2.3 Complications in the conventional electrospinning process……….…………….20
2.3.1. Poor jet path controllability……………………………………………….21
2.3.2 Fiber diameter: dual role in porosity and mechanical properties…………..23
2.3.3 Fiber packing density: dual role in porosity and mechanical properties…..28
2.3.4 Fiber orientation: dual role in porosity and mechanical properties………..37
2.4 Post-processing electrospun scaffolds……………………………………………..41
2.5 Near-field electrospinning………………………………………………………….43
2.6 Melt-electrowriting…………………………………………………………………47
2.7 Summary…………………………………………………………………………….53
Chapter 3: Novel Self-directing/autopilot Polymer Jet Developing Layered-like 3D Buckled Microfibrous Scaffolds for Tissue Engineering Applications………………………………..57
3.1 Introduction…………………………………………………………………………57
3.2 Experimental section……………………………………………………………….58
3.2.1 Materials and Fabrication of fiber constructs and reproducibility…………58
3.2.2 Characterization of the fibers………………………………………………59
3.2.3 Analysis of water-uptake…………………………………………………..60
3.2.4 Preparation of scaffolds to mimic ECM…………………………………...60
3.2.5. Proliferation assay and morphological studies of cells on fibers………….61
3.2.6 Statistical analysis………………………………………………………….61
3.3 Results and Discussion……………………………………………………………..61
3.3.1 High-speed camera observation of unique self-directing/autopilot (AJ) jet electrospinning process…………………………………………………………..61
3.3.2 Reproducibility and tunability of the autopilot jet…………………………66
3.3.3 Characterizations of the fibrous scaffolds………………………………….69
3.3.4 Gradient porosity of the microfibrous scaffolds…………………………...72
3.3.5 Gradient mechanical strength of the microfibrous scaffolds………………75
3.3.6 Cell proliferation on the 3D microfibrous scaffolds……………………….77
Chapter 4: Self-searched Writing of Human-organ-scale 3D Topographic Scaffolds with Shape Memory by Silkworm-like Electrospun Autopilot Jet………………………………..82
4.1 Introduction…………………………………………………………………………82
4.2 Experimental section……………………………………………………………….83
4.2.1 Materials…………………………………………………………………...83
4.2.2 Solution preparation and electrospinning………………………………….83
4.2.3 Electric field simulation……………………………………………………84
4.2.4 Physical characterization of the scaffolds………………………………….85
4.2.5 Scaffold preparation for in-vitro cell culture………………………………85
4.2.6 In-vitro study……………………………………………………………….86
4.2.7 Green CMFDA (5-chloromethylfluorescein diacetate) imaging study....…86
4.2.8 Immunostaining study……………………………………………….……..87
4.2.9 Sirius Red staining…………………………………………………………87
4.2.10 FESEM analysis of cell-scaffold morphology……………………………88
4.3 Results and Discussion……………………………………………………………...88
4.3.1 2D pattern writing………………………………………………………….91
4.3.2 3D scaffolds construction………………………………………………….94
4.3.3 Characteristics of the AJ-produced scaffolds………………..…………...106
Chapter 5: Conclusions and future work………………..…………………………………..114
BIBLIOGRAPHY…………………….……………………………………………………….118
Appendix A.................................................................................................................................135
1. Le Fer G, Becker ML. 4D Printing of Resorbable Complex Shape-Memory Poly(propylene fumarate) Star Scaffolds. ACS Appl Mater Interfaces. 2020;12(20):22444-52.
2. Elder B, Neupane R, Tokita E, Ghosh U, Hales S, Kong YL. Nanomaterial Patterning in 3D Printing. Adv Mater. 2020;32(17):1907142.
3. Eom S, Park SM, Hong H, Kwon J, Oh S-R, Kim J, et al. Hydrogel-Assisted Electrospinning for Fabrication of a 3D Complex Tailored Nanofiber Macrostructure. ACS Appl Mater Interfaces. 2020;12(46):51212-24.
4. Sharma C, Dinda AK, Potdar PD, Chou C-F, Mishra NC. Fabrication and characterization of novel nano-biocomposite scaffold of chitosan–gelatin–alginate–hydroxyapatite for bone tissue engineering. Mater Sci Eng C. 2016;64:416-27.
5. Rothemund PWK. Folding DNA to create nanoscale shapes and patterns. Nature. 2006;440(7082):297-302.
6. Marx V. Organs from the lab. Nature. 2015;522(7556):373-7.
7. Murr LE. Frontiers of 3D Printing/Additive Manufacturing: from Human Organs to Aircraft Fabrication. J Mater Sci Technol. 2016;32(10):987-95.
8. Thakur VK, Thakur MK, Kessler MR. Handbook of composites from renewable materials, nanocomposites: science and fundamentals: John Wiley & Sons; 2017.
9. Xue J, Xie J, Liu W, Xia Y. Electrospun nanofibers: new concepts, materials, and applications. Accounts of chemical research. 2017;50(8):1976-87.
10. Rahmati M, Mills DK, Urbanska AM, Saeb M, Venugopal JR, Ramakrishna S, et al. Electrospinning for Tissue Engineering Applications. Prog Mater Sci. 2020;117:100721.
11. Anjum F, Agabalyan NA, Sparks HD, Rosin NL, Kallos MS, Biernaskie J. Biocomposite nanofiber matrices to support ECM remodeling by human dermal progenitors and enhanced wound closure. Sci Rep. 2017;7(1):10291.
12. Ramakrishna S, Fujihara K, Teo W-E, Yong T, Ma Z, Ramaseshan R. Electrospun nanofibers: solving global issues. Mater Today. 2006;9(3):40-50.
13. Lannutti J, Reneker D, Ma T, Tomasko D, Farson D. Electrospinning for tissue engineering scaffolds. Mater Sci Eng C. 2007;27(3):504-9.
14. Wang X, Ding B, Li B. Biomimetic electrospun nanofibrous structures for tissue engineering. Mater Today. 2013;16(6):229-41.
15. Goh Y-F, Shakir I, Hussain R. Electrospun fibers for tissue engineering, drug delivery, and wound dressing. Journal of Materials Science. 2013;48(8):3027-54.
16. Liu H, Ding X, Zhou G, Li P, Wei X, Fan Y. Electrospinning of nanofibers for tissue engineering applications. J Nanomaterials. 2013;2013:Article 3.
17. Keirouz A, Chung M, Kwon J, Fortunato G, Radacsi N. 2D and 3D electrospinning technologies for the fabrication of nanofibrous scaffolds for skin tissue engineering: A review. WIREs Nanomedicine and Nanobiotechnology. 2020;12(4):e1626.
18. Kitsara M, Agbulut O, Kontziampasis D, Chen Y, Menasché P. Fibers for hearts: A critical review on electrospinning for cardiac tissue engineering. Acta Biomater. 2017;48:20-40.
19. Jun I, Han H-S, Edwards JR, Jeon H. Electrospun Fibrous Scaffolds for Tissue Engineering: Viewpoints on Architecture and Fabrication. International Journal of Molecular Sciences. 2018;19(3):745.
20. Matabola KP, Moutloali RM. The influence of electrospinning parameters on the morphology and diameter of poly(vinyledene fluoride) nanofibers- effect of sodium chloride. Journal of Materials Science. 2013;48(16):5475-82.
21. Jacobs V, Anandjiwala RD, Maaza M. The influence of electrospinning parameters on the structural morphology and diameter of electrospun nanofibers. Journal of Applied Polymer Science. 2010;115(5):3130-6.
22. Lasprilla-Botero J, Álvarez-Láinez M, Lagaron JM. The influence of electrospinning parameters and solvent selection on the morphology and diameter of polyimide nanofibers. Materials Today Communications. 2018;14:1-9.
23. Chen M, Patra PK, Warner SB, Bhowmick S. Role of fiber diameter in adhesion and proliferation of NIH 3T3 fibroblast on electrospun polycaprolactone scaffolds. Tissue engineering. 2007;13(3):579-87.
24. Li R, Deng X, Liu F, Yang Y, Zhang Y, Reddy N, et al. Three-dimensional rope-like and cloud-like nanofibrous scaffolds facilitating in-depth cell infiltration developed using a highly conductive electrospinning system. Nanoscale. 2020;12(32):16690-6.
25. Ura DP, Karbowniczek JE, Szewczyk PK, Metwally S, Kopyściański M, Stachewicz U. Cell integration with electrospun PMMA nanofibers, microfibers, ribbons, and films: a microscopy study. Bioengineering. 2019;6(2):41.
26. Zhao J, Si N, Xu L, Tang X, Song Y, Sun Z. Experimental and theoretical study on the electrospinning nanoporous fibers process. Materials Chemistry and Physics. 2016;170:294-302.
27. Haider A, Haider S, Kang I-K. A comprehensive review summarizing the effect of electrospinning parameters and potential applications of nanofibers in biomedical and biotechnology. Arabian Journal of Chemistry. 2018;11(8):1165-88.
28. Soliman S, Sant S, Nichol JW, Khabiry M, Traversa E, Khademhosseini A. Controlling the porosity of fibrous scaffolds by modulating the fiber diameter and packing density. Journal of Biomedical Materials Research Part A. 2011;96(3):566-74.
29. Chaurey V, Chiang P-C, Polanco C, Su Y-H, Chou C-F, Swami NS. Interplay of Electrical Forces for Alignment of Sub-100 nm Electrospun Nanofibers on Insulator Gap Collectors. Langmuir. 2010;26(24):19022-6.
30. Chaurey V, Block F, Su Y-H, Chiang P-C, Botchwey E, Chou C-F, et al. Nanofiber size-dependent sensitivity of fibroblast directionality to the methodology for scaffold alignment. Acta Biomaterialia. 2012;8(11):3982-90.
31. Luo G, Teh KS, Liu Y, Zang X, Wen Z, Lin L. Direct-write, self-aligned electrospinning on paper for controllable fabrication of three-dimensional structures. ACS Appl Mater Interfaces. 2015;7(50):27765-70.
32. Xu J, Liu X, Zhang Z, Wang L, Tan R, Zhang D. Controllable generation of nanofibers through a magnetic-field-assisted electrospinning design. Materials Letters. 2019;247:19-24.
33. Yarin AL, Koombhongse S, Reneker DH. Bending instability in electrospinning of nanofibers. J Appl Phys. 2001;89(5):3018-26.
34. Wu Y, Wu B, Vijayavenkataraman S, Wong YS, Fuh JYH. Crimped fiber with controllable patterns fabricated via electrohydrodynamic jet printing. Materials & Design. 2017;131:384-93.
35. Zheng G, Jiang J, Wang X, Li W, Yu Z, Lin L. High-aspect-ratio three-dimensional electrospinning via a tip guiding electrode. Materials & Design. 2021;198:109304.
36. Robinson AJ, Pérez-Nava A, Ali SC, González-Campos JB, Holloway JL, Cosgriff-Hernandez EM. Comparative analysis of fiber alignment methods in electrospinning. Matter. 2021;4(3):821-44.
37. Wang W, Zheng Y, Jin X, Sun Y, Lu B, Wang H, et al. Unexpectedly high piezoelectricity of electrospun polyacrylonitrile nanofiber membranes. Nano Energy. 2019;56:588-94.
38. Organ Procurement and Transplantation Network [cited U.S. Department of Health & Human Services (HSRA). Available from: https://optn.transplant.hrsa.gov/data/.
39. Furth ME, Atala A. 1 - Current and Future Perspectives of Regenerative Medicine. In: A. A, R. L, J.A. T, R.M. N, editors. Principles of Regenerative Medicine. San Diego: Academic Press; 2008. p. 2-15.
40. Gater R, Njoroge W, Owida HA, Yang Y. 3 - Scaffolds mimicking the native structure of tissues. In: Mozafari M, Sefat F, Atala A, editors. Handbook of Tissue Engineering Scaffolds: Volume One: Woodhead Publishing; 2019. p. 51-71.
41. Bittner SM, Guo JL, Melchiorri A, Mikos AG. Three-dimensional printing of multilayered tissue engineering scaffolds. Mater Today. 2018;21(8):861-74.
42. Tejo-Otero A, Buj-Corral I, Fenollosa-Artés F. 3D Printing in Medicine for Preoperative Surgical Planning: A Review. Ann Biomed Eng. 2020;48(2):536-55.
43. Kang H-W, Lee SJ, Ko IK, Kengla C, Yoo JJ, Atala A. A 3D bioprinting system to produce human-scale tissue constructs with structural integrity. Nat Biotechnol. 2016;34(3):312-9.
44. Do A-V, Khorsand B, Geary SM, Salem AK. 3D Printing of Scaffolds for Tissue Regeneration Applications. Adv Healthc Mater. 2015;4(12):1742-62.
45. Xie Z, Gao M, Lobo AO, Webster TJ. 3D Bioprinting in Tissue Engineering for Medical Applications: The Classic and the Hybrid. Polymers. 2020;12(8):1717.
46. Kačarević ŽP, Rider PM, Alkildani S, Retnasingh S, Smeets R, Jung O, et al. An introduction to 3D bioprinting: possibilities, challenges and future aspects. Materials. 2018;11(11):2199.
47. Sydney Gladman A, Matsumoto EA, Nuzzo RG, Mahadevan L, Lewis JA. Biomimetic 4D printing. Nat Mater. 2016;15(4):413-8.
48. Murphy SV, De Coppi P, Atala A. Opportunities and challenges of translational 3D bioprinting. Nat Biomed Eng. 2020;4(4):370-80.
49. Spasova M, Stoilova O, Manolova N, Rashkov I. Electrospun PLLA/PEG scaffolds: Materials resemble neural network. Mater Today. 2019;28:114-5.
50. Xue J, Wu T, Dai Y, Xia Y. Electrospinning and Electrospun Nanofibers: Methods, Materials, and Applications. Chem Rev. 2019;119(8):5298-415.
51. Reneker DH, Yarin AL, Fong H, Koombhongse S. Bending instability of electrically charged liquid jets of polymer solutions in electrospinning. J Appl Phys. 2000;87(9):4531-47.
52. Reneker DH, Yarin AL. Electrospinning jets and polymer nanofibers. Polymer. 2008;49(10):2387-425.
53. Collins G, Federici J, Imura Y, Catalani LH. Charge generation, charge transport, and residual charge in the electrospinning of polymers: A review of issues and complications. J Appl Phys. 2012;111(4):044701.
54. Khorshidi S, Solouk A, Mirzadeh H, Mazinani S, Lagaron JM, Sharifi S, et al. A review of key challenges of electrospun scaffolds for tissue-engineering applications. J Tissue Eng Regen Med. 2016;10(9):715-38.
55. Lee J, Lee SY, Jang J, Jeong YH, Cho D-W. Fabrication of Patterned Nanofibrous Mats Using Direct-Write Electrospinning. Langmuir. 2012;28(18):7267-75.
56. Arras MML, Grasl C, Bergmeister H, Schima H. Electrospinning of aligned fibers with adjustable orientation using auxiliary electrodes. Sci Technol Adv Mater. 2012;13(3):035008.
57. Kameoka J, Orth R, Yang Y, Czaplewski D, Mathers R, Coates GW, et al. A scanning tip electrospinning source for deposition of oriented nanofibres. Nanotechnology. 2003;14(10):1124-9.
58. Sun D, Chang C, Li S, Lin L. Near-Field Electrospinning. Nano Letters. 2006;6(4):839-42.
59. Chen H, Malheiro AdBFB, van Blitterswijk C, Mota C, Wieringa PA, Moroni L. Direct Writing Electrospinning of Scaffolds with Multidimensional Fiber Architecture for Hierarchical Tissue Engineering. ACS Applied Materials & Interfaces. 2017;9(44):38187-200.
60. Jordahl JH, Solorio L, Sun H, Ramcharan S, Teeple CB, Haley HR, et al. 3D Jet Writing: Functional Microtissues Based on Tessellated Scaffold Architectures. Adv Mater. 2018;30(14):1707196.
61. Frantz C, Stewart KM, Weaver VM. The extracellular matrix at a glance. Journal of Cell Science. 2010;123(24):4195-200.
62. Theocharis AD, Skandalis SS, Gialeli C, Karamanos NK. Extracellular matrix structure. Advanced Drug Delivery Reviews. 2016;97:4-27.
63. Kielty CM, Grant ME. The Collagen Family: Structure, Assembly, and Organization in the Extracellular Matrix. Connective Tissue and Its Heritable Disorders2002. p. 159-221.
64. Ricard-Blum S, Ruggiero F. The collagen superfamily: from the extracellular matrix to the cell membrane. Pathologie Biologie. 2005;53(7):430-42.
65. Halper J, Kjaer M. Basic Components of Connective Tissues and Extracellular Matrix: Elastin, Fibrillin, Fibulins, Fibrinogen, Fibronectin, Laminin, Tenascins and Thrombospondins. In: Halper J, editor. Progress in Heritable Soft Connective Tissue Diseases. Dordrecht: Springer Netherlands; 2014. p. 31-47.
66. Taipale J, Keski-Oja J. Growth factors in the extracellular matrix. The FASEB Journal. 1997;11(1):51-9.
67. Hohenester E, Engel J. Domain structure and organisation in extracellular matrix proteins. Matrix Biology. 2002;21(2):115-28.
68. Engel J, Furthmayr H. Electron microscopy and other physical methods for the characterization of extracellular matrix components: Laminin, fibronectin, collagen IV, collagen VI, and proteoglycans. Methods in Enzymology. 145: Academic Press; 1987. p. 3-78.
69. Candiello J, Balasubramani M, Schreiber EM, Cole GJ, Mayer U, Halfter W, et al. Biomechanical properties of native basement membranes. The FEBS Journal. 2007;274(11):2897-908.
70. Schwarzbauer JE, Sechler JL. Fibronectin fibrillogenesis: a paradigm for extracellular matrix assembly. Current Opinion in Cell Biology. 1999;11(5):622-7.
71. Singh P, Carraher C, Schwarzbauer JE. Assembly of Fibronectin Extracellular Matrix. Annual Review of Cell and Developmental Biology. 2010;26(1):397-419.
72. Sonbol HS. Extracellular Matrix Remodeling in Human Disease. J Microsc Ultrastruct. 2018;6(3):123-8.
73. WERB Z, CHIN JR. Extracellular Matrix Remodeling during Morphogenesisa. Annals of the New York Academy of Sciences. 1998;857(1):110-8.
74. Larsen M, Artym VV, Green JA, Yamada KM. The matrix reorganized: extracellular matrix remodeling and integrin signaling. Current Opinion in Cell Biology. 2006;18(5):463-71.
75. Lanza R, Langer R, Vacanti JP, Atala A. Principles of tissue engineering: Academic press; 2020.
76. Nigam R, Mahanta B. An Overview of Various Biomimetic Scaffolds: Challenges and Applications in Tissue Engineering. Journal of Tissue Science and Engineering. 2014;5:1-5.
77. Partners TI. Tissue Engineering Market Size Worth $29.65Bn, Globally, by 2028 at 12.2% CAGR - Exclusive Report by The Insight Partners 2022 [Available from: https://www.prnewswire.com/news-releases/tissue-engineering-market-size-worth-29-65bn-globally-by-2028-at-12-2-cagr---exclusive-report-by-the-insight-partners-301551071.html.
78. Moysidou C-M, Barberio C, Owens RM. Advances in Engineering Human Tissue Models. Frontiers in Bioengineering and Biotechnology. 2021;8.
79. Atala A, Lanza R, Lanza RP. Methods of tissue engineering: Gulf professional publishing; 2002.
80. Khademhosseini A, Vacanti JP, Langer R. Progress in tissue engineering. Scientific American. 2009;300(5):64-71.
81. Khademhosseini A, Langer R. A decade of progress in tissue engineering. Nat Protoc. 2016;11(10):1775-81.
82. Lu T, Li Y, Chen T. Techniques for fabrication and construction of three-dimensional scaffolds for tissue engineering. International journal of nanomedicine. 2013;8:337.
83. Liu C, Xia Z, Czernuszka J. Design and development of three-dimensional scaffolds for tissue engineering. Chemical Engineering Research and Design. 2007;85(7):1051-64.
84. Ma PX. Scaffolds for tissue fabrication. Mater Today. 2004;7(5):30-40.
85. Ikada Y. Challenges in tissue engineering. Journal of the Royal Society Interface. 2006;3(10):589-601.
86. Griffith LG, Naughton G. Tissue engineering--current challenges and expanding opportunities. Science. 2002;295(5557):1009-14.
87. Hollister SJ. Porous scaffold design for tissue engineering. Nat Mater. 2005;4(7):518-24.
88. Dhandayuthapani B, Yoshida Y, Maekawa T, Kumar DS. Polymeric scaffolds in tissue engineering application: a review. International journal of polymer science. 2011;2011.
89. O'brien FJ. Biomaterials & scaffolds for tissue engineering. Mater Today. 2011;14(3):88-95.
90. Post MJ, Rahimi N, Caolo V. Update on vascularization in tissue engineering. Regenerative Medicine. 2013;8(6):759-70.
91. Bhardwaj N, Kundu SC. Electrospinning: a fascinating fiber fabrication technique. Biotechnology advances. 2010;28(3):325-47.
92. Teo WE, Ramakrishna S. A review on electrospinning design and nanofibre assemblies. Nanotechnology. 2006;17(14):R89.
93. Tucker N, Stanger JJ, Staiger MP, Razzaq H, Hofman K. The history of the science and technology of electrospinning from 1600 to 1995. Journal of engineered fibers and fabrics. 2012;7(2_suppl):155892501200702S10.
94. Wendorff JH, Agarwal S, Greiner A. Electrospinning: materials, processing, and applications: John Wiley & Sons; 2012.
95. Ramakrishna S, Kazutoshi F, Wee-Eong T, Teik-Cheng L, Zuwei M. An introduction to electrospinning and nanofibers. Singapore: World Scientific; 2005.
96. Sarkar K, Gomez C, Zambrano S, Ramirez M, de Hoyos E, Vasquez H, et al. Electrospinning to Forcespinning™. Mater Today. 2010;13(11):12-4.
97. Rutledge GC, Fridrikh SV. Formation of fibers by electrospinning. Advanced drug delivery reviews. 2007;59(14):1384-91.
98. Bognitzki M, Czado W, Frese T, Schaper A, Hellwig M, Steinhart M, et al. Nanostructured fibers via electrospinning. Adv Mater. 2001;13(1):70-2.
99. Ibrahim HM, Klingner A. A review on electrospun polymeric nanofibers: Production parameters and potential applications. Polymer Testing. 2020;90:106647.
100. Angammana CJ, Jayaram SH. Fundamentals of electrospinning and processing technologies. Particulate Science and Technology. 2016;34(1):72-82.
101. Tarus B, Fadel N, Al-Oufy A, El-Messiry M. Effect of polymer concentration on the morphology and mechanical characteristics of electrospun cellulose acetate and poly (vinyl chloride) nanofiber mats. Alexandria Engineering Journal. 2016;55(3):2975-84.
102. Shao H, Fang J, Wang H, Lin T. Effect of electrospinning parameters and polymer concentrations on mechanical-to-electrical energy conversion of randomly-oriented electrospun poly (vinylidene fluoride) nanofiber mats. RSC advances. 2015;5(19):14345-50.
103. Yener F, Jirsak O, Gemci R, editors. Effect of polymer concentration on electrospinning System. International Conference-Fiber Society; 2010.
104. Sun Z, Deitzel JM, Knopf J, Chen X, Gillespie Jr JW. The effect of solvent dielectric properties on the collection of oriented electrospun fibers. Journal of Applied Polymer Science. 2012;125(4):2585-94.
105. Wannatong L, Sirivat A, Supaphol P. Effects of solvents on electrospun polymeric fibers: preliminary study on polystyrene. Polymer International. 2004;53(11):1851-9.
106. Bakar S, Fong K, Eleyas A, Nazeri M, editors. Effect of voltage and flow rate electrospinning parameters on polyacrylonitrile electrospun fibers. IOP Conference Series: Materials Science and Engineering; 2018: IOP Publishing.
107. Li Z, Wang C. Effects of working parameters on electrospinning. One-dimensional nanostructures: Springer; 2013. p. 15-28.
108. Li X, Li Z, Wang L, Ma G, Meng F, Pritchard RH, et al. Low-Voltage Continuous Electrospinning Patterning. ACS Appl Mater Interfaces. 2016;8(47):32120-31.
109. Motamedi AS, Mirzadeh H, Hajiesmaeilbaigi F, Bagheri-Khoulenjani S, Shokrgozar M. Effect of electrospinning parameters on morphological properties of PVDF nanofibrous scaffolds. Progress in biomaterials. 2017;6(3):113-23.
110. Okutan N, Terzi P, Altay F. Affecting parameters on electrospinning process and characterization of electrospun gelatin nanofibers. Food Hydrocolloids. 2014;39:19-26.
111. Fallahi D, Rafizadeh M, Mohammadi N, Vahidi B. Effect of applied voltage on jet electric current and flow rate in electrospinning of polyacrylonitrile solutions. Polymer international. 2008;57(12):1363-8.
112. Joy N, Anuraj R, Viravalli A, Dixit HN, Samavedi S. Coupling between voltage and tip-to-collector distance in polymer electrospinning: Insights from analysis of regimes, transitions and cone/jet features. Chem Eng Sci. 2021;230:116200.
113. Levitt AS, Vallett R, Dion G, Schauer CL. Effect of electrospinning processing variables on polyacrylonitrile nanoyarns. Journal of Applied Polymer Science. 2018;135(25):46404.
114. Kim CH, Jung YH, Kim HY, Lee DR, Dharmaraj N, Choi KE. Effect of collector temperature on the porous structure of electrospun fibers. Macromolecular Research. 2006;14(1):59-65.
115. De Vrieze S, Van Camp T, Nelvig A, Hagström B, Westbroek P, De Clerck K. The effect of temperature and humidity on electrospinning. Journal of materials science. 2009;44(5):1357-62.
116. Mailley D, Hebraud A, Schlatter G. A review on the impact of humidity during electrospinning: From the nanofiber structure engineering to the applications. Macromolecular Materials and Engineering. 2021;306(7):2100115.
117. Zander NE. Hierarchically Structured Electrospun Fibers. Polymers. 2013;5(1):19-44.
118. De Prá MAA, Ribeiro-do-Valle RM, Maraschin M, Veleirinho B. Effect of collector design on the morphological properties of polycaprolactone electrospun fibers. Materials Letters. 2017;193:154-7.
119. Pan H, Li L, Hu L, Cui X. Continuous aligned polymer fibers produced by a modified electrospinning method. Polymer. 2006;47(14):4901-4.
120. Vaquette C, Cooper-White JJ. Increasing electrospun scaffold pore size with tailored collectors for improved cell penetration. Acta Biomater. 2011;7(6):2544-57.
121. Pokorny M, Niedoba K, Velebny V. Transversal electrostatic strength of patterned collector affecting alignment of electrospun nanofibers. Applied Physics Letters. 2010;96(19):193111.
122. Li D, Ouyang G, McCann JT, Xia Y. Collecting electrospun nanofibers with patterned electrodes. Nano Lett. 2005;5(5):913-6.
123. Sahay R, Thavasi V, Ramakrishna S. Design Modifications in Electrospinning Setup for Advanced Applications. Journal of Nanomaterials. 2011;2011:317673.
124. Subbiah T, Bhat GS, Tock RW, Parameswaran S, Ramkumar SS. Electrospinning of nanofibers. Journal of applied polymer science. 2005;96(2):557-69.
125. Agarwal S, Wendorff JH, Greiner A. Use of electrospinning technique for biomedical applications. Polymer. 2008;49(26):5603-21.
126. Gupta KC, Haider A, Choi Y-r, Kang I-k. Nanofibrous scaffolds in biomedical applications. Biomaterials Research. 2014;18(1):5.
127. Varesano A, Carletto RA, Mazzuchetti G. Experimental investigations on the multi-jet electrospinning process. Journal of Materials Processing Technology. 2009;209(11):5178-85.
128. SalehHudin HS, Mohamad EN, Mahadi WNL, Muhammad Afifi A. Multiple-jet electrospinning methods for nanofiber processing: A review. Materials and Manufacturing Processes. 2018;33(5):479-98.
129. Kim TG, Shin H, Lim DW. Biomimetic scaffolds for tissue engineering. Advanced Functional Materials. 2012;22(12):2446-68.
130. Zhao P, Gu H, Mi H, Rao C, Fu J, Turng L-s. Fabrication of scaffolds in tissue engineering: A review. Frontiers of Mechanical Engineering. 2018;13(1):107-19.
131. Zhong S, Zhang Y, Lim CT. Fabrication of large pores in electrospun nanofibrous scaffolds for cellular infiltration: a review. Tissue Engineering Part B: Reviews. 2012;18(2):77-87.
132. Cai S, Xu H, Jiang Q, Yang Y. Novel 3D Electrospun Scaffolds with Fibers Oriented Randomly and Evenly in Three Dimensions to Closely Mimic the Unique Architectures of Extracellular Matrices in Soft Tissues: Fabrication and Mechanism Study. Langmuir. 2013;29(7):2311-8.
133. Blakeney BA, Tambralli A, Anderson JM, Andukuri A, Lim D-J, Dean DR, et al. Cell infiltration and growth in a low density, uncompressed three-dimensional electrospun nanofibrous scaffold. Biomaterials. 2011;32(6):1583-90.
134. Wu J, Hong Y. Enhancing cell infiltration of electrospun fibrous scaffolds in tissue regeneration. Bioactive Materials. 2016;1(1):56-64.
135. Fuller KP, Gaspar D, Delgado LM, Zeugolis DI. Development macro-porous electro-spun meshes with clinically relevant mechanical properties—a technical note. Biomedical Materials. 2019;14(2):024103.
136. Matsuzaki Y, Iwaki R, Reinhardt JW, Chang Y-C, Miyamoto S, Kelly J, et al. The effect of pore diameter on neo-tissue formation in electrospun biodegradable tissue-engineered arterial grafts in a large animal model. Acta Biomater. 2020;115:176-84.
137. Elsayed Y, Lekakou C. 2 - Designing and modeling pore size distribution in tissue scaffolds. In: Tomlins P, editor. Characterisation and Design of Tissue Scaffolds: Woodhead Publishing; 2016. p. 23-43.
138. Cipitria A, Skelton A, Dargaville T, Dalton P, Hutmacher D. Design, fabrication and characterization of PCL electrospun scaffolds—a review. Journal of Materials Chemistry. 2011;21(26):9419-53.
139. Shin YM, Hohman MM, Brenner MP, Rutledge GC. Electrospinning: A whipping fluid jet generates submicron polymer fibers. Applied Physics Letters. 2001;78(8):1149-51.
140. Hohman MM, Shin M, Rutledge G, Brenner MP. Electrospinning and electrically forced jets. I. Stability theory. Physics of fluids. 2001;13(8):2201-20.
141. Zheng Y, Gong RH, Zeng Y. Multijet motion and deviation in electrospinning. RSC Advances. 2015;5(60):48533-40.
142. Deshawar D, Gupta K, Chokshi P. Electrospinning of polymer solutions: An analysis of instability in a thinning jet with solvent evaporation. Polymer. 2020;202:122656.
143. TONG H-W, WANG M. Negative voltage electrospinning and positive voltage electrospinning of tissue engineering scaffolds: a comparative study and charge retention on scaffolds. Nano Life. 2012;2(01):1250004.
144. Lovera D, Bilbao C, Schreier P, Kador L, Schmidt HW, Altstädt V. Charge storage of electrospun fiber mats of poly (phenylene ether)/polystyrene blends. Polymer Engineering & Science. 2009;49(12):2430-9.
145. Pham QP, Sharma U, Mikos AG. Electrospun Poly(ε-caprolactone) Microfiber and Multilayer Nanofiber/Microfiber Scaffolds:  Characterization of Scaffolds and Measurement of Cellular Infiltration. Biomacromolecules. 2006;7(10):2796-805.
146. Balguid A, Mol A, van Marion MH, Bank RA, Bouten CV, Baaijens FP. Tailoring fiber diameter in electrospun poly (ɛ-caprolactone) scaffolds for optimal cellular infiltration in cardiovascular tissue engineering. Tissue Engineering Part A. 2009;15(2):437-44.
147. Wong S-C, Baji A, Leng S. Effect of fiber diameter on tensile properties of electrospun poly (ɛ-caprolactone). Polymer. 2008;49(21):4713-22.
148. Nurfaizey AH, Stanger J, Tucker N, Buunk N, Wood AR, Staiger MP. Control of spatial deposition of electrospun fiber using electric field manipulation. Journal of engineered fibers and fabrics. 2014;9(1):155892501400900118.
149. Kang DH, Kang HW. Advanced electrospinning using circle electrodes for freestanding PVDF nanofiber film fabrication. Applied Surface Science. 2018;455:251-7.
150. Park S-H, Kim MS, Lee B, Park JH, Lee HJ, Lee NK, et al. Creation of a Hybrid Scaffold with Dual Configuration of Aligned and Random Electrospun Fibers. ACS Appl Mater Interfaces. 2016;8(4):2826-32.
151. Zhou Y, Hu Z, Du D, Tan GZ. The effects of collector geometry on the internal structure of the 3D nanofiber scaffold fabricated by divergent electrospinning. The International Journal of Advanced Manufacturing Technology. 2019;100(9):3045-54.
152. Nam J, Huang Y, Agarwal S, Lannutti J. Improved cellular infiltration in electrospun fiber via engineered porosity. Tissue engineering. 2007;13(9):2249-57.
153. Kim BS, Park KE, Kim MH, You HK, Lee J, Park WH. Effect of nanofiber content on bone regeneration of silk fibroin/poly (ε-caprolactone) nano/microfibrous composite scaffolds. International journal of nanomedicine. 2015;10:485.
154. de Siqueira L, Ribeiro N, Paredes M, Grenho L, Cunha-Reis C, Trichês ES, et al. Influence of PLLA/PCL/HA scaffold fiber orientation on mechanical properties and osteoblast behavior. Materials. 2019;12(23):3879.
155. Ravichandran R, Venugopal JR, Mueller M, Sundarrajan S, Mukherjee S, Pliska D, et al. Buckled structures and 5-azacytidine enhance cardiogenic differentiation of adipose-derived stem cells. Nanomedicine (Lond). 2013;8(12):1985-97.
156. Jiang J, Carlson MA, Teusink MJ, Wang H, MacEwan MR, Xie J. Expanding two-dimensional electrospun nanofiber membranes in the third dimension by a modified gas-foaming technique. ACS Biomaterials Science & Engineering. 2015;1(10):991-1001.
157. Yao Q, Cosme JG, Xu T, Miszuk JM, Picciani PH, Fong H, et al. Three dimensional electrospun PCL/PLA blend nanofibrous scaffolds with significantly improved stem cells osteogenic differentiation and cranial bone formation. Biomaterials. 2017;115:115-27.
158. Zheng G, Li W, Wang X, Wu D, Sun D, Lin L. Precision deposition of a nanofibre by near-field electrospinning. Journal of Physics D: Applied Physics. 2010;43(41):415501.
159. Dalton PD. Melt electrowriting with additive manufacturing principles. Current Opinion in Biomedical Engineering. 2017;2:49-57.
160. Woodfield TB, Malda J, De Wijn J, Peters F, Riesle J, van Blitterswijk CA. Design of porous scaffolds for cartilage tissue engineering using a three-dimensional fiber-deposition technique. Biomaterials. 2004;25(18):4149-61.
161. Hoque ME, San WY, Wei F, Li S, Huang M-H, Vert M, et al. Processing of polycaprolactone and polycaprolactone-based copolymers into 3D scaffolds, and their cellular responses. Tissue Engineering Part A. 2009;15(10):3013-24.
162. McColl E, Groll J, Jungst T, Dalton PD. Design and fabrication of melt electrowritten tubes using intuitive software. Materials & Design. 2018;155:46-58.
163. Saidy NT, Shabab T, Bas O, Rojas-González DM, Menne M, Henry T, et al. Melt electrowriting of complex 3D anatomically relevant scaffolds. Frontiers in bioengineering and biotechnology. 2020:793.
164. Liu Q, Wu Q, Xie S, Zhao L, Chen Z, Ding Z, et al. Uniform field electrospinning for 3D printing of fibrous configurations as strain sensors. Nanotechnology. 2019;30(37):375301.
165. Woodfield TBF, Guggenheim M, von Rechenberg B, Riesle J, van Blitterswijk CA, Wedler V. Rapid prototyping of anatomically shaped, tissue-engineered implants for restoring congruent articulating surfaces in small joints. Cell Prolif. 2009;42(4):485-97.
166. Paul K, Darzi S, McPhee G, Del Borgo MP, Werkmeister JA, Gargett CE, et al. 3D bioprinted endometrial stem cells on melt electrospun poly ε-caprolactone mesh for pelvic floor application promote anti-inflammatory responses in mice. Acta Biomaterialia. 2019;97:162-76.
167. Moon S, Jones MS, Seo E, Lee J, Lahann L, Jordahl JH, et al. 3D jet writing of mechanically actuated tandem scaffolds. Science Advances. 2021;7(16):eabf5289.
168. Kade JC, Dalton PD. Polymers for Melt Electrowriting. Advanced Healthcare Materials. 2021;10(1):2001232.
169. Afghah F, Dikyol C, Altunbek M, Koc B. Biomimicry in bio-manufacturing: developments in melt electrospinning writing technology towards hybrid biomanufacturing. Applied Sciences. 2019;9(17):3540.
170. Robinson TM, Hutmacher DW, Dalton PD. The Next Frontier in Melt Electrospinning: Taming the Jet. Advanced Functional Materials. 2019;29(44):1904664.
171. Shahmoradi S, Yazdian F, Tabandeh F, Soheili Z-S, Hatamian Zarami AS, Navaei-Nigjeh M. Controlled surface morphology and hydrophilicity of polycaprolactone toward human retinal pigment epithelium cells. Materials Science and Engineering: C. 2017;73:300-9.
172. Cramariuc B, Cramariuc R, Scarlet R, Manea LR, Lupu IG, Cramariuc O. Fiber diameter in electrospinning process. Journal of Electrostatics. 2013;71(3):189-98.
173. Memarian F, Zeighami F, Tehran MA, Latifi M, editors. Hv probe angle effect on jet bending instability direction in electrospinning systems. The International Istanbul Textile Congress 2013
174. Stanger J, Tucker N, Wallace A, Larsen N, Staiger M, Reeves R. The effect of electrode configuration and substrate material on the mass deposition rate of electrospinning. Journal of Applied Polymer Science. 2009;112(3):1729-37.
175. Cho BM, Nam YS, Cheon JY, Park WH. Residual charge and filtration efficiency of polycarbonate fibrous membranes prepared by electrospinning. Journal of Applied Polymer Science. 2015;132(1).
176. Nezarati RM, Eifert MB, Cosgriff-Hernandez E. Effects of Humidity and Solution Viscosity on Electrospun Fiber Morphology. Tissue Engineering Part C: Methods. 2013;19(10):810-9.
177. Katsogiannis KAG, Vladisavljević GT, Georgiadou S. Porous electrospun polycaprolactone (PCL) fibres by phase separation. European Polymer Journal. 2015;69:284-95.
178. Wang F, Altschuh P, Ratke L, Zhang H, Selzer M, Nestler B. Progress Report on Phase Separation in Polymer Solutions. Advanced Materials. 2019:1806733.
179. Luwang Laiva A, Venugopal JR, Sridhar S, Rangarajan B, Navaneethan B, Ramakrishna S. Novel and simple methodology to fabricate porous and buckled fibrous structures for biomedical applications. Polymer. 2014;55(22):5837-42.
180. Yarin AL, Tchavdarov BM. Onset of folding in plane liquid films. Journal of Fluid Mechanics. 1996;307:85-99.
181. Tchavdarov B, Yarin AL, Radev S. Buckling of thin liquid jets. Journal of Fluid Mechanics. 1993;253:593-615.
182. Yarin AL. Free liquid jets and films: hydrodynamics and rheology: Longman Publishing Group; 1993.
183. Loh QL, Choong C. Three-Dimensional Scaffolds for Tissue Engineering Applications: Role of Porosity and Pore Size. Tissue Engineering Part B: Reviews. 2013;19(6):485-502.
184. Sanchez-Madrid F, Gonz, lez-Amaro R. Cell Adhesion Molecules: Selectins and Integrins. Critical Reviews™ in Immunology. 1999;19(5-6):41.
185. Gao S, Guo W, Chen M, Yuan Z, Wang M, Zhang Y, et al. Fabrication and characterization of electrospun nanofibers composed of decellularized meniscus extracellular matrix and polycaprolactone for meniscus tissue engineering. Journal of Materials Chemistry B. 2017;5(12):2273-85.
186. da Silva RCL, Alves C, Nascimento JH, Neves JRO, Teixeira V. Surface Modification of Polyester Fabric by Non-Thermal Plasma Treatment. Journal of Physics: Conference Series. 2012;406:012017.
187. Szewczyk PK, Ura DP, Metwally S, Knapczyk-Korczak J, Gajek M, Marzec MM, et al. Roughness and Fiber Fraction Dominated Wetting of Electrospun Fiber-Based Porous Meshes. Polymers. 2018;11(1):34.
188. Bose S, Vahabzadeh S, Bandyopadhyay A. Bone tissue engineering using 3D printing. Materials Today. 2013;16(12):496-504.
189. Kim HH, Kim MJ, Ryu SJ, Ki CS, Park YH. Effect of fiber diameter on surface morphology, mechanical property, and cell behavior of electrospun poly (ε-caprolactone) mat. Fibers and Polymers. 2016;17(7):1033-42.
190. Kumar P, Vasita R. Understanding the relation between structural and mechanical properties of electrospun fiber mesh through uniaxial tensile testing. Journal of Applied Polymer Science. 2017;134(26).
191. Rianjanu A, Kusumaatmaja A, Suyono EA, Triyana K. Solvent vapor treatment improves mechanical strength of electrospun polyvinyl alcohol nanofibers. Heliyon. 2018;4(4):e00592.
192. Zamani F, Amani-Tehran M, Latifi M, Shokrgozar MA. The influence of surface nanoroughness of electrospun PLGA nanofibrous scaffold on nerve cell adhesion and proliferation. Journal of Materials Science: Materials in Medicine. 2013;24(6):1551-60.
193. Karuppuswamy P, Venugopal JR, Navaneethan B, Laiva AL, Sridhar S, Ramakrishna S. Functionalized hybrid nanofibers to mimic native ECM for tissue engineering applications. Applied Surface Science. 2014;322:162-8.
194. Abrigo M, McArthur SL, Kingshott P. Electrospun Nanofibers as Dressings for Chronic Wound Care: Advances, Challenges, and Future Prospects. Macromolecular Bioscience. 2014;14(6):772-92.
195. Gupta A, Ayithapu P, Singhal R. Study of the electric field distribution of various electrospinning geometries and its effect on the resultant nanofibers using finite element simulation. Chem Eng Sci. 2021;235:116463.
196. Navaneethan B, Vijayakumar GP, Ashang Luwang L, Karuppiah S, Jayarama Reddy V, Ramakrishna S, et al. Novel Self-Directing Single-Polymer Jet Developing Layered-Like 3D Buckled Microfibrous Scaffolds for Tissue Engineering Applications. ACS Appl Mater Interfaces. 2021;13(8):9691-701.
197. WSACS Consensus Guidelines Summary [cited The World Society of the Abdominal Compartment Syndrome (WSACS). Available from: https://www.wsacs.org/education/436/wsacs-consensus-guidelines-summary/.
198. Cheng H-C, Peng B-Y, Chen M-S, Huang C-F, Lin Y, Shen Y-K. Influence of Deformation and Stress between Bone and Implant from Various Bite Forces by Numerical Simulation Analysis. BioMed Res Int. 2017;2017.
199. Knight KM, King GE, Palcsey SL, Suda A, Liang R, Moalli PA. Mesh Deformation: A Mechanism Underlying Polypropylene Prolapse Mesh Complications In Vivo. Acta Biomater. 2022.
200. Safshekan F, Tafazzoli-Shadpour M, Abdouss M, Shadmehr MB, Ghorbani F. Finite Element Simulation of Human Trachea: Normal vs. Surgically Treated and Scaffold Implanted Cases. Int J Solids Struct. 2020;190:35-46.
201. Echeverria Molina MI, Malollari KG, Komvopoulos K. Design Challenges in Polymeric Scaffolds for Tissue Engineering. Front Bioeng Biotechnol. 2021;9.

 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *