帳號:guest(3.149.214.60)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):王婷娜
作者(外文):Unglaube, Tina
論文名稱(中文):超臨界二氧化碳布雷登循環(Brayton cycle)向心式渦輪之設計與數值分析
論文名稱(外文):Meanline Design and Numerical Analysis of Small and Medium Scale Radial Inflow Turbines for Supercritical Carbon Dioxide Brayton Cycles
指導教授(中文):王培仁
蔣小偉
指導教授(外文):Wang, Pei-Jen
Chiang, Hsiao-Wei D.
口試委員(中文):劉承賢
陳玉彬
郭啟榮
徐菘蔚
口試委員(外文):Liu, Cheng-Hsien
Chen, Yu-Bin
Kuo, Qi-Rong
Hsu, Song-Wei
學位類別:博士
校院名稱:國立清華大學
系所名稱:跨院國際博士班學位學程
學號:104003880
出版年(民國):108
畢業學年度:108
語文別:英文
論文頁數:134
中文關鍵詞:超臨界二氧化碳布雷登循環向心式渦輪子午面葉片設計
外文關鍵詞:Supercritical CO2Brayton cycleRadial inflow turbineMeanline design
相關次數:
  • 推薦推薦:0
  • 點閱點閱:63
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
近年來由於超臨界二氧化碳布雷登循環擁有高效率、體積小、以及低污染等優勢,所以成為目前學術研究的一個主要方向。而在小型渦輪發電系統方面,向心式渦輪已經成為渦輪擴散器的主要選擇。本論文將針對低溫餘熱回收的超臨界布雷登循環100kW以及500kW級渦輪發電系統,運用子午面(meanline) 葉片設計方法產生多種向心式的渦輪設計方案。運用比速率(specific speed)以及速度比(velocity ratio)這兩項重要的參數,設計出不同的向心式的渦輪,再與計算流體力學軟體(CFD)的模擬結果來做比對與驗證。研究結果成功的設計出能夠產生最大渦輪輸出性能的向心式渦輪設計方案。針對100kW渦輪發電機在每秒3公斤的流量時,最佳比速率(specific speed)是在0.3到0.5,而最佳的速度比(velocity ratio)則是落在0.52到0.68。至於500kW渦輪發電機在每秒10公斤的流量時,無法有效提升比速率(specific speed)超過0.6,原因是已經產生了區域性的穿音速擾流,而且是在低轉速的運作情況下就發生了。至於提高速度比(velocity ratio)則會在定流量的情況下,提升擴散比;而在定擴散比的情況下,降低流量。運用上述兩項最佳化的參數來設計最大效率的向心式渦輪,結果顯示速度比會隨著比速率的降低而減少。總之,本研究所開發的向心式渦輪葉片設計系統顯示可以有效地運用在小型渦輪發電系統,而且能夠達成86% 轉子效率以及84 % 整體渦輪效率。
最後,為了要驗證本研究所開發的設計系統,論文中採用了文獻中所提及的向心式空氣渦輪設計方法(Balje diagram)來做比對。結果顯示本研究適用於超臨界二氧化碳向心式渦輪機葉片設計之餘,同樣也可適用於向心式空氣渦輪機。而且超臨界二氧化碳向心式渦輪機的各方面的損耗,也與向心式空氣渦輪非常類似。同時本研究也驗證了超臨界二氧化碳向心式渦輪不同於超臨界二氧化碳壓縮機的部分,就是渦輪機展現了非常低的可壓縮性而且與理想氣體非常類似。
In recent years, supercritical CO2 (sCO2) Brayton cycles have drawn the attention of researchers due to their high cycle efficiencies, compact turbomachinery, and environmental friendliness. For small scale cycles, radial inflow turbines are the prevailing choice for the turboexpander and one of the key components. Different meanline design paths for radial inflow turbines are outlined, and aerodynamic design space exploration is conducted for one 100 kW-class and one 500 kW-class turbine test case for a low-temperature waste-heat utilization sCO2 Brayton cycle. By varying the two design parameters, specific speed, and velocity ratio, different turbine configurations are set up and compared numerically by means of CFD simulations. Results are analyzed to conclude on best design parameters with regard to maximum turbine performance. Specific speeds from 0.3 to 0.5 and velocity ratios from 0.52 to 0.68 are recommended for sCO2 radial inflow turbines with small throughflow (3 kg/s). For the radial inflow turbines intended for the medium scale sCO2 power cycle, despite the higher mass flow rate (10 kg/s), no significant increase in specific speed (above 0.6) could be achieved, as local transonic flow occurred already at considerably lower rotational speeds. Higher velocity ratios result in bigger expansion ratios if the mass flow rate is fixed, and in smaller throughflows, if the expansion ratio is fixed. Pairs of optimum design parameters that effectuate maximum efficiency are identified, with smaller velocity ratios prevailing for lower specific speeds. By achieving total-to-static stage and rotor efficiencies of 84% and 86%, respectively, the developed meanline design procedure has proven to be an effective and easily applicable tool for the preliminary design of small scale sCO2 RIT.
Moreover, the turbine simulation results for sCO2 are compared to well-established recommendations for the design of air turbines from literature, such as the Balje diagram. It is concluded that for the design of sCO2 radial inflow turbines, similar design principles and parameters can be used as those for air turbines. Also, losses occurring in sCO2 radial inflow turbines are similarly distributed as those of air turbines. These outcomes support the understanding that supercritical CO2, in the working range of a sCO2 turbine, shows very little compressibility and behaves similar to ideal gas (in contrary to a sCO2 compressor.)
摘 要 I
ABSTRACT II
ACKNOWLEDGEMENTS III
RELATED PUBLICATIONS IV
CONTENTS V
LIST OF FIGURES IX
LIST OF TABLES XIII
NOMENCLATURE XIV
1. Introduction 1
1.1 Motivation 1
1.2 The Supercritical CO2 Brayton Cycle 3
1.3 Historical Background of the Supercritical CO2 Brayton Cycle 6
1.4 Supercritical CO2 Brayton Cycle Test Facility Development 7
1.5 Current Supercritical CO2 Brayton Cycle Research Areas 9
2. Literature Review 12
2.1 Supercritical CO2 Turbomachinery 12
2.2 Supercritical CO2 Turbines 13
2.3 Design Challenges for sCO2 Radial Inflow Turbines 13
2.4 Meanline Design Approach for Radial Inflow Turbines 14
2.5 Numerical Approach for Investigation of Different sCO2 Radial Inflow Turbine Designs 16
3. Thesis Aim and Outline 17
4. Thermodynamic Cycle Analysis 20
4.1 Cycle Layouts for the sCO2 Brayton Cycle 20
4.1.1 The Simple Recuperated Brayton Cycle Layout 21
4.1.2 The Intercooling Cycle Layout 22
4.1.3 The Reheating Cycle Layout 22
4.1.4 The Recompression Split Flow Cycle Layout 23
4.2 Cycle Analysis Case Study – Effect of Different Turbine Inlet Pressures and Temperatures 24
4.2.1 Ideal Case and Real Case Assumptions 25
4.2.2 Cycle Efficiency Results 26
4.2.3 Power Output Results 33
4.3 Summary of Cycle Analysis Case Study 35
5. Radial Inflow Turbine Meanline Design 38
5.1 Radial Inflow Turbines 38
5.1.1 Radial Inflow Turbine Components 38
5.1.2 Thermodynamics of a Radial Inflow Turbine Stage 40
5.1.3 Basic Physical Principles for Turbomachinery 43
5.1.4 Loss Correlations for Radial Inflow Turbines 46
5.2 Input Parameters for the Radial Inflow Turbine Design 50
5.3 Radial Inflow Turbine Meanline Design Outcome 51
5.4 Meanline Design Procedure 53
5.4.1 General Turbine Calculations (Steps 1 to 3) 53
5.4.2 Rotor Inlet Calculations (Steps 4 to 8) 55
5.4.3 Rotor Outlet Calculations (Steps 9 to 12) 61
5.4.4 Determination of Remaining Turbine Rotor Geometry (Steps 13 to 16) 63
5.4.5 Determination of Turbine Stator Geometry (Steps 17 and 18) 65
5.5 Other Radial Inflow Turbine Design Constraints 67
5.5.1 Structural Constraints 67
5.5.2 Vibration Constraints 67
5.5.3 Mach Number Constraints 67
5.6 Design Paths 68
5.7 Summary of Non-Dimensional Parameters 71
6. Numerical Method 73
6.1 Numerical Method for sCO2 Radial Inflow Turbine Flow Modeling 73
6.1.1 3D Turbine Models 73
6.1.2 Grid Generation 74
6.1.3 CFD Setup 76
6.1.4 RGP File Generation 77
6.2 Validation of the Numerical Method 78
6.2.1 Air Turbine Simulation Setup 80
6.2.2 Validation of the Numerical Method 82
6.2.3 Validation of the Meanline Design Approach 85
7. CFD Simulation Results for Supercritical CO2 Radial Inflow Turbines 89
7.1 Small Scale Turbine Test Case 89
7.1.1 Design Parameters 91
7.1.2 Analyzed Design Space 92
7.1.3 Numerical Method 92
7.1.4 Performance Evaluation of Small Scale sCO2 Radial Inflow Turbines 94
7.2 Medium Scale Turbine Test Case 100
7.2.1 Design Parameters 102
7.2.2 Analyzed Design Space 102
7.2.3 Numerical Method 103
7.2.4 Performance Evaluation of Medium Scale sCO2 Radial Inflow Turbines 105
7.3 Rotor Inlet Flow Field Analysis 109
7.3.1 Influence of Design Parameters on the Flow Field at the Turbine Inlet 109
7.3.2 Flow Disturbances at the Rotor Inlet 110
7.3.3 Turbine Slip at Rotor Inlet 112
7.4 Effect of Design Parameters on Turbine Geometry 113
7.5 Comparison of Best Design Parameters for sCO2 Radial Inflow Turbines to Gas Turbine Design Charts 115
7.6 Comparison of Loss Contributions in Radial Inflow Turbines Using sCO2 and Air 117
8. Conclusions and Future Research 120
REFERENCES 124
[1] J. Song, X.-D. Ren, and C.-W. Gu, “Investigation of Engine Waste Heat Recovery Using Supercritical CO2 (S-CO2) Cycle System,” in ASME Turbo Expo 2018: Turbomachinery Technical Conference and Exposition, 2018.
[2] Y. Ahn et al., “Review of supercritical CO2 power cycle technology and current status of research and development,” Nucl. Eng. Technol., vol. 47, no. 6, pp. 647–661, 2015.
[3] M. Persichilli, A. Kacludis, E. Zdankiewicz, and T. Held, “Supercritical CO2 power cycle developments and commercialization: why sCO2 can displace steam,” in Power-Gen India & Central Asia, 2012.
[4] S. H. H. J. Smit, “Modeling of high temperature volumetric solar receivers with supercritical CO2 and nanoparticles,” University of Technology Delft, Netherlands, 2016.
[5] Y. Ahn, J. Lee, S. Kim, J. Lee, and J. Cha, “Design consideration of supercritical CO2 power cycle integral experiment loop,” Energy, vol. 86, pp. 115–127, 2015.
[6] V. Dostal, “A Supercritical Carbon Dioxide Cycle for Next Generation Nuclear Reactors,” Massachusetts Institute of Technology, USA, 2004.
[7] V. Dostal, P. Hejzlar, and M. J. Driscoll, “High-performance supercritical carbon dioxide cycle for next-generation nuclear reactors,” Nucl. Technol., vol. 154, no. 3, pp. 265–282, 2006.
[8] C. Mendez and G. Rochau, “sCO2 Brayton Cycle: Roadmap to sCO2 Power Cycles NE Commercial Applications (SAND2018-6187),” Albuquerque, New Mexico (USA), 2018.
[9] N. T. Weiland, R. A. Dennis, R. Ames, S. Lawson, and P. Strakey, “Fossil Energy,” in Fundamentals and applications of supercritical carbon dioxide (sCO2) based power cycles, K. Brun, P. Friedman, and R. Dennis, Eds. Woodhead Publishing, 2017, pp. 293–338.
[10] F. Crespi, G. Gavagnin, D. Sánchez, and G. S. Martínez, “Supercritical carbon dioxide cycles for power generation: A review,” Appl. Energy, vol. 195, pp. 152–183, 2017.
[11] R. Fuller, J. Preuss, and J. Noall, “Turbomachinery for Supercritical CO2 Power Cycles,” in ASME Turbo Expo 2012: Turbine Technical Conference and Exposition, 2012, pp. 961–966.
[12] J. Keep, “On the design of small to medium scale radial inflow turbines for supercritical CO2 power cycles,” The University of Queensland, Australia, 2019.
[13] G. Sulzer, “Gas Turbine Plant,” 2,513,601, 04-Jul-1950.
[14] V. L. Dekhtyarev, “On designing a large, highly economical carbon dioxide power installation,” Elecrtichenskie Stantskii, vol. 5, no. 5, pp. 1–6, 1962.
[15] G. Angelino, “Carbon Dioxide Condensation Cycles for Power Production,” J. Eng. Power, vol. 90, no. 3, pp. 287–295, 1968.
[16] E. G. Feher, “The supercritical thermodynamic power cycle,” Energy Convers., vol. 8, no. 2, pp. 85–90, 1968.
[17] J. R. Hoffmann and E. G. Feher, “150 Kwe Supercritical Closed Cycle System,” J. Eng. Power, vol. 93, no. 1, pp. 70–80, 1970.
[18] D. P. Gokhshtein and G. P. Verkhivker, “Use of carbon dioxide as a heat carrier and working substance in atomic power stations,” Sov. At. Energy, vol. 26, no. 4, pp. 430–432, 1969.
[19] V. Petr and M. Kolovratnik, “A Study on Application of a Closed Cycle CO2 Gas Turbine in Power Engineering (in Czech),” Prague (Czech Republic), 1997.
[20] V. Petr, M. Kolovratnik, and V. Hanzal, “On the Use Of CO2 Gas Turbine in Power Engineering (in Czech),” Prague (Czech Republic), 1999.
[21] Y. Kato, T. Nitawaki, and Y. Yoshizawa, “A carbon dioxide partial condensation direct cycle for advanced gas cooled fast and thermal reactors,” Paris (France), 2001.
[22] V. Dostal, N. E. Todreas, P. Hejzlar, and M. S. Kazimi, “Power Conversion Cycle Selection for the LBE Cooled Reactor with Forced Circulation,” Cambridge, MA (USA), 2001.
[23] M. Utamura et al., “Demonstration of supercritical CO2 closed regenerative Brayton cycle in a bench scale experiment,” in ASME Turbo Expo 2012: Turbine Technical Conference and Exposition, 2012, pp. 155–164.
[24] S. Wright, R. Radel, M. Vernon, G. Rochau, and P. Pickard, “Operation and analysis of a supercritical CO2 Brayton cycle,” Albuquerque, New Mexico (USA), 2010.
[25] T. Conboy, S. Wright, J. Pasch, D. Fleming, G. Rochau, and and Robert Fuller., “Performance characteristics of an operating supercritical CO2 Brayton cycle,” in ASME Turbo Expo 2012: Turbine Technical Conference and Exposition, 2012, pp. 941–952.
[26] J. Pasch and D. Stapp, “Testing of a New Turbocompressor for Supercritical Carbon Dioxide Closed Brayton Cycles,” in ASME Turbo Expo 2018: Turbomachinery Technical Conference and Exposition, 2018.
[27] J. Moore, K. Brun, N. Evans, P. Bueno, and C. Kalra, “Development of a 1 MWe supercritical CO2 Brayton cycle test loop,” in Proceedings of the 4 th International Symposium-Supercritical CO2 Power Cycles, 2014.
[28] T. Allison, J. Moore, D. Hofer, D. Towler, and J. Thorp, “Planning for Successful Transients and Trips in a 1 MWe-Scale High-Temperature sCO2 Test Loop,” J. Eng. Gas Turbines Power, vol. 141, no. 6, p. 061014, 2019.
[29] L. Chordia, M. A. Portnoff, and E. Green, “High Temperature Heat Exchanger Design and Fabrication for Systems with Large Pressure Differentials,” Pittsburgh, PA (USA), 2017.
[30] L. Chordia and M. A. Portnoff, “Supercritical Carbon Dioxide Brayton Power Cycle Test Loop - Operations Review,” in The 6th International Supercritical CO2 Power Cycles Symposium, 2018.
[31] S. K. Cho, J. Lee, J. I. Lee, and J. E. Cha, “S-CO 2 Turbine Design for Decay Heat Removal System of Sodium Cooled Fast Reactor,” in ASME Turbo Expo 2016: Turbomachinery Technical Conference and Exposition, 2016, p. V009T36A006.
[32] J. Cho et al., “Development of the supercritical carbon dioxide power cycle experimental loop with a turbo-generator,” in ASME Turbo Expo 2017: Turbomachinery Technical Conference and Exposition, 2017.
[33] H. Shin et al., “Partial admission, axial impulse type turbine design and partial admission radial turbine test for SCO2 cycle,” in ASME Turbo Expo 2017: Turbomachinery Technical Conference and Exposition, 2017.
[34] J. Cho et al., “Development and Operation of Supercritical Carbon Dioxide Power Cycle Test Loop With Axial Turbo-Generator,” in ASME Turbo Expo 2018: Turbomachinery Technical Conference and Exposition, 2018.
[35] J. Cho et al., “Design, Flow Simulation, and Performance Test for a Partial-Admission Axial Turbine Under Supercritical CO2 Condition,” in ASME Turbo Expo 2018: Turbomachinery Technical Conference and Exposition, 2018.
[36] E. M. Clementoni and T. L. Cox, “Practical aspects of supercritical carbon dioxide Brayton system testing,” in Proceedings of the 4th International Symposium-Supercritical CO2 Power Cycles, 2014.
[37] E. M. Clementoni, T. L. Cox, and C. P. Sprague, “Startup and operation of a supercritical carbon dioxide Brayton cycle,” J. Eng. Gas Turbines Power, vol. 136, no. 7, p. 071701, 2014.
[38] E. Clementoni, T. L. Cox, and M. A. King, “Initial transient power operation of a supercritical carbon dioxide Brayton cycle with thermal-hydraulic control,” in 5th International Symposium on Supercritical CO2 Power Cycles, 2016.
[39] E. Clementoni and T. Cox, “Effect of Compressor Inlet Pressure on Cycle Performance for a Supercritical Carbon Dioxide Brayton Cycle,” in ASME Turbo Expo 2018: Turbomachinery Technical Conference and Exposition, 2018.
[40] F. Benra et al., “A supercritical CO2 low temperature Brayton-cycle for residual heat removal,” in The 5th International Symposium-Supercritical CO2 Power Cycles, 2016, no. 1, pp. 1–5.
[41] H. J. Dohmen, A. Hacks, F.-K. Benra, D. Brillert, and S. Schuster, “Turbomachine Design for Supercritical Carbon Dioxide Within the sCO2-HeRo.eu Project,” J. Eng. Gas Turbines Power, vol. 140, no. 12, p. 121017, 2018.
[42] S. Schuster, F. Benra, and D. Brillert, “Small scale sCO2 compressor impeller design considering real fluid conditions,” in The 5th International Symposium-Supercritical CO2 Power Cycles, 2016.
[43] B. W. Lance and M. D. Carlson, “Microchannel Heat Exchanger Flow Validation Study,” in ASME Turbo Expo 2018: Turbomachinery Technical Conference and Exposition, 2018.
[44] T. Allison, N. Smith, R. Pelton, J. Wilkes, and S. Jung, “Experimental Validation of a Wide-Range Centrifugal Compressor Stage for Supercritical CO2 Power Cycles,” J. Eng. Gas Turbines Power, vol. 141, no. 6, p. 061011, 2019.
[45] M. Kim, B. Oh, H. Jung, S. Bae, and J. Lee, “Experimental and Numerical Study of Critical Flow Model Development for Supercritical CO2 Power Cycle Application,” in ASME Turbo Expo 2018: Turbomachinery Technical Conference and Exposition, 2018, p. V009T38A015-V009T38A015.
[46] X. Lu, S. Martin, M. Mc Groddy, M. Swanson, J. Stanislowski, and J. D. Laumb, “Testing of a Novel Post Combustion Acid Removal Process for the Direct-Fired, Oxy-Combustion Allam Cycle Power Generation System,” J. Eng. Gas Turbines Power, vol. 140, no. 8, p. 081701, 2018.
[47] E. Liese and S. Zitney, “The Impeller Exit Flow Coefficient As a Performance Map Variable for Predicting Centrifugal Compressor Off-Design Operation Applied to a Supercritical CO2 Working,” in ASME Turbo Expo 2017: Turbomachinery Technical Conference and Exposition, 2017, p. V009T38A003-V009T38A003.
[48] R. Pelton, S. Jung, T. Allison, and N. Smith, “Design of a wide-range centrifugal compressor stage for supercritical CO2 power cycles,” J. Eng. Gas Turbines Power, vol. 140, no. 9, p. 092602, 2018.
[49] J. Zhang, P. Gomes, M. Zangeneh, and B. Choo, “Design of a Centrifugal Compressor Stage and a Radial-Inflow Turbine Stage for a Supercritical CO 2 Recompression Brayton Cycle by Using 3D Inverse Design Method,” in ASME Turbo Expo 2017: Turbomachinery Technical Conference and Exposition, 2017, p. V009T38A023.
[50] H. Liu, Z. Chi, and S. Zang, “Influence of Relative Velocity Ratio on Centrifugal Impellers Operating With Supercritical CO2,” in ASME Turbo Expo 2018: Turbomachinery Technical Conference and Exposition, 2018.
[51] A. Ameli, A. Afzalifar, T. Turunen-Saaresti, and J. Backman, “Centrifugal Compressor Design for Near-Critical Point Applications,” J. Eng. Gas Turbines Power, vol. 141, no. 3, p. 031016, 2019.
[52] S. Kim et al., “RANS Simulation of a Radial Compressor With Supercritical CO2 Fluid for External Loss Model Development,” in ASME Turbo Expo 2018: Turbomachinery Technical Conference and Exposition, 2018, p. V009T38A020-V009T38A020.
[53] A. Thatte, “A New Type of Rotary Liquid Piston Pump for Multi-Phase CO2 Compression,” in ASME Turbo Expo 2018: Turbomachinery Technical Conference and Exposition, 2018, p. V009T38A022-V009T38A022.
[54] C. Ma, Z. Qiu, J. Gou, J. Wu, Z. Zhao, and W. Wang, “Axial Force Balance of Supercritical CO2 Radial Inflow Turbine Impeller Through Backface Cavity Design,” in ASME Turbo Expo 2018: Turbomachinery Technical Conference and Exposition, 2018, p. V009T38A016-V009T38A016.
[55] J. Sienicki, A. Moisseytsev, and Q. Lv, “Dry Air Cooling and the sCO2 Brayton Cycle,” in ASME Turbo Expo 2017: Turbomachinery Technical Conference and Exposition, 2017, p. V009T38A006-V009T38A006.
[56] F. Crespi, D. Sánchez, K. Hoopes, B. Choi, and N. Kuek, “The Conductance Ratio Method for Off-Design Heat Exchanger Modeling and its Impact on an sCO2 Recompression Cycle,” in ASME Turbo Expo 2017: Turbomachinery Technical Conference and Exposition, 2017.
[57] M. Kim, B. Oh, J. Kwon, H. Jung, and J. Lee, “Transient simulation of critical flow with thermal-hydraulic system analysis code for supercritical CO2 applications,” in ASME Turbo Expo 2017: Turbomachinery Technical Conference and Exposition, 2017, p. V009T38A010-V009T38A010.
[58] F. Crespi, G. Gavagnin, D. Sanchez, and G. S. Martinez, “Analysis of the thermodynamic potential of supercritical carbon dioxide cycles: a systematic approach,” J. Eng. Gas Turbines Power, vol. 140, no. 5, p. 051701, 2017.
[59] A. Khadse, L. Blanchette, J. Kapat, S. Vasu, J. Hossain, and A. Donazzolo, “Optimization of Supercritical CO2 Brayton Cycle for Simple Cycle Gas Turbines Exhaust Heat Recovery Using Genetic Algorithm,” J. Energy Resour. Technol., vol. 140, no. 7, p. 071601, 2018.
[60] K. Manikantachari, S. Martin, J. Bobren-Diaz, and S. Vasu, “Thermal Properties for the Simulation of Direct-Fired sCO2 Combustor,” in ASME Turbo Expo 2017: Turbomachinery Technical Conference and Exposition, 2017, p. V009T38A008-V009T38A008.
[61] F. Moraga, D. Hofer, S. Saxena, and R. Mallina, “Numerical approach for real gas simulations: part I—tabular fluid properties for real gas analysis,” in ASME Turbo Expo 2017: Turbomachinery Technical Conference and Exposition, 2017, p. V009T38A004-V009T38A004.
[62] A. Ameli, A. Uusitalo, T. Turunen-Saaresti, and J. Backman, “Numerical Sensitivity Analysis for Supercritical CO2 Radial Turbine Performance and Flow Field,” Energy Procedia, vol. 129, pp. 1117–1124, 2017.
[63] S. Baik and J. Lee, “Preliminary Study of Supercritical CO2 Mixed With Gases for Power Cycle in Warm Environments,” in ASME Turbo Expo 2018: Turbomachinery Technical Conference and Exposition, 2018, p. V009T38A017-V009T38A017.
[64] O. Pryor, S. Vasu, X. Lu, D. Freed, and B. Forrest, “Development of a Global Mechanism for Oxy-Methane Combustion in a CO2 Environment,” in ASME Turbo Expo 2018: Turbomachinery Technical Conference and Exposition, 2018, p. V009T38A004-V009T38A004.
[65] J. Delimont, A. McClung, and M. Portnoff, “Direct Fired Oxy-Fuel Combustor for sCO2 Power Cycles: 1MW Scale Design and Preliminary Bench Top Testing,” in ASME Turbo Expo 2017: Turbomachinery Technical Conference and Exposition, 2017.
[66] S. A. Wright, C. S. Davidson, and W. O. Scammell, “Thermo-Economic Analysis of Four sCO2 Waste Heat Recovery Power Systems,” in Fifth International SCO2 Symposium, 2016.
[67] M. Marchionni, G. Bianchi, and K. Tsamos, “Techno-economic comparison of different cycle architectures for high temperature waste heat to power conversion systems using CO2 in supercritical phase,” Energy Procedia, vol. 123, pp. 305–312, 2017.
[68] F. Crespi, D. Sánchez, T. Sánchez, and G. Martínez, “Integral Techno-Economic Analysis of Supercritical Carbon Dioxide Cycles for Concentrated Solar Power,” in ASME Turbo Expo 2018: Turbomachinery Technical Conference and Exposition, 2018, p. V009T38A026-V009T38A026.
[69] J. Schmitt, J. Wilkes, T. Allison, J. Bennett, K. Wygant, and R. Pelton, “Lowering the Levelized Cost of Electricity of a Concentrating Solar Power Tower with a Supercritical Carbon Dioxide Power Cycle,” in ASME Turbo Expo 2017: Turbomachinery Technical Conference and Exposition, 2017.
[70] C. Rodgers and R. Geiser, “Performance of a high-efficiency radial/axial turbine,” J. Turbomahinery, vol. 109, no. 2, pp. 151–154, 1987.
[71] A. Whitfield, “The preliminary design of radial inflow turbines,” in ASME 1989 International Gas Turbine and Aeroengine Congress and Exposition, 1989.
[72] A. Whitfield and N. C. Baines, Design of Radial Turbomachines. New York (USA): John Wiley and Sons Inc., 1990.
[73] R. H. Aungier, Turbine Aerodynamics: Axial-Flow and Radial-Flow Turbine Design and Analysis. New York (USA): ASME Press, 2005.
[74] S. L. Dixon and C. Hall, Fluid mechanics and thermodynamics of turbomachinery, 7th ed. Oxford (UK): Butterworth-Heinemann, 2013.
[75] H. Rohlik, “Analytical determination of radial inflow turbine design geometry for maximum efficiency,” Cleveland, Ohio (USA), 1968.
[76] A. Glassman, “Computer Program for Preliminary Design Analysis of Axial-Flow Turbines,” Cleveland, Ohio (USA), 1976.
[77] O. E. Baljé, Turbomachines: A Guide to Design, Selection and Theory. New York (USA): John Wiley & Sons, Ltd., 1981.
[78] J. Lee, J. Lee, H. Yoon, J. C.-N. E. and Design, and U. 2014, “Supercritical Carbon Dioxide turbomachinery design for water-cooled SMR application,” Nucl. Eng. Des., vol. 270, pp. 76–89, 2014.
[79] N. C. Thirumalai, S. R. Badri, and T. Venkatakrishnaiah, “Mean Line Design of Radial Inflow Turbine for sCO2 Power Systems,” in The 5th International Symposium on Supercritical CO2 Power Cycles, 2016.
[80] J. Qi, T. Reddell, K. Qin, K. Hooman, and I. H. Jahn, “Supercritical CO2 radial turbine design performance as a function of turbine size parameters,” J. Turbomach., vol. 139, no. 8, p. 081008, 2017.
[81] Z. Wei, “Meanline and CFD Analyses at Design and Off-Design Operation of a Supercritical CO2 Radial Inflow Turbine,” in The 5th International Symposium on Supercritical CO2 Power Cycles, 2016.
[82] N. Holaind et al., “Design of radial turbomachinery for supercritical CO2systems using theoretical and numerical CFD methodologies,” in Energy Procedia, 2017, vol. 123, pp. 313–320.
[83] G. Lv, J. Yang, W. Shao, and X. Wang, “Aerodynamic design optimization of radial-inflow turbine in supercritical CO2 cycles using a one-dimensional model,” Energy Convers. Manag., vol. 165, pp. 827–839, 2018.
[84] A. Zhou, J. Song, X. Li, X. Ren, and C. Gu, “Aerodynamic design and numerical analysis of a radial inflow turbine for the supercritical carbon dioxide Brayton cycle,” Appl. Therm. Eng., vol. 132, pp. 245–255, 2018.
[85] Aspen Technology Inc, “Aspen Plus,” 2019. [Online]. Available: https://www.aspentech.com/en/products/engineering/aspen-plus. [Accessed: 20-Jun-2019].
[86] F. A. Lyman, “On the Conservation of Rothalpy in Turbomachines,” in International Gas Turbine and Aeroengine Congress and Exposition, 1992.
[87] R. S. Benson, “A review of methods for assessing loss coefficients in radial gas turbines,” Int. J. Mech. Sci., vol. 12, no. 10, pp. 905–932, 1970.
[88] C. Wasserbauer and A. Glassman, “FORTRAN program for predicting off-design performance of radial-inflow turbines,” Cleveland, Ohio (USA), 1975.
[89] H. Chen and N. C. Baines, “The Aerodynamic Loading of Radial and Mixed Flow Turbines,” Int. J. Mech. Sci., vol. 36, no. 1, pp. 63–79, 1994.
[90] N. C. Baines, “Radial Turbine Design,” in Axial and Radial Turbines, 2nd ed., H. Moustapha, M. F. Zelesky, N. C. Baines, and D. Japikse, Eds. White River Junction, Vermont (USA): Concepts NREC, 2003, pp. 199–327.
[91] C. A. Ventura, P. A. Jacobs, A. S. Rowlands, P. Petrie-Repar, and E. Sauret, “Preliminary design and performance estimation of radial inflow turbines: An automated approach,” J. Fluids Eng., vol. 134, no. 3, p. 031102, 2012.
[92] J. W. Daily and R. E. Nece, “Chamber dimension effects on induced flow and frictional resistance of enclosed rotating disks,” J. basic Eng., vol. 82, no. 1, pp. 217–230, 1960.
[93] H. W. Oh, E. S. Yoon, and M. Chung, “An optimum set of loss models for performance prediction of centrifugal compressors,” Proc. Inst. Mech. Eng. Part A J. Power Energy, vol. 211, no. 4, pp. 331–338, 1997.
[94] National Institute of Standards and Technology, “NIST Standard Reference Data. NIST Reference Fluid Thermodynamic and Transport Properties Database (REFPROP),” 2018. [Online]. Available: https://www.nist.gov/srd/refprop. [Accessed: 08-Jul-2018].
[95] S. A. Korpela, Principles of turbomachinery. Hoboken, New Jersey (USA): John Wiley and Sons Inc., 2012.
[96] Z. Wei, “Meanline Analysis of Raidal Inflow Turbines at Design and Off-Design Conditions,” Carleton University Ottawa, Canada, 2014.
[97] E. J. Logan, Turbomachinery : Basic Theory and Applications. New York (USA): Marcel-Dekker, 1981.
[98] A. Jamieson, “The radial turbine. Gas turbine principles and practice. Consulting Editor Sir Harold Roxbee Cox,” Aeronaut. J., vol. 59, no. 537, 1955.
[99] A. T. Simpson, S. W. T. Spence, and J. K. Watterson, “Numerical and Experimental Study of the Performance Effects of Varying Vaneless Space and Vane Solidity in Radial Turbine Stators,” J. Turbomach., vol. 135, no. 3, p. 031001, 2013.
[100] I. Watanabe, I. Ariga, and T. Mashimo, “Effect of Dimensional Parameters of Impellers on Performance Characteristics of a Radial-Inflow Turbine,” J. Eng. Power, vol. 93, no. 1, p. 81, Jan. 1971.
[101] W. Marscher, “Structural analysis: Stresses due to centrifugal, pressure and thermal loads in radial turbines,” von Kármán Inst. Fluid Dyn. VKI Lect. Ser. Radial Turbines, SEE, vol. 93, p. 10050, 1992.
[102] N. C. Baines, “Radial turbines: An integrated design approach,” in Proceedings of the 6th European Turbomachinery Conference-Fluid Dynamics and Thermodynamics, 2005, pp. 7–11.
[103] R. D. Blevins and R. Plunkett, “Formulas for Natural Frequency and Mode Shape,” J. Appl. Mech., vol. 47, no. 2, p. 461, 1980.
[104] A. Perdichizzi and G. Lozza, “Design criteria and efficiency prediction for radial inflow turbines,” in ASME Gas Turbine Conference and Exhibition, 1987.
[105] A. Inc., “ANSYS,” 2019. [Online]. Available: https://www.ansys.com/. [Accessed: 11-Nov-2019].
[106] ANSYS Inc., ANSYS CFX-Solver Modeling Guide, Release 14.5 Canonsbury, Pensylvania (USA): ANSYS, Inc., 2012.
[107] A. C. Jones, “Design and Test of Small, High Pressure Ratio Radial Turbine,” in Transactions of the ASME - International Gas Turbine and Aeroengine Congress and Exposition, 1994.
[108] A. Ameli, A. Afzalifar, T. Turunen-Saaresti, and J. Backman, “Effects of Real Gas Model Accuracy and Operating Conditions on Supercritical CO2 Compressor Performance and Flow Field,” J. Eng. Gas Turbines Power, vol. 140, 2018.
[109] Concets NREC, “Concets NREC.” [Online]. Available: https://www.conceptsnrec.com/. [Accessed: 11-Nov-2019].
[110] T. Unglaube and H.-W. D. Chiang, “Small scale supercritical CO2 radial inflow turbine meanline design considerations,” in Proceedings of the ASME Turbo Expo, 2018, vol. 9.
[111] T. Unglaube and H.-W. D. Chiang, “Preliminary Design of Small Scale Supercritical CO2 Radial Inflow Turbines (Accepted Manuscript, Published Online: Sept 1, 2019),” J. Eng. Gas Turbines Power.
[112] S. L. Dixon, Fluid Mechanics, Thermodynamics of Turbomachinery, Fourth Edi. Oxford: Butterworth-Heinemann, 1998.
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *