帳號:guest(18.221.96.100)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):陳泓銘
作者(外文):Chen, Hong-Ming
論文名稱(中文):以光電子能譜術探討極性有機分子成長於金屬薄膜與塊材穩定性之不同
論文名稱(外文):Different Adsorption Stability of Polar Organic Molecules on Bulk and Thin-film Metal Surfaces investigated by photoemission spectroscopy
指導教授(中文):唐述中
指導教授(外文):Tang, Shu-Jung
口試委員(中文):鄭弘泰
徐斌睿
口試委員(外文):Jeng, Horng-Tay
Hsu, Pin-Jui
學位類別:碩士
校院名稱:國立清華大學
系所名稱:物理學系
學號:104001504
出版年(民國):107
畢業學年度:106
語文別:中文
論文頁數:80
中文關鍵詞:氯鋁化酞菁銀(111)銀薄膜/鍺(111)
外文關鍵詞:chloroaluminium phthalocyanineAg(111) crystalAg film/Ge(111)polar organic moleculesadsorption stability
相關次數:
  • 推薦推薦:0
  • 點閱點閱:390
  • 評分評分:*****
  • 下載下載:16
  • 收藏收藏:0
  在過去,我們實驗室對於極性有機分子ClAlPc成長於銀薄膜與銀單晶已有深入的研究,當我們將ClAlPc分子成長於材料表面時,會產生兩種情況:(1)酞菁環與材料表面接觸(以下簡稱氯向上)或是(2)氯原子與材料表面接觸(以下簡稱氯向下)。透過蒸鍍的速率我們可以控制ClAlPc成長於銀薄膜和銀薄膜上的排列方式。當我們使用一般速率蒸鍍時,氯向上、氯向下會共存於材料表面;使用慢速率蒸鍍時,有機分子會以氯向下的方式排列,經過了30分鐘60˚C的熱退火後,即會轉變成氯向上的排列方式。
  本實驗嘗試利用慢速率蒸鍍於銀單晶與銀薄膜表面上,發現氯向下形式排列之有機分子容易受到輻射光照影響而產生傾倒或翻轉成氯向上的情況,但原本就以氯向上形式排列的有機分子則需要透過較高強度之輻射光才可使其氯原子與鋁原子化學鍵結產生斷鍵現象。
  此外我們發現在銀薄膜上以氯向下方式排列的ClAlPc相較於成長在銀單晶上來得更為穩固,其原因為晶格失配。由於本實驗的銀薄膜是成長在鍺(111)之基板上,而銀原子與鍺原子由於晶格常數的不同,會在介面間產生應力效應,我們稱其為晶格失配。由於此效應的緣故,使得銀薄膜上銀原子與銀原子的距離相對於銀單晶還要大,更利於極性有機分子之成長。此現象也透過ClAlPc成長於銀單晶與銀薄膜之垂直激發能量圖峰值強度變化、束縛能位置比較、真空能階變化等資訊獲得驗證。
Polar organic molecules, chloroaluminum phthalocyanine (ClAlPc), adsorbed on the Ag(111) thin film and Ag(111) crystal were investigated using angle-resolved photoelectron spectroscopy (ARPES). The absorption configurations, Cl-up and Cl-down, were controlled by adjusting the deposition rate of ClAlPc; slow deposition can leads to the Cl-down configuration on the both substrates of Ag(111) single bulk crystal and thin films, and post annealing about 60˚C for 30 minutes flips Cl-down to Cl-up configuration. We studied irradiation-exposure effects on both configurations. We found that some of Cl-down ClAlPc were tilted or flipped to Cl-up configuration after irradiation exposure. And for Cl-up ClAlPc, higher irradiation flux is needed to change adsorption configurations by breaking Al-Cl bond of ClAlPc. Moreover, we made an interesting discovery that the adsorption stability of Cl-down configuration is a lot higher on the Ag(111) thin film than the Ag(111) bulk crystal; correspondingly, the energy positions of molecular energy states (MES) as well as the work function change shift to higher values. This indicates more charge transfer from Ag atoms to ClAlPc for the former. This is ascribed to the large strain effect on Ag thin films from the underlying Ge(111) substrate which has 28% lattice mismatch with Ag(111); the size of hollow sites between Ag atoms is thus likely enlarged, facilitating the stable anchoring of Cl atom of ClAlPc in Cl-down configuration
摘要-------------------------------------i
ABSTRACT--------------------------------iii
目錄-------------------------------------v
第一章 緒論-------------------------------1
第二章 基礎理論----------------------------2
2.1晶格----------------------------------2
2.2表面態 ---------------------------------5
2.3有機分子電子結構-------------------------7
2.4介面電子結構----------------------------10
2.5有機材料-------------------------------14
第三章 實驗儀器與原理------------------------16
3.1超高真空--------------------------------16
3.2清潔樣品--------------------------------19
3.2.1離子濺射槍(sputter gun)----------------19
3.3蒸度薄膜---------------------------------21
3.3.1蒸鍍槍(Knudsen cell) -------------------21
3.3.2膜厚儀(thickness monitor)--------------22
3.4 低能電子繞射儀(LEED)---------------------24
3.5角解析光電子能譜(ARPES)-------------------27
3.5.1簡介-----------------------------------27
3.5.2光電效應理論模型-------------------------28
3.5.3角解析光電子能譜-------------------------32
3.5.4電子能量分析儀---------------------------35
3.5.5接收模式--------------------------------38
3.5.6解析度----------------------------------39
3.6同步輻射光源-------------------------------40
第四章 樣品製備與功函數分析方法------------------43
4.1 樣品製備---------------------------------43
4.1.1清潔樣品表面-----------------------------43
4.1.2 成長銀薄膜------------------------------45
4.2 成長有機薄膜(ClAlPc)----------------------48
4.3 功函數的量測與分析方法----------------------49
第五章 實驗結果與討論---------------------------53
5.1不同排列方式之極性有機分子沉積於銀單晶----------53
5.1.1輻射光照對於氯鋁化酞菁分子之影響 -------------53
5.1.2不同排列方式之1ML ClAlPc進行光照效應實驗 ------59
5.1.3 1ML以氯向下排列之ClAlPc進行不同光強度之光照比較---62
5.1.4 1ML以氯向上排列之ClAlPc進行不同光強度之光照比較---64
5.1.5氯向上、氯向下之ClAlPc強度變化比較及功函數探討------66
5.2極性有機分子沉積於銀單晶與銀薄膜----------------68
5.2.1低能量電子繞射圖----------------------------68
5.2.2不同光強度之光照效應比較----------------------70
5.2.3真空能階轉移探討----------------------------73
第六章 結論--------------------------------------76
參考文獻-----------------------------------------78

[1] Ching-Hung Chen, Study of the Interfacial Structure between CuPc thin films and the uniform Ag thin films by Angle-resolved Photoemission Spectroscopy, Master thesis, National Tsing Hua University (2011)
[2] S.-J. Tang, W.-K. Chang, Y.-M. Chiu, H.-Y. Chen, C.-M. Cheng, K.-D. Tsuei, T. Miller, and T.-C. Chiang, Phys. Rev. B 78, 245407 (2008)
[3] Kai-Jun Su, Manipulation of interfacial dipole by polarorganic molecular, Unpublished, Master's thesis, National Tsing Hua University
[4] H. Ishii, K. Sugiyama, E. Ito, and K. Seki, Adv. Mater. 11, 605 (1999)
[5] F. Latteyer, H. Peisert, U. Aygül, I. Biswas, F. Petraki, T. Basova, A. Vollmer,and T. Chassé, J. Phys. Chem. C 115, 11657 (2011)
[6] H. Fukagawa, S. Hosoumi, H. Yamane, S. Kera, and N. Ueno, Phys. Rev. B 83, 085304 (2011)
[7] Mao-Fu Gao ,Comparison of interfacial electronic structure among ClAlPc grown on Ag thin films, Ag(111) crystal and Au(111) crystal by ARPES and LEED ,Master thesis, National Tsing Hua University (2017)
[8] Ying-Chieh Chuang ,Comparison between As-grown and Annealing Methods on the Structures of Polar-Phthalocyanine grown on the Uniform Silver Thin Films ,Master thesis, National Tsing Hua University (2014)
[9] Hans Lüth, Surface and interface of solids Materials, 3rd edition (Springer,1995)
[10] Chin-Yung Wang, Study of interfacial structure for thin films of TTC on uniform silver thin films by ARPES, Master thesis, National Tsing Hua University (2012)
[11] RADAK Furnance Installation and Operation Instructions
[12] S. Hüfner, Photoelectron Spectroscopy, 3 rd edition (Springer, 2003)
[13] Andrea Damascelli, Phys. Scr. T109, 61-74 (2004)
[14] M. P. Seah, and W. A. Dench, Surf. Interface Anal. 1, 2 (1979)
[15] User Manual SCIENTA R3000, VG SCUENTA
[16] Mary Hope Upton, Photoemission Studies of the Electron Structures and Properties of Thin Lead Films, Ph.D. thesis, University of Illinois at Urbana-Champaign (2005)
[17] www.nsrrc.org.tw
[18] S.-J. Tang, W.-K. Chang, Y.-M. Chiu, H.-Y. Chen, C.-M. Cheng, K.-D. Tsuei, T. Miller, and T.-C. Chiang, Phys. Rev. B 78, 245407 (2008)
[19] Rudy Schlaf, Calibration of Photoemission Spectra and Work Function Determination (2014)
[20] M.-K. Lin, Y. Nakayama, Y.-J. Zhuang, K.-J. Su, C.-Y. Wang, T.-W. Pi, S. Metz, T. A. Papadopoulos, T.-C. Chiang, H. Ishii, and S.-J. Tang, Phys. Rev. B 95, 085425 (2017)
[21] S.-J. Tang, C.-Y. Lee, C.-C. Huang, T.-R. Chang, C.-M. Cheng, K.-D. Tsuei, H.-T. Jeng, V. Yeh, and T.-C. Chiang, Phys. Rev. Lett. 107, 066802 (2011)
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *