帳號:guest(3.137.219.237)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):傅山克
作者(外文):Cedric Parfait Kankeu Fotsing
論文名稱(中文):關於組織線上和線下的具有即時社交互動的團體活動
論文名稱(外文):On Organizing Online and Offline Group Activities with Live Social Interactions
指導教授(中文):楊得年
陳宜欣
指導教授(外文):Yang, De-Nian
Chen, Yi-Shin
口試委員(中文):高宏宇
陳怡伶
高宏宇
口試委員(外文):Kao, Hung-Yu
Chen, Yi-Ling
Shen, Chih-Ya
學位類別:博士
校院名稱:國立清華大學
系所名稱:資訊系統與應用研究所
學號:103162867
出版年(民國):112
畢業學年度:111
語文別:英文
論文頁數:146
中文關鍵詞:算法算法群組查詢團體活動組織
外文關鍵詞:AlgorithmAlgorithmGroup QueryGroup Activity Organization
相關次數:
  • 推薦推薦:0
  • 點閱點閱:29
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
群體活動籌劃是個社群網路中重要且普遍的特色。然而,現有的群體活動
籌劃方法並不適用於涉及人與人之間的社群互動的活動。相關研究已表明參加
者之間的社群緊密度、參加者對活動的喜好,以及活動的多樣性等皆為群體
活動中的現場社群互動以及參加者滿意度的關鍵因素。相關研究亦顯示線下
群體活動中的現場社群互動易導致傳染病散播,其導致對參加者健康狀況的
負面影響。現有的線上群體活動籌劃方法並未詳加考慮上述關鍵因素。在本
論文中,我們藉由探討具有現場社群互動的線上群體活動的大眾化情境,克
服上述的缺點。更確切地來說,我們檢驗線上多串流直播群組籌劃的情境,
並提出一套綜合考慮了社群緊密度、參加者的喜好,以及多樣性等因素的查
詢,以順利籌劃線上多串流直播群組。我們制訂一套新的基礎查詢問題「社
群感知多樣化喜好群組查詢(Social-aware Diverse and Preferred Organization Query,SDSQ)」及其推廣版本GSPQ,其同時找出一組彼此間社群關係緊密的參與者,及一組受參與者喜愛的多樣化直播頻道,以籌劃線上多串流直播群組。我們證明上述查詢問題為NP-困難,並設計有效且快速的近似演算法SDSSel與GPDSel,以在保證求解品質的情況下近似於最佳解。我們也提出兩套剪枝策略加速SDSSel的運算。再者,我們探討針對線下群體活動籌劃的協作空間群眾外包的情境。確切來說,我們提出「傳染病感知最大化任務分配問
題(Epidemic-aware Maximum Task Assignment,EMTA)」,以組織協作工人群組,並將空間群眾外包任務分派給他們,同時考慮對傳染病散播的控制。我們證明EMTA為NP-困難,且在多項適時間內不可近似。我們又提出一套運用傳染病特性的「傳染病感知任務分配演算法(Epidemic-aware Task Assignment Algorithm,ETAA)」來完整解決EMTA問題。經由真實線上(適地性)社群網路與真實傳染病資料集上的大規模實驗,我們表明了我們提出的方法的有效性與高效率,超越了現有的比較基準方法。
Group activity organization is a critical and popular feature of social networks. Nevertheless, current approaches for group activity organization are not suitable for activities involving live social interaction between individuals. Research has shown the participants’ social closeness, their interest in the activities, and the diversity of activities are critical factors for live social interaction, and participant satisfaction during group activities. Research has also shown that live social interaction during offline group activities can lead to epidemic spread that negatively affects participant health outcomes.

Current online group activity organization approaches do not appropriately consider the above factors critical factors. In this dissertation, we address the aforementioned shortcomings by first studying a popular scenario of online group activities organization with live social interaction. More specifically, we examine the scenario of live multi-streaming soirees organization and propose a set of queries that concurrently consider social closeness, interest, and diversity factors to successfully organize an online multi-streaming soiree. We formulate a fundamental new query, Social-aware Diverse and Preferred Organization Query (SDSQ), and its extension, i.e., GSPQ, to jointly select a group of socially tight participants and a set of diverse and preferred live streams to organize a live multi-streaming soiree. We prove that the proposed queries are NP-hard and design efficient and effective algorithms, i.e., SDSSel and GPDSel, to approximate them with solution quality guarantee. We also propose two pruning strategies to boost SDSSel.

Furthermore, We study the scenario of collaborative spatial crowdsourcing for offline group activities organization. Specifically, we propose Epidemic-aware Maximum Task Assignment (EMTA) to form and assign collaborative worker groups to spatial crowdsourcing tasks while taking into consideration the control of epidemic spread. We prove that EMTA is NP-hard and inapproximable in polynomial time unless P=NP. We then propose the Epidemic-aware Task Assignment Algorithm (ETAA) that leverages epidemic characteristics to fully address EMTA.

Through extensive experiments on real social networks (OSNs and LBSNs)
datasets and real epidemic datasets, we demonstrate the efficiency and effectiveness of our proposed approaches and strategies, as well as the superiority of our proposed approaches over the baselines.
Abstract (Chinese) I
Abstract II
Acknowledgements IV
Contents VI
List of Figures X
List of Tables XII
List of Algorithms XIII
1 Introduction 1
1.0.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.0.2 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.0.3 Problem Statement . . . . . . . . . . . . . . . . . . . . . . . 7
1.0.4 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . 9
1.0.5 Organization . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2 Literature Review 13
2.1 Online Group Activity Organization Approaches . . . . . . . . . . . 13
2.1.1 Recommendation Approaches . . . . . . . . . . . . . . . . . 13
2.1.2 Group and Team Formation Approaches . . . . . . . . . . . 16
2.2 Offline Group Activity Organization Approaches . . . . . . . . . . . 17
2.2.1 POIs Recommendation . . . . . . . . . . . . . . . . . . . . . 18
2.2.2 Social, Spatial and Temporal Queries . . . . . . . . . . . . . 18
2.2.3 Spatial Crowdsourcing . . . . . . . . . . . . . . . . . . . . . 19
3 Live Multi-Streaming Soiree Organization 21
3.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
3.2 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
3.2.1 Critical Multi-Streaming Features . . . . . . . . . . . . . . . 23
3.3 Problem Presentation . . . . . . . . . . . . . . . . . . . . . . . . . . 26
3.3.1 Critical Factors for our Approach . . . . . . . . . . . . . . . 26
3.3.2 Query Presentation . . . . . . . . . . . . . . . . . . . . . . . 27
3.3.3 Problem Statement . . . . . . . . . . . . . . . . . . . . . . . 28
3.3.4 Hardness Analysis . . . . . . . . . . . . . . . . . . . . . . . 31
3.4 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
3.4.1 Integer Linear Programming Formulation . . . . . . . . . . . 32
3.4.2 Algorithm Design for SDSQ . . . . . . . . . . . . . . . . . . 35
3.4.3 Pruning Strategies . . . . . . . . . . . . . . . . . . . . . . . 44
3.4.4 Generalized Social-aware Maximum Preferred and Diverse
Query . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
3.4.5 Improvements with Parametric Maximum Flows . . . . . . . 62
3.5 Experimental Results . . . . . . . . . . . . . . . . . . . . . . . . . . 66
3.5.1 Experiment Setup . . . . . . . . . . . . . . . . . . . . . . . . 66
3.5.2 Experimental Results of Algorithms for SDSQ . . . . . . . . 69
3.5.3 Experimental Results of Pruning Strategies . . . . . . . . . . 72
3.5.4 Experimental Results of Algorithms for GSPQ . . . . . . . . 74
3.6 Discussions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
3.6.1 Applicability . . . . . . . . . . . . . . . . . . . . . . . . . . 76
3.6.2 Implementation . . . . . . . . . . . . . . . . . . . . . . . . . 77
3.7 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
4 Collaborative Spatial Crowdsourcing 82
4.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82
4.2 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
4.3 Problem Presentation . . . . . . . . . . . . . . . . . . . . . . . . . . 85
4.3.1 Critical Factors for our Approach . . . . . . . . . . . . . . . 85
4.3.2 Query Presentation . . . . . . . . . . . . . . . . . . . . . . . 86
4.4 Problem Formulation . . . . . . . . . . . . . . . . . . . . . . . . . . 87
4.4.1 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . 87
4.4.2 Problem Definition . . . . . . . . . . . . . . . . . . . . . . . 90
4.4.3 Derivation of Infection Stage Probabilities with Contact Social
Networks . . . . . . . . . . . . . . . . . . . . . . . . . . 94
4.4.4 Hardness Analysis of EMTA . . . . . . . . . . . . . . . . . . 97
4.5 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98
4.5.1 Algorithm Design . . . . . . . . . . . . . . . . . . . . . . . . 98
4.6 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106
4.6.1 Solution Quality . . . . . . . . . . . . . . . . . . . . . . . . 110
4.6.2 Epidemic Control . . . . . . . . . . . . . . . . . . . . . . . . 111
4.6.3 Efficiency . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113
4.7 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113
5 Conclusion 114
Bibliography 116
A User Study 131
B Multi-Group Queries Extension 135
B.0.1 Extension of Max-Flow Min-Cut for Top k Sets . . . . . . . 137
B.0.2 Algorithm Design of kSDSSel-I . . . . . . . . . . . . . . . . 140
B.0.3 Algorithms Design of kGPDSel-I . . . . . . . . . . . . . . . 142
B.0.4 Theoretical Analysis of the Multi-Group Algorithms . . . . . 143
[1] H. Rahman, S. B. Roy, S. Thirumuruganathan, S. Amer-Yahia, and G. Das,
“Optimized group formation for solving collaborative tasks,” The VLDB
Journal, 2019.
[2] C. Shen, D. Yang, L. Huang, W. Lee, and M. Chen, “Socio-spatial group
queries for impromptu activity planning,” IEEE Trans. Knowl. Data Eng.,
2016.
[3] C.-Y. Shen, D.-N. Yang, W.-C. Lee, and M.-S. Chen, “Activity organization
for friend-making optimization in online social networks,” TKDE, 2020.
[4] L. Chen, C. Liu, R. Zhou, J. Xu, J. X. Yu, and J. Li, “Finding effective geosocial
group for impromptu activities with diverse demands,” in SIGKDD,
2020.
[5] C.-Y. Shen, D.-N. Yang, W.-C. Lee, and M.-S. Chen, “Spatial-proximity
optimization for rapid task group deployment,” ACM TKDD, pp. 1–36, 2016.
[6] C.-Y. Shen, D.-N. Yang, L.-H. Huang, W.-C. Lee, and M.-S. Chen, “Sociospatial
group queries for impromptu activity planning,” IEEE TKDE, 2015.
[7] B.-Y. Hsu, Y.-F. Lan, and C.-Y. Shen, “On automatic formation of effective
therapy groups in social networks,” IEEE TCSS, pp. 713–726, 2018.
[8] A. Sohail, M. A. Cheema, and D. Taniar, “Geo-social temporal top-k queries
in location-based social networks,” in ADC, Springer, 2020.
[9] D. Wang, X. Wang, Z. Xiang, D. Yu, S. Deng, and G. Xu, “Attentive sequential
model based on graph neural network for next poi recommendation,”
World Wide Web, 2021.
[10] X. Zhao, Z. Zhang, X. Bi, and Y. Sun, “A new point-of-interest group recommendation
method in location-based social networks,” Neural Computing
and Applications, 2020.
[11] G. Li, Q. Chen, B. Zheng, H. Yin, Q. V. H. Nguyen, and X. Zhou, “Groupbased
recurrent neural networks for poi recommendation,” ACM TDS, 2020.
[12] J. T. Cacioppo and W. Patrick, Loneliness: Human nature and the need for
social connection. WW Norton & Company, 2008.
[13] L. A. DeChurch and J. R. Mesmer-Magnus, “The cognitive underpinnings of
effective teamwork: a meta-analysis.,” Journal of applied psychology, vol. 95,
no. 1, p. 32, 2010.
[14] R. F. Baumeister and M. R. Leary, “The need to belong: desire for interpersonal
attachments as a fundamental human motivation.,” Psychological
bulletin, vol. 117, no. 3, p. 497, 1995.
[15] G. Adomavicius and A. Tuzhilin, “Toward the next generation of recommender
systems: a survey of the state-of-the-art and possible extensions,”
IEEE Transactions on Knowledge and Data Engineering, vol. 17, no. 6,
pp. 734–749, 2005.
[16] B. P. Knijnenburg, D. A. Shamma, and J. Vermeulen, “Explaining the user
experience of recommender systems,” User Modeling and User-Adapted Interaction,
vol. 22, no. 4-5, pp. 441–504, 2012.
[17] E. Pariser, The Filter Bubble: What the Internet is Hiding from You. Penguin
Books, 2011.
[18] J. Zhang, N. Hurley, and Z. Zhang, “Avoiding monotony: Improving the
diversity of recommendation lists,” Information Processing & Management,
vol. 50, no. 6, pp. 944–957, 2014.
[19] P. Sambaturu, B. Adhikari, B. A. Prakash, S. Venkatramanan, and A. Vullikanti,
“Designing effective and practical interventions to contain epidemics,”
in AAMAS, 2020.
[20] D. Tian, Y. Sun, H. Xu, and Q. Ye, “The emergence and epidemic characteristics
of the highly mutated sars-cov-2 omicron variant,” J. Med. Virol.,
2022.
[21] S. Naseer, S. Khalid, K. Abbass, H. Song, and M. V. Achim, “Covid-19
outbreak: Impact on global economy,” Front. Public Health, 2023.
[22] S. B. Roy, L. V. S. Lakshmanan, and R. Liu, “From group recommendations
to group formation,” in SIGMOD, 2015.
[23] B.-Y. Hsu and C.-Y. Shen, “On extracting social-aware diversity-optimized
groups in social networks,” in GLOBECOM, 2018.
[24] Y. Kou, D. Shen, Q. Snell, D. Li, T. Nie, G. Yu, and S. Ma, “Efficient team
formation in social networks based on constrained pattern graph,” in ICDE,
2020.
[25] J. Sun, Z. Cheng, S. Zuberi, F. P´erez, and M. Volkovs, “Hgcf: Hyperbolic
graph convolution networks for collaborative filtering,” in WWW, 2021.
[26] H. Zhang and J. McAuley, “Stacked mixed-order graph convolutional networks
for collaborative filtering,” in SIAM, 2020.
[27] Z. Huang, X. Xu, H. Zhu, and M. Zhou, “An efficient group recommendation
model with multiattention-based neural networks,” IEEE Trans. Neural Net.
Learning Sys., 2020.
[28] Y. Luo, Q. Liu, and Z. Liu, “Stan: Spatio-temporal attention network for
next location recommendation,” in WWW, 2021.
[29] S. Halder, K. H. Lim, J. Chan, and X. Zhang, “Transformer-based multitask
learning for queuing time aware next poi recommendation,” in PAKDD,
Springer, 2021.
[30] D. Zhai, A. Liu, S. Chen, Z. Li, and X. Zhang, “Seqst-resnet: a sequential
spatial temporal resnet for task prediction in spatial crowdsourcing,” in
DASFAA, Springer, 2019.
[31] Y. Zhao, K. Zheng, Y. Cui, H. Su, F. Zhu, and X. Zhou, “Predictive task
assignment in spatial crowdsourcing: a data-driven approach,” in ICDE,
IEEE, 2020.
[32] Y. Tong, Z. Zhou, Y. Zeng, L. Chen, and C. Shahabi, “Spatial crowdsourcing:
a survey,” The VLDB Journal, 2020.
[33] Q. Tao, Y. Zeng, Z. Zhou, Y. Tong, L. Chen, and K. Xu, “Multi-worker-aware
task planning in real-time spatial crowdsourcing,” in DASFAA, Springer,
2018.
[34] Y. Amsterdamer and O. Goldreich, “Diverse user selection for opinion procurement.,”
in EDBT, pp. 486–497, 2020.
[35] P. Liu, A. Soni, E. Y. Kang, Y. Wang, and M. Parsana, “Diversity on the
go! streaming determinantal point processes under a maximum induced
cardinality objective,” in WWW, 2021.
[36] Q. Wu, Y. Liu, C. Miao, B. Zhao, Y. Zhao, and L. Guan, “Pd-gan: adversarial
learning for personalized diversity-promoting recommendation,” in
AAAI, 2019.
[37] M. Chinazzi, J. T. Davis, M. Ajelli, C. Gioannini, M. Litvinova, S. Merler,
..., and C. Viboud, “The effect of travel restrictions on the spread of the
2019 novel coronavirus (covid-19) outbreak,” Science, vol. 368, no. 6489,
pp. 395–400, 2020.
[38] F. E. Andre, R. Booy, H. L. Bock, J. Clemens, S. K. Datta, T. J. John,
..., and T. A. Ruff, “Vaccination greatly reduces disease, disability, death
and inequity worldwide,” Bulletin of the World Health Organization, vol. 86,
no. 2, pp. 140–146, 2008.
[39] R. Xie, R. Wang, S. Zhang, Z. Yang, F. Xia, and L. Lin, “Real-time relevant
recommendation suggestion,” in WSDM, 2021.
[40] T. Tran, D. You, and K. Lee, “Quaternion-based self-attentive long shortterm
user preference encoding for recommendation,” in CIKM, 2020.
[41] Y. Lei, Z.Wang, W. Li, H. Pei, and Q. Dai, “Social attentive deep q-networks
for recommender systems,” IEEE Trans. Neural Net. Learning Sys., 2020.
[42] T. Zhu, G. Liu, and G. Chen, “Social collaborative mutual learning for item
recommendation,” ACM TKDD, 2020.
[43] N. Yang, Y. Ma, L. Chen, and S. Y. Philip, “A meta-feature based unified
framework for both cold-start and warm-start explainable recommendations,”
World Wide Web, pp. 1–25, 2019.
[44] X. Zhou, D. Qin, L. Chen, and Y. Zhang, “Real-time context-aware social
media recommendation,” The VLDB Journal, 2019.
[45] S. Liu, Z. Chen, H. Liu, and X. Hu, “User-video co-attention network for
personalized micro-video recommendation,” in WWW, 2019.
[46] Y. Wei, X. Wang, L. Nie, X. He, R. Hong, and T.-S. Chua, “Mmgcn: Multimodal
graph convolution network for personalized recommendation of microvideo,”
in MM, 2019.
[47] D. Cai, S. Qian, Q. Fang, and C. Xu, “Heterogeneous hierarchical feature
aggregation network for personalized micro-video recommendation,” TMM,
2021.
[48] H.-C. Lai, H.-H. Shuai, D.-N. Yang, J.-L. Huang, W.-C. Lee, and P. S. Yu,
“Social-aware vr configuration recommendation via multi-feedback coupled
tensor factorization,” in CIKM, 2019.
[49] L. Vinh Tran, T.-A. Nguyen Pham, Y. Tay, Y. Liu, G. Cong, and X. Li,
“Interact and decide: Medley of sub-attention networks for effective group
recommendation,” in SIGIR, 2019.
[50] D. Cao, X. He, L. Miao, G. Xiao, H. Chen, and J. Xu, “Social-enhanced
attentive group recommendation,” IEEE Trans. Knowl. Data Eng., 2019.
[51] H.-C. Lai, J.-Y. Tsai, H.-H. Shuai, J.-L. Huang, W.-C. Lee, and D.-N. Yang,
“Live multi-streaming and donation recommendations via coupled donationresponse
tensor factorization,” in CIKM, 2020.
[52] B.-Y. Hsu, C.-Y. Shen, and M.-Y. Chang, “Wmego: willingness maximization
for ego network data extraction in online social networks,” in CIKM,
2020.
[53] B.-Y. Hsu, Y.-L. Chen, Y.-C. Ho, P.-Y. Chang, C.-C. Chang, B.-C. Shia,
and C.-Y. Shen, “Diversity-optimized group extraction in social networks,”
TCSS, 2022.
[54] C.-Y. Shen, H.-H. Shuai, D.-N. Yang, G.-S. Lee, L.-H. Huang, W.-C. Lee,
and M.-S. Chen, “On extracting socially tenuous groups for online social
networks with k-triangles,” TKDE, 2020.
[55] M. Esfandiari, D. Wei, S. Amer-Yahia, and S. Basu Roy, “Optimizing peer
learning in online groups with affinities,” in SIGKDD, 2019.
[56] A.-A. Stoica, J. X. Han, and A. Chaintreau, “Seeding network influence in
biased networks and the benefits of diversity,” in WWW, 2020.
[57] A. E. Mostafa, K. Inkpen, J. C. Tang, G. Venolia, and W. A. Hamilton,
“Socialstreamviewer: Guiding the viewer experience of multiple streams of
an event,” in GROUP, 2016.
[58] W. A. Hamilton, J. C. Tang, G. Venolia, K. Inkpen, J. Zillner, and D. Huang,
“Rivulet: Exploring participation in live events through multi-stream experiences,”
in TVX, 2016.
[59] W. A. Hamilton, O. Garretson, and A. Kerne, “Streaming on twitch: fostering
participatory communities of play within live mixed media,” in CHI,
2014.
[60] Z. Lu, H. Xia, S. Heo, and D. Wigdor, “You watch, you give, and you engage:
a study of live streaming practices in china,” in CHI, 2018.
[61] A. Almaslukh, Y. Kang, and A. Magdy, “Temporal geo-social personalized
keyword search over streaming data,” ACM TSAS, 2021.
[62] Y. Zhao, J. Guo, X. Chen, J. Hao, X. Zhou, and K. Zheng, “Coalition-based
task assignment in spatial crowdsourcing,” in ICDE, IEEE, 2021.
[63] X. Li, Y. Zhao, X. Zhou, and K. Zheng, “Consensus-based group task assignment
with social impact in spatial crowdsourcing,” DSE, 2020.
[64] H. Rahman, S. B. Roy, S. Thirumuruganathan, S. Amer-Yahia, and G. Das,
“Optimized group formation for solving collaborative tasks,” The VLDB
Journal, 2019.
[65] J. Tang, G. Venolia, K. Inkpen, C. Parker, R. Gruen, and A. Pelton, “Crowdcasting:
Remotely participating in live events through multiple live streams,”
HCI, p. 98, 2017.
[66] P. Cheng, S. Wang, J. Ma, J. Sun, and H. Xiong, “Learning to recommend
accurate and diverse items,” in WWW, 2017.
[67] L. Wu, Q. Liu, E. Chen, N. J. Yuan, G. Guo, and X. Xie, “Relevance meets
coverage: A unified framework to generate diversified recommendations,”
TIST, 2016.
[68] Z. Abbassi, V. S. Mirrokni, and M. Thakur, “Diversity maximization under
matroid constraints,” in SIGKDD, 2013.
[69] M. Wilhelm, A. Ramanathan, A. Bonomo, S. Jain, E. H. Chi, and J. Gillenwater,
“Practical diversified recommendations on youtube with determinantal
point processes,” in CIKM, 2018.
[70] Y. Perez, M. Schueppert, M. Lawlor, and S. Kishore, “Category-driven approach
for local related business recommendations,” in CIKM, 2015.
[71] C.-N. Ziegler, S. M. McNee, J. A. Konstan, and G. Lausen, “Improving
recommendation lists through topic diversification,” in WWW, 2005.
[72] Y. Asahiro, E. Miyano, and K. Samizo, “Approximating maximum diameterbounded
subgraphs,” in LATIN, 2010.
[73] P. Crescenzi, R. Silvestri, and L. Trevisan, “On weighted vs unweighted
versions of combinatorial optimization problems,” Information and Computation,
2001.
[74] D. P. Williamson and D. B. Shmoys, The Design of Approximation Algorithms.
Cambridge University Press, 2011.
[75] V. Terziyan, “Social distance metric: from coordinates to neighborhoods,”
IJGIS, 2017.
[76] R. Boppana and M. M. Halld´orsson, “Approximating maximum independent
sets by excluding subgraphs,” BIT Numerical Mathematics, 1992.
[77] S. Negi and S. Chaudhury, “Link prediction in heterogeneous social networks,”
in CIKM, 2016.
[78] G. Gallo, M. D. Grigoriadis, and R. E. Tarjan, “A fast parametric maximum
flow algorithm and applications,” SIAM Journal on Computing, 1989.
[79] A. V. Goldberg, “Finding a maximum density subgraph,” Technical Report
CA: University of California, 1984.
[80] X. Chen, Y. Zhang, Q. Ai, H. Xu, J. Yan, and Z. Qin, “Personalized key
frame recommendation,” in SIGIR, 2017.
[81] Y. Tian, “douyu-data,” 2018.
[82] Yelp, “Yelp challenge dataset,” 2017.
[83] R. Brochier, A. Guille, and J. Velcin, “Link prediction with mutual attention
for text-attributed networks,” in WWW, 2019.
[84] K. Chen and Z. Zhang, “Learning to classify fine-grained categories with
privileged visual-semantic misalignment,” IEEE Trans. Big Data, 2017.
[85] R. Zafarani and H. Liu, “Arizona state university twitter dataset,” 2009.
[86] D. J. Watts and S. H. Strogatz, “Collective dynamics of ‘small-world’ networks,”
Nature, 1998.
[87] G. Guo, J. Zhang, and N. Yorke-Smith, “Trustsvd: Collaborative filtering
with both the explicit and implicit influence of user trust and of item ratings,”
in AAAI, 2015.
[88] B. M. Sarwar, G. Karypis, J. A. Konstan, J. Riedl, et al., “Item-based
collaborative filtering recommendation algorithms.,” WWW, 2001.
[89] J. Chen, A. Vullikanti, S. Hoops, H. Mortveit, B. Lewis, S. Venkatramanan,
W. You, S. Eubank, M. Marathe, C. Barrett, et al., “Medical costs of keeping
the us economy open during covid-19,” Scientific reports, 2020.
[90] R. Li, S. Pei, B. Chen, Y. Song, T. Zhang, W. Yang, and J. Shaman, “Substantial
undocumented infection facilitates the rapid dissemination of novel
coronavirus (sars-cov-2),” Science, 2020.
[91] D. Bzdok and R. I. Dunbar, “Social isolation and the brain in the pandemic
era,” Nat. Hum. Behav, 2022.
[92] J. A. Firth, J. Hellewell, P. Klepac, S. Kissler, A. J. Kucharski, and L. G.
Spurgin, “Using a real-world network to model localized covid-19 control
strategies,” Nature medicine, 2020.
[93] S. Chang, E. Pierson, P. W. Koh, J. Gerardin, B. Redbird, D. Grusky, and
J. Leskovec, “Mobility network models of covid-19 explain inequities and
inform reopening,” Nature, 2021.
[94] A. Ugarov, “Inclusive costs of npi measures for covid-19 pandemic: three
approaches,” medRxiv, 2020.
[95] Y. Liu, C. Morgenstern, J. Kelly, R. Lowe, and M. Jit, “The impact of nonpharmaceutical
interventions on sars-cov-2 transmission across 130 countries
and territories,” BMC medicine, 2021.
[96] P. Cheng, L. Chen, and J. Ye, “Cooperation-aware task assignment in spatial
crowdsourcing,” in ICDE, IEEE, 2019.
[97] D. Gao, Y. Tong, Y. Ji, and K. Xu, “Team-oriented task planning in spatial
crowdsourcing,” in APWeb-WAIM, Springer, 2017.
[98] L. Morawska and J. Cao, “Airborne transmission of sars-cov-2: The world
should face the reality,” Environ. Int., 2020.
[99] M. M. Almutairi, M. Yamin, G. Halikias, A. Sen, and A. Ahmed, “A framework
for crowd management during covid-19 with artificial intelligence,”
Sustainability, 2022.
[100] M. Minutoli, P. Sambaturu, M. Halappanavar, A. Tumeo, A. Kalyananaraman,
and A. Vullikanti, “Preempt: scalable epidemic interventions using
submodular optimization on multi-gpu systems,” in SC20, IEEE, 2020.
[101] K. Al Handawi and M. Kokkolaras, “Optimization of infectious disease prevention
and control policies using artificial life,” IEEE TETCI, 2021.
[102] R.Wan, X. Zhang, and R. Song, “Multi-objective model-based reinforcement
learning for infectious disease control,” in SIGKDD, 2021.
[103] Y.-W. Teng, Y. Shi, D.-N. Yang, W.-C. Lee, S. Y. Philip, Y.-L. Lu, and M.-
S. Chen, “Epidemic spread optimization for disease containment with npis
and vaccination,” in ICDE, IEEE, 2022.
[104] N. Pathak, P. K. Deb, A. Mukherjee, and S. Misra, “Iot-to-the-rescue: A
survey of iot solutions for covid-19-like pandemics,” IoTJ, 2021.
[105] H. Ejaz, A. Alsrhani, A. Zafar, H. Javed, K. Junaid, A. E. Abdalla, K. O.
Abosalif, Z. Ahmed, and S. Younas, “Covid-19 and comorbidities: Deleterious
impact on infected patients,” J. Infect. Public, 2020.
[106] L. Wynants, B. Van Calster, G. S. Collins, R. D. Riley, G. Heinze, E. Schuit,
M. M. Bonten, D. L. Dahly, J. A. Damen, T. P. Debray, et al., “Prediction
models for diagnosis and prognosis of covid-19: systematic review and critical
appraisal,” 2020.
[107] M. A. Quiroz-Ju´arez, A. Torres-G´omez, I. Hoyo-Ulloa, R. d. J. Le´on-Montiel,
and A. B. U’Ren, “Identification of high-risk covid-19 patients using machine
learning,” Plos one, 2021.
[108] C.-M. Chen, H.-W. Jyan, S.-C. Chien, H.-H. Jen, C.-Y. Hsu, P.-C. Lee, C.-
F. Lee, Y.-T. Yang, et al., “Containing covid-19 among 627,386 persons in
contact with the diamond princess cruise ship passengers who disembarked
in taiwan: big data analytics,” JMIR, 2020.
[109] M. Shapiro and E. Delgado-Eckert, “Finding the probability of infection in
an sir network is np-hard,” Mathematical biosciences, 2012.
[110] P. Shakarian, A. Bhatnagar, A. Aleali, E. Shaabani, and R. Guo, “The
independent cascade and linear threshold models,” in Diffusion in Social
Networks, Springer, 2015.
[111] J. Chen, S. Hoops, A. Marathe, H. Mortveit, B. Lewis, S. Venkatramanan,
A. Haddadan, P. Bhattacharya, A. Adiga, A. Vullikanti, et al., “Prioritizing
allocation of covid-19 vaccines based on social contacts increases vaccination
effectiveness,” medRxiv, 2021.
[112] P. Sambaturu, B. Adhikari, B. A. Prakash, S. Venkatramanan, and A. Vullikanti,
“Designing effective and practical interventions to contain epidemics,”
in AAMAS, 2020.
[113] J. P. Azevedo, A. Hasan, D. Goldemberg, K. Geven, and S. A. Iqbal, “Simulating
the potential impacts of covid-19 school closures on schooling and
learning outcomes: A set of global estimates,” The World Bank Research
Observer, 2021.
[114] H.-H. Shuai, D.-N. Yang, S. Y. Philip, and M.-S. Chen, “A comprehensive
study on willingness maximization for social activity planning with quality
guarantee,” TKDE, 2015.
[115] T. T. Marinov and R. S. Marinova, “Adaptive sir model with vaccination:
Simultaneous identification of rates and functions illustrated with covid-19,”
Scientific Reports, 2022.
[116] A. Ajbar, R. T. Alqahtani, and M. Boumaza, “Dynamics of an sir-based
covid-19 model with linear incidence rate, nonlinear removal rate, and public
awareness,” Front. Phys., 2021.
[117] D. Kempe, J. Kleinberg, and ´E. Tardos, “Maximizing the spread of influence
through a social network,” in ACM SIGKDD, 2003.
[118] C. Li and H. Tang, “Study on ventilation rates and assessment of infection
risks of covid-19 in an outpatient building,” JOBE, 2021.
[119] C. Xu, W. Liu, X. Luo, X. Huang, and P. V. Nielsen, “Prediction and control
of aerosol transmission of sars-cov-2 in ventilated context: from source to
receptor,” SCS, 2022.
[120] A. Y. Lokhov and D. Saad, “Scalable influence estimation without sampling,”
arXiv preprint arXiv:1912.12749, 2019.
[121] R. Burkholz and J. Quackenbush, “Cascade size distributions: Why they
matter and how to compute them efficiently,” in AAAI, 2021.
[122] T. Junttila and P. Kaski, “Exact cover via satisfiability: An empirical study,”
in CP, Springer, 2010.
[123] C. P. Kankeu Fotsing, G.-S. Lee, Y.-W. Teng, C.-Y. Shen, Y.-S. Chen,
and D.-N. Yang, “On spatial crowdsourcing query under pandemics,”
tech. rep., Academia Sinica, 2023. https://dm.iis.sinica.edu.tw/
SpatialCrowdsourcing.pdf.
[124] S. afroj Moon and C. Scoglio, “Contact tracing evaluation for covid-19 transmission
during the reopening phase in a rural college town,” medRxiv, 2020.
[125] H.-H. Chen, L. Gou, X. Zhang, and C. L. Giles, “Capturing missing edges
in social networks using vertex similarity,” in K-CAP, 2011.
[126] E. Cho, S. A. Myers, and J. Leskovec, “Friendship and mobility: user movement
in location-based social networks,” in ACM SIGKDD, 2011.
[127] P. Cheng, X. Lian, L. Chen, J. Han, and J. Zhao, “Task assignment on
multi-skill oriented spatial crowdsourcing,” TKDE, 2016.
[128] D. Serbos, S. Qi, N. Mamoulis, E. Pitoura, and P. Tsaparas, “Fairness in
package-to-group recommendations,” in World wide web, 2017.
[129] W. M. Trochim and J. P. Donnelly, Research methods knowledge base, vol. 2.
Atomic Dog Publishing Cincinnati, OH, 2001.
[130] V. V. Vazirani and M. Yannakakis, “Suboptimal cuts: Their enumeration,
weight and number,” in ICALP, Springer, 1992.
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top

相關論文

無相關論文
 
* *