|
1. Ann M. Stock, a. Victoria L. Robinson, and P.N. Goudreau, Two-Component Signal Transduction. Annual Review of Biochemistry, 2000. 69(1): p. 183-215. 2. Mascher, T., J.D. Helmann, and G. Unden, Stimulus Perception in Bacterial Signal-Transducing Histidine Kinases. Microbiology and Molecular Biology Reviews, 2006. 70(4): p. 910-938. 3. Capra, E.J. and M.T. Laub, Evolution of Two-Component Signal Transduction Systems. Annual Review of Microbiology, 2012. 66(1): p. 325-347. 4. Wolanin, P.M., P.A. Thomason, and J.B. Stock, Histidine protein kinases: key signal transducers outside the animal kingdom. Genome Biology, 2002. 3(10): p. reviews3013.1. 5. Schaller, G.E., S.-H. Shiu, and Judith P. Armitage, Two-Component Systems and Their Co-Option for Eukaryotic Signal Transduction. Current Biology, 2011. 21(9): p. R320-R330. 6. Wuichet, K., B.J. Cantwell, and I.B. Zhulin, Evolution and phyletic distribution of two-component signal transduction systems. Current Opinion in Microbiology, 2010. 13(2): p. 219-225. 7. Herrou, J., S. Crosson, and A. Fiebig, Structure and function of HWE/HisKA2-family sensor histidine kinases. Current Opinion in Microbiology, 2017. 36: p. 47-54. 8. Sanders, D.A., et al., Identification of the site of phosphorylation of the chemotaxis response regulator protein, CheY. J Biol Chem, 1989. 264(36): p. 21770-8. 9. Sanders, D.A., et al., Phosphorylation site of NtrC, a protein phosphatase whose covalent intermediate activates transcription. Journal of Bacteriology, 1992. 174(15): p. 5117-5122. 10. West, A.H. and A.M. Stock, Histidine kinases and response regulator proteins in two-component signaling systems. Trends Biochem Sci, 2001. 26(6): p. 369-76. 11. Mascher, T., J.D. Helmann, and G. Unden, Stimulus perception in bacterial signal-transducing histidine kinases. Microbiol Mol Biol Rev, 2006. 70(4): p. 910-38. 12. Stock, J.B., A.J. Ninfa, and A.M. Stock, Protein phosphorylation and regulation of adaptive responses in bacteria. Microbiol Rev, 1989. 53(4): p. 450-90. 13. Tomomori, C., et al., Solution structure of the homodimeric core domain of Escherichia coli histidine kinase EnvZ. Nat Struct Biol, 1999. 6(8): p. 729-34. 14. Bilwes, A.M., et al., Structure of CheA, a signal-transducing histidine kinase. Cell, 1999. 96(1): p. 131-41. 15. Vierstra, R.D. and S.J. Davis, Bacteriophytochromes: new tools for understanding phytochrome signal transduction. Semin Cell Dev Biol, 2000. 11(6): p. 511-21. 16. Alex, L.A. and M.I. Simon, Protein histidine kinases and signal transduction in prokaryotes and eukaryotes. Trends Genet, 1994. 10(4): p. 133-8. 17. Parkinson, J.S. and E.C. Kofoid, Communication modules in bacterial signaling proteins. Annu Rev Genet, 1992. 26: p. 71-112. 18. Sanders, D.A., et al., Phosphorylation site of NtrC, a protein phosphatase whose covalent intermediate activates transcription. J Bacteriol, 1992. 174(15): p. 5117-22. 19. Dubey, B.N., et al., Cyclic di-GMP mediates a histidine kinase/phosphatase switch by noncovalent domain cross-linking. Sci Adv, 2016. 2(9): p. e1600823. 20. Liu, Y., et al., A pH-gated conformational switch regulates the phosphatase activity of bifunctional HisKA-family histidine kinases. Nat Commun, 2017. 8(1): p. 2104. 21. Galperin, M.Y., A census of membrane-bound and intracellular signal transduction proteins in bacteria: bacterial IQ, extroverts and introverts. BMC Microbiol, 2005. 5: p. 35. 22. Galperin, M.Y., Structural classification of bacterial response regulators: diversity of output domains and domain combinations. J Bacteriol, 2006. 188(12): p. 4169-82. 23. Barbieri, C.M., T. Wu, and A.M. Stock, Comprehensive analysis of OmpR phosphorylation, dimerization, and DNA binding supports a canonical model for activation. J Mol Biol, 2013. 425(10): p. 1612-26. 24. Kenney, L.J., Structure/function relationships in OmpR and other winged-helix transcription factors. Curr Opin Microbiol, 2002. 5(2): p. 135-41. 25. Baikalov, I., et al., Structure of the Escherichia coli response regulator NarL. Biochemistry, 1996. 35(34): p. 11053-61. 26. Wurtzel, E.T., M.Y. Chou, and M. Inouye, Osmoregulation of gene expression. I. DNA sequence of the ompR gene of the ompB operon of Escherichia coli and characterization of its gene product. J Biol Chem, 1982. 257(22): p. 13685-91. 27. Cai, S.J. and M. Inouye, EnvZ-OmpR interaction and osmoregulation in Escherichia coli. J Biol Chem, 2002. 277(27): p. 24155-61. 28. Slauch, J.M. and T.J. Silhavy, Genetic analysis of the switch that controls porin gene expression in Escherichia coli K-12. J Mol Biol, 1989. 210(2): p. 281-92. 29. Slauch, J.M., et al., EnvZ functions through OmpR to control porin gene expression in Escherichia coli K-12. J Bacteriol, 1988. 170(1): p. 439-41. 30. Alphen, W.V. and B. Lugtenberg, Influence of osmolarity of the growth medium on the outer membrane protein pattern of Escherichia coli. J Bacteriol, 1977. 131(2): p. 623-30. 31. Dedieu, L., J.M. Pagès, and J.M. Bolla, The omp50 gene is transcriptionally controlled by a temperature-dependent mechanism conserved among thermophilic Campylobacter species. Res Microbiol, 2008. 159(4): p. 270-8. 32. Todt, J.C. and E.J. McGroarty, Acid pH decreases OmpF and OmpC channel size in vivo. Biochem Biophys Res Commun, 1992. 189(3): p. 1498-502. 33. Thomas, A.D. and I.R. Booth, The regulation of expression of the porin gene ompC by acid pH. J Gen Microbiol, 1992. 138(9): p. 1829-35. 34. Nikaido, H. and M. Vaara, Molecular basis of bacterial outer membrane permeability. Microbiol Rev, 1985. 49(1): p. 1-32. 35. Forst, S., et al., Localization and membrane topology of EnvZ, a protein involved in osmoregulation of OmpF and OmpC in Escherichia coli. J Biol Chem, 1987. 262(34): p. 16433-8. 36. Foo, Y.H., et al., Cytoplasmic sensing by the inner membrane histidine kinase EnvZ. Prog Biophys Mol Biol, 2015. 118(3): p. 119-29. 37. Wang, L.C., et al., The inner membrane histidine kinase EnvZ senses osmolality via helix-coil transitions in the cytoplasm. Embo j, 2012. 31(11): p. 2648-59. 38. Tanaka, T., et al., NMR structure of the histidine kinase domain of the E. coli osmosensor EnvZ. Nature, 1998. 396(6706): p. 88-92. 39. Appleman, J.A., L.L. Chen, and V. Stewart, Probing conservation of HAMP linker structure and signal transduction mechanism through analysis of hybrid sensor kinases. J Bacteriol, 2003. 185(16): p. 4872-82. 40. Toro-Roman, A., T.R. Mack, and A.M. Stock, Structural analysis and solution studies of the activated regulatory domain of the response regulator ArcA: A symmetric dimer mediated by the alpha 4-beta 5-alpha 5 face. Journal of Molecular Biology, 2005. 349(1): p. 11-26. 41. Gao, R., T.R. Mack, and A.M. Stock, Bacterial response regulators: versatile regulatory strategies from common domains. Trends in Biochemical Sciences, 2007. 32(5): p. 225-234. 42. Jeon, Y., et al., Multimerization of phosphorylated and non-phosphorylated ArcA is necessary for the response regulator function of the Arc two-component signal transduction system. J Biol Chem, 2001. 276(44): p. 40873-9. 43. Kondo, H., et al., Escherichia coli positive regulator OmpR has a large loop structure at the putative RNA polymerase interaction site. Nature Structural Biology, 1997. 4(1): p. 28-31. 44. MartinezHackert, E. and A.M. Stock, The DNA-binding domain of OmpR: Crystal structure of a winged helix transcription factor. Structure, 1997. 5(1): p. 109-124. 45. Bourret, R.B., Receiver domain structure and function in response regulator proteins. Current Opinion in Microbiology, 2010. 13(2): p. 142-149. 46. Mattison, K., R. Oropeza, and L.J. Kenney, The linker region plays an important role in the interdomain communication of the response regulator OmpR. Journal of Biological Chemistry, 2002. 277(36): p. 32714-32721. 47. Walthers, D., V. Tran, and L.J. Kenney, Interdomain linkers of homologous response regulators determine their mechanism of action. Journal of Bacteriology, 2003. 185(1): p. 317-324. 48. Robinson, V.L., T. Wu, and A.M. Stock, Structural analysis of the domain interface in DrrB, a response regulator of the OmpR/PhoB subfamily. Journal of Bacteriology, 2003. 185(14): p. 4186-4194. 49. Friedland, N., et al., Domain orientation in the inactive response regulator Mycobacterium tuberculosis MtrA provides a barrier to activation. Biochemistry, 2007. 46(23): p. 6733-6743. 50. Nowak, E., et al., The structural basis of signal transduction for the response regulator PrrA from Mycobacterium tuberculosis. Journal of Biological Chemistry, 2006. 281(14): p. 9659-9666. 51. King-Scott, J., et al., The structure of a full-length response regulator from Mycobacterium tuberculosis in a stabilized three-dimensional domain-swapped, activated state. J Biol Chem, 2007. 282(52): p. 37717-29. 52. Buckler, D.R., Y.C. Zhou, and A.M. Stock, Evidence of intradomain and interdomain flexibility in an OmpR/PhoB homolog from Thermotoga maritima. Structure, 2002. 10(2): p. 153-164. 53. Lou, Y.C., et al., Structure and dynamics of polymyxin-resistance-associated response regulator PmrA in complex with promoter DNA. Nat Commun, 2015. 6: p. 8838. 54. Narayanan, A., et al., An asymmetric heterodomain interface stabilizes a response regulator-DNA complex. Nature Communications, 2014. 5. 55. Rhee, J.E., et al., Amino acids important for DNA recognition by the response regulator OmpR. Journal of Biological Chemistry, 2008. 283(13): p. 8664-8677. 56. Maris, A.E., et al., The response regulator OmpR oligomerizes via beta-sheets to form head-to-head dimers. J Mol Biol, 2005. 350(5): p. 843-56. 57. Otwinowski, Z. and W. Minor, Processing of X-ray diffraction data collected in oscillation mode. Macromolecular Crystallography, Pt A, 1997. 276: p. 307-326. 58. McCoy, A.J., et al., Phaser crystallographic software. Journal of Applied Crystallography, 2007. 40: p. 658-674. 59. Li, Y.C., et al., Structural dynamics of the two-component response regulator RstA in recognition of promoter DNA element. Nucleic Acids Res, 2014. 42(13): p. 8777-88. 60. Adams, P.D., et al., PHENIX: a comprehensive Python-based system for macromolecular structure solution. Acta Crystallographica Section D-Biological Crystallography, 2010. 66: p. 213-221. 61. Emsley, P., et al., Features and development of Coot. Acta Crystallographica Section D-Biological Crystallography, 2010. 66: p. 486-501. 62. Laskowski, R.A., et al., PROCHECK - a program to check the stereochemical quality of protein structures. Journal of Applied Crystallography, 1993. 26: p. 283-291. 63. Chen, V.B., et al., MolProbity: all-atom structure validation for macromolecular crystallography. Acta Crystallographica Section D-Structural Biology, 2010. 66: p. 12-21. 64. Luscombe, N.M., R.A. Laskowski, and J.M. Thornton, NUCPLOT: a program to generate schematic diagrams of protein-nucleic acid interactions. Nucleic Acids Res, 1997. 25(24): p. 4940-5. 65. Kay, L.E., Pulsed field gradient multi-dimensional NMR methods for the study of protein structure and dynamics in solution. Prog Biophys Mol Biol, 1995. 63(3): p. 277-99. 66. Johnson, B.A. and R.A. Blevins, NMR VIEW - a computer-program for the visualization and analysis of nmr data. Journal of Biomolecular Nmr, 1994. 4(5): p. 603-614. 67. Keller, R.L.J., Optimizing the process of nuclear magnetic resonance spectrum analysis and computer aided resonance assignment. 2005. 68. Shen, Y., et al., Consistent blind protein structure generation from NMR chemical shift data. Proc Natl Acad Sci U S A, 2008. 105(12): p. 4685-90. 69. Shen, Y., et al., De novo protein structure generation from incomplete chemical shift assignments. J Biomol NMR, 2009. 43(2): p. 63-78. 70. Head, C.G., A. Tardy, and L.J. Kenney, Relative binding affinities of OmpR and OmpR-phosphate at the ompF and ompC regulatory sites. Journal of Molecular Biology, 1998. 281(5): p. 857-870. 71. Martinez-Hackert, E. and A.M. Stock, Structural relationships in the OmpR family of winged-helix transcription factors. J Mol Biol, 1997. 269(3): p. 301-12. 72. Blanco, A.G., et al., Tandem DNA recognition by PhoB, a two-component signal transduction transcriptional activator. Structure, 2002. 10(5): p. 701-13. 73. Yoshida, T., et al., Transcription regulation of ompF and ompC by a single transcription factor, OmpR. J Biol Chem, 2006. 281(25): p. 17114-23. 74. Pickard, D., et al., Characterization of defined OmpR mutants of Salmonella-typhi - OmpR is involved in the regulation of vi polysaccharide expression. Infection and Immunity, 1994. 62(9): p. 3984-3993. 75. Lewis, R.J., et al., Domain swapping in the sporulation response regulator SpoOA. Journal of Molecular Biology, 2000. 297(3): p. 757-770.
|