帳號:guest(18.226.251.89)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):羅哲希
作者(外文):Rajesh Rattinam
論文名稱(中文):結構解析與活性分析胺基醣苷類抗生素-春日黴素之生合成及抗性表現相關酵素
論文名稱(外文):Structural and Biochemical Analysis of Enzymes Involved in the Biosynthesis of Aminoglycoside Antibiotic Kasugamycin and Its Resistance
指導教授(中文):李宗璘
呂平江
指導教授(外文):Li, Tsung-Lin
Lyu, Ping-Chiang
口試委員(中文):梁博煌
林世昌
林曉青
口試委員(外文):Liang, Po-Huang
Lin, Su-Chang
Lin, Hsiao-Ching
學位類別:博士
校院名稱:國立清華大學
系所名稱:生物資訊與結構生物研究所
學號:103080863
出版年(民國):111
畢業學年度:110
語文別:英文
論文頁數:100
中文關鍵詞:春日黴素春日胺基抗生素之生物合成表異構酶與乙酰轉移酶
外文關鍵詞:kasugamycinkasugamineantibiotic biosynthesisepimeraseacetyltransferase
相關次數:
  • 推薦推薦:0
  • 點閱點閱:167
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
春日黴素 (KSM) 是一種氨基糖苷類抗生素,主要由三種化學基團:D型肌醇、春日胺基與甘氨酸亞胺來組成其化學結構。儘管春日黴素早在 50 多年前就已人類所發現,但參與其生物合成途徑之酵素仍未被詳細探討。因此在此論文研究中,我們利用結構解析與酵素活性測試證實表異構酶 KasQ 在KSM 生物合成途徑中扮演了關鍵腳色,而非先前相關研究中所提出之酵素 KasF/H。我們推測KasF/H應為乙酰轉移酶,能乙酰化KSM 使其失去其抗菌活性。在進一步針對KasQ進行生化和生物結構分析,其結果證實KasQ能將 UDP-GlcNAc 轉化為 UDP-ManNAc 作為KSM生物合成途徑的第一步。而同位素研究中也進一步印證並非尿苷二磷酸葡萄糖 (UDP-glucose),而是帶有13C,15N之氨基尿苷二磷葡萄糖 (UDP-GlcNH2)為形成 KSM 的重要中間體。同時我們也分別證實 KasF 和 KasH,具有將 UDP-GlcNH2 和 KSM 乙酰化為 UDP-GlcNAc 和 2-N'-乙酰基 KSM的作用。實驗結果中發現到KasF 並非催化KSM生合成反應的第一步; 其功能與KasH 相同,均為春日黴素之乙酰化修飾蛋白酶,且後者KasH在抗性活性方面比前者更具特異性和反應性佳。此篇論文所完成的相關研究奠定了未來繪製完整春日黴素(KSM) 之生物合成途徑的重要基礎。
Kasugamycin (KSM), an aminoglycoside antibiotic, is composed of three chemical moieties: D-chiro-inositol, kasugamine and glycine imine. Despite being discovered more than 50 years ago, the biosynthetic pathway of KSM remains an unresolved puzzle. Here we report a structural and functional analysis for an epimerase, KasQ, that primes KSM biosynthesis rather than the previously proposed KasF/H, which instead acts as an acetyltransferase, inactivating KSM. Our biochemical and biophysical analysis determined that KasQ converts UDP-GlcNAc to UDP-ManNAc as the initial step in the biosynthetic pathway. The isotope-feeding study further confirmed that 13C,15N-glucosamine/UDP-GlcNH2 rather than glucose/UDP-Glc serves as the direct precursor for the formation of KSM. Both KasF and KasH were proposed, respectively, converting UDP-GlcNH2 and KSM to UDP-GlcNAc and 2-N’-acetyl KSM. Experimentally, KasF is unable catalyze the first step of reaction; both KasF and KasH are instead KSM-modifying enzymes, while the latter is more specific and reactive than the former in terms of the extent of resistance. The information gained here lays the foundation for mapping out the complete KSM biosynthetic pathway.
Acknowledgements i
摘 要 ii
Abstract iii
Table of contents iv
Abbreviations x
Chapter 1 1-5
Introduction 1
1.1. Kasugamycin (KSM) 1
1.2. KSM mode of action 1
1.3. Antibacterial, antifungal and antiviral activity of KSM 3
1.4. KSM proposed biosynthesis pathway and its resistance 4
Chapter 2 6-20
Materials and methods 6
2.1. Chemicals, reagents and bacterial strains 6
2.2. Cloning, expression and purification 6
2.3. Crystallization and Data Collection 8
2.4. Structure Determination and Refinement 9
2.5. Site-Directed Mutagenesis 10
2.6. Isothermal Titration Calorimetry (ITC) 10
2.7. Synthesis of 2-Acetamidoglucal (AAG) 11
2.7.1. General Information 11
2.7.2. Procedure for the synthesis of 2-acetamidoglucal (AAG) 12
2.8. Construction of pMKBAC08-KAS and pWZC07-PrpsJ-kasT 13
2.9. In Vivo Isotope Incorporation Assay 14
2.10. Disc Diffusion Assay 16
2.11. HPLC Activity Assay 16
2.12. Thin Layer Chromatography (TLC) Analysis 18
2.13. HPLC Kinetic Analysis 18
2.14. NMR Activity Assay 18
2.15. Deuterium Incorporation Assay 19
2.16. Computational Analysis 20
Chapter 3 21-76
Results and Discussion 21
3.1. Bioinformatic mining of KasQ gene 21
3.2. Biochemical Investigation of an Epimerase 21
3.3. Biochemical Characterization of Acetyltransferases 34
3.4. Crystal Structure of KasQ in Complex with UDP and UDP-Glc 47
3.5. Structural Comparison 55
3.6. KasQ Substrate Specificity 59
3.7. In vivo Isotope Incorporation Analysis 73
Chapter 4 77-79
Conclusion 77
References 80
Appendixes 89
Curriculum Vitae 97






List of Tables vi
Table 1. Summary of crystal data-collection statistics 9
Table 2. The sequences of primers used in this study to create KasQ mutants 10
Table 3. The sequences of primers used to construct pMKBAC08-KAS and pWZC07-PrpsJ-kasT 14
Table 4. Conversion of substrate to product and intermediates at different time points. 27
Table 5. Thermodynamic parameters of KasH with substrates 42
Table 6. Kinetics of KasQ_WT with UDP-GlcNAc and MgCl2 62
Table 7. Thermodynamic parameters of KasQ versus different substrates. 63
Table 8. Thermodynamic parameters of KasQ mutants in the binding affinity assay 69


















List of Figures vii
Figure 1.1 | Chemical structure of kasugamycin (KSM) 1
Figure 1.2 | Crystal structure of KSM complex with ribosome and its inhibition mechanisms 102
Figure 1.3 | KSM activity against different human pathogens 3
Figure 1.4 | Previous biosynthetic proposals for kasugamycin (KSM) 5
Figure 2.1 | Schematic representation has shown the method of in-vivo isotope incorporation assay 15
Figure 3.1| Expression and purification of KasQ 24
Figure 3.2 | Biochemical investigation of KasQ by HPLC-LTQ-MS 25
Figure 3.3 | Effects of different temperatures on KasQ activity 26
Figure 3.4 | Conversion percentage of substrate to product and intermediates 27
Figure 3.5 | Intermediate trapping and product formation monitored by 1H NMR spectroscopy 28
Figure 3.6 | Biochemical investigation of KasQ by NMR spectrometry 29
Figure 3.7 | Deuterium incorporation assay by LC-MS 30
Figure 3.8 | Deuterium incorporation assay by NMR spectroscopy 31
Figure 3.9 | 1H NMR spectrum 32
Figure 3.10 | 1H-STD NMR 33
Figure 3.11 | The sequence alignment of KasH and KasF 37
Figure 3.12 | Expression and purification of KasF and KasH 38
Figure 3.13 | In vivo resistance activity of KasF and KasH 39
Figure 3.14 | In vitro biochemical characterization of acetyltransferases KasF and KasH 40
Figure 3.15 | The acetylation reactions of KasF and KasH were examined 41
Figure 3.16 | Isothermal Titration Calorimetry (ITC) analysis 103
Figure 3.17 | Acetylation assay of KasF with UDP-GlcNH2 and AcCoA 44
Figure 3.18 | Deacetylation assay 45
Figure 3.19 | HPLC-LTQ-MS analysis for 2-N’-acyl substituted KSM analogs 46
Figure 3.20 | KasQ crystals 50
Figure 3.21 | Crystal structures of KasQ_wildtype (WT) 51
Figure 3.22 | Crystal structures of KasQ in complex with UDP or UDP-Glc 52
Figure 3.23 | Sequence alignment of KasQ with different UDP-GlcNAc 2-epimerases 53
Figure 3.24 | Biochemical assay of KasQ mutants E308A and E308Q 54
Figure 3.25 | Sequence and structural comparison of KasQ with 57
Figure 3.26 | The metal-ion binding site of KasQ 58
Figure 3.27 | Enzymatic reactions of KasQ with different NDP sugars 61
Figure 3.28 | The kinetic curve of KasQ for the epimerization reactions 62
Figure 3.29 | ITC analyses of KasQ with different nucleosides (mono/di/tri) phosphates 65
Figure 3.30 | ITC analyses of KasQ with different NDP sugars 67
Figure 3.31 | ITC analyses of KasQ with different monosaccharides 69
Figure 3.32 | ITC analyses of KasQ mutants with different NDP sugars 71
Figure 3.33 | 1H NMR spectra of KasQ in time course reactions 72
Figure 3.34 | Disc diffusion and in vivo isotope incorporation assay 75
Figure 3.35 | Isotope incorporation assay 76
Figure 4.1 | The biosynthetic gene cluster (BGC) sequenced and identified 78
Figure 4.2 | The proposed biosynthetic pathway of KSM from this study 79











List of Schemes ix
Scheme 1 | The synthetic step for AAG 2. 105

1. Ikekawa, T.; Umezawa, H.; Iitaka, Y., The structure of kasugamycin hydrobromide by x-ray crystallographic analysis. The Journal of antibiotics 1966, 19 (1), 49-50.

2. Umezawa, H.; Hamada, M.; Suhara, Y.; Hashimoto, T.; Ikekawa, T., Kasugamycin, a new antibiotic. Antimicrobial agents and chemotherapy 1965, 5, 753-7.

3. Okuyama, A.; Machiyama, N.; Kinoshita, T.; Tanaka, N., Inhibition by kasugamycin of initiation complex formation on 30S ribosomes. Biochemical and biophysical research communications 1971, 43 (1), 196-9.

4. Okuyama, A.; Tanaka, N., Differential effects of aminoglycosides on cistron-specific initiation of protein synthesis. Biochemical and biophysical research communications 1972, 49 (4), 951-7.

5. Mankin, A., Antibiotic blocks mRNA path on the ribosome. Nature structural & molecular biology 2006, 13 (10), 858-60.

6. Schuwirth, B. S.; Day, J. M.; Hau, C. W.; Janssen, G. R.; Dahlberg, A. E.; Cate, J. H.; Vila-Sanjurjo, A., Structural analysis of kasugamycin inhibition of translation. Nature structural & molecular biology 2006, 13 (10), 879-86.

7. Zhang, Y.; Aleksashin, N. A.; Klepacki, D.; Anderson, C.; Vázquez-Laslop, N.; Gross, C. A.; Mankin, A. S., The context of the ribosome binding site in mRNAs defines specificity of action of kasugamycin, an inhibitor of translation initiation. Proceedings of the National Academy of Sciences 2022, 119 (4), e2118553119.

8. Ishiyama, T.; Hara, I.; Matsuoka, M.; Sato, K.; Shimada, S.; Izawa, R.; Hashimoto, T.; Hamada, M.; Okami, Y.; Takeuchi, T.; Umezawa, H., STUDIES ON THE PREVENTIVE EFFECT OF KASUGAMYCIN ON RICE BLAST. The Journal of antibiotics 1965, 18, 115-9.

9. Chaudhuri, S.; Li, L.; Zimmerman, M.; Chen, Y.; Chen, Y. X.; Toosky, M. N.; Gardner, M.; Pan, M.; Li, Y. Y.; Kawaji, Q.; Zhu, J. H.; Su, H. W.; Martinot, A. J.; Rubin, E. J.; Dartois, V. A.; Javid, B., Kasugamycin potentiates rifampicin and limits emergence of resistance in Mycobacterium tuberculosis by specifically decreasing mycobacterial mistranslation. Elife 2018, 7.

10. Gopinath, S.; Kim, M. V.; Rakib, T.; Wong, P. W.; van Zandt, M.; Barry, N. A.; Kaisho, T.; Goodman, A. L.; Iwasaki, A., Topical application of aminoglycoside antibiotics enhances host resistance to viral infections in a microbiota-independent manner. Nat Microbiol 2018, 3 (5), 611-621.

11. Tomar, P. P. S.; Krugliak, M.; Arkin, I. T., Blockers of the SARS-CoV-2 3a Channel Identified by Targeted Drug Repurposing. Viruses 2021, 13 (3).

12. Kamle, S.; Ma, B.; He, C. H.; Akosman, B.; Zhou, Y.; Lee, C. M.; El-Deiry, W. S.; Huntington, K.; Liang, O.; Machan, J. T.; Kang, M. J.; Shin, H. J.; Mizoguchi, E.; Lee, C. G.; Elias, J. A., Chitinase 3-like-1 is a therapeutic target that mediates the effects of aging in COVID-19. JCI insight 2021, 6 (21).

13. Kamle, S.; Ma, B.; Lee, C. M.; Schor, G.; Zhou, Y.; Lee, C. G.; Elias, J. A., Host Chitinase 3-like-1 is a Universal Therapeutic Target for SARS-CoV-2 Viral Variants in COVID 19. bioRxiv : the preprint server for biology 2022.

14. Flatt, P. M.; Mahmud, T., Biosynthesis of aminocyclitol-aminoglycoside antibiotics and related compounds. Nat Prod Rep 2007, 24 (2), 358-92.

15. Ikeno, S.; Tsuji, T.; Higashide, K.; Kinoshita, N.; Hamada, M.; Hori, M., A 7.6kb DNA region from Streptomyces kasugaensis M338-M1 includes some genes responsible for kasugamycin biosynthesis. The Journal of antibiotics 1998, 51 (3), 341-52.

16. Kasuga, K.; Sasaki, A.; Matsuo, T.; Yamamoto, C.; Minato, Y.; Kuwahara, N.; Fujii, C.; Kobayashi, M.; Agematu, H.; Tamura, T.; Komatsu, M.; Ishikawa, J.; Ikeda, H.; Kojima, I., Heterologous production of kasugamycin, an aminoglycoside antibiotic from Streptomyces kasugaensis, in Streptomyces lividans and Rhodococcus erythropolis L-88 by constitutive expression of the biosynthetic gene cluster. Applied microbiology and biotechnology 2017, 101 (10), 4259-4268.

17. Ikeno, S.; Aoki, D.; Hamada, M.; Hori, M.; Tsuchiya, K. S., DNA sequencing and transcriptional analysis of the kasugamycin biosynthetic gene cluster from Streptomyces kasugaensis M338-M1. The Journal of antibiotics 2006, 59 (1), 18-28.

18. Jo, Y. Y.; Liu, J.; Jin, Y.; Yang, Y.; Suh, J. W., Isolation and characterization of kasugamycin biosynthetic genes from Streptomyces kasugaensis KACC 20262. Journal of Microbiology and Biotechnology 2005, 15, 491-496.

19. Park, E. C.; Szostak, J. W., ARD1 and NAT1 proteins form a complex that has N-terminal acetyltransferase activity. The EMBO journal 1992, 11 (6), 2087-93.

20. Wyszynski, F. J.; Lee, S. S.; Yabe, T.; Wang, H.; Gomez-Escribano, J. P.; Bibb, M. J.; Lee, S. J.; Davies, G. J.; Davis, B. G., Biosynthesis of the tunicamycin antibiotics proceeds via unique exo-glycal intermediates. Nature chemistry 2012, 4 (7), 539-46.

21. Li, Z.; Hwang, S.; Ericson, J.; Bowler, K.; Bar-Peled, M., Pen and Pal are nucleotide-sugar dehydratases that convert UDP-GlcNAc to UDP-6-deoxy-D-GlcNAc-5,6-ene and then to UDP-4-keto-6-deoxy-L-AltNAc for CMP-pseudaminic acid synthesis in Bacillus thuringiensis. The Journal of biological chemistry 2015, 290 (2), 691-704.

22. Allard, S. T.; Beis, K.; Giraud, M. F.; Hegeman, A. D.; Gross, J. W.; Wilmouth, R. C.; Whitfield, C.; Graninger, M.; Messner, P.; Allen, A. G.; Maskell, D. J.; Naismith, J. H., Toward a structural understanding of the dehydratase mechanism. Structure (London, England : 1993) 2002, 10 (1), 81-92.

23. Beyer, N.; Alam, J.; Hallis, T. M.; Guo, Z.; Liu, H.-w., The Biosynthesis of GDP-l-Colitose:  C-3 Deoxygenation Is Catalyzed by a Unique Coenzyme B6-Dependent Enzyme. Journal of the American Chemical Society 2003, 125 (19), 5584-5585.

24. Cook, P. D.; Holden, H. M., GDP-4-keto-6-deoxy-D-mannose 3-dehydratase, accommodating a sugar substrate in the active site. The Journal of biological chemistry 2008, 283 (7), 4295-303.

25. Alali, A.; Zhang, L.; Li, J.; Zuo, C.; Wassouf, D.; Yan, X.; Schwarzer, P.; Günther, S.; Einsle, O.; Bechthold, A., Biosynthesis of the Tricyclic Aromatic Type II Polyketide Rishirilide: New Potential Third Ring Oxygenation after Three Cyclization Steps. Molecular biotechnology 2021, 63 (6), 502-514.

26. Guidi, B.; Planchestainer, M.; Contente, M. L.; Laurenzi, T.; Eberini, I.; Gourlay, L. J.; Romano, D.; Paradisi, F.; Molinari, F., Strategic single point mutation yields a solvent- and salt-stable transaminase from Virgibacillus sp. in soluble form. Scientific reports 2018, 8 (1), 16441.

27. Han, S.-W.; Kim, J.; Cho, H.-S.; Shin, J.-S., Active Site Engineering of ω-Transaminase Guided by Docking Orientation Analysis and Virtual Activity Screening. ACS Catalysis 2017, 7 (6), 3752-3762.

28. Dairi, T.; Yamaguchi, K.; Hasegawa, M., N-formimidoyl fortimicin A synthase, a unique oxidase involved in fortimicin A biosynthesis: purification, characterization and gene cloning. Molecular & general genetics : MGG 1992, 236 (1), 49-59.

29. Zhang, L.; Muthana, M. M.; Yu, H.; McArthur, J. B.; Qu, J.; Chen, X., Characterizing non-hydrolyzing Neisseria meningitidis serogroup A UDP-N-acetylglucosamine (UDP-GlcNAc) 2-epimerase using UDP-N-acetylmannosamine (UDP-ManNAc) and derivatives. Carbohydrate research 2016, 419, 18-28.

30. Morgan, P. M.; Sala, R. F.; Tanner, M. E., Eliminations in the Reactions Catalyzed by UDP-N-Acetylglucosamine 2-Epimerase. Journal of the American Chemical Society 1997, 119 (43), 10269-10277.

31. Liebau, J.; Tersa, M.; Trastoy, B.; Patrick, J.; Rodrigo-Unzueta, A.; Corzana, F.; Sparrman, T.; Guerin, M. E.; Mäler, L., Unveiling the activation dynamics of a fold-switch bacterial glycosyltransferase by (19)F NMR. The Journal of biological chemistry 2020, 295 (29), 9868-9878.

32. Hallberg, B. M.; Leitner, C.; Haltrich, D.; Divne, C., Crystal structure of the 270 kDa homotetrameric lignin-degrading enzyme pyranose 2-oxidase. Journal of molecular biology 2004, 341 (3), 781-96.

33. Yoshii, A.; Moriyama, H.; Fukuhara, T., The novel kasugamycin 2'-N-acetyltransferase gene aac(2')-IIa, carried by the IncP island, confers kasugamycin resistance to rice-pathogenic bacteria. Applied and environmental microbiology 2012, 78 (16), 5555-64.

34. Kudo, F., Biosynthesis of Aminoglycoside Antibiotics. In Comprehensive Natural Products III, Liu, H.-W.; Begley, T. P., Eds. Elsevier: Oxford, 2020; pp 588-612.

35. Otwinowski, Z.; Minor, W., Processing of X-ray diffraction data collected in oscillation mode. Methods in enzymology 1997, 276, 307-26.

36. McCoy, A. J.; Grosse-Kunstleve, R. W.; Adams, P. D.; Winn, M. D.; Storoni, L. C.; Read, R. J., Phaser crystallographic software. Journal of applied crystallography 2007, 40 (Pt 4), 658-674.

37. Badger, J.; Sauder, J. M.; Adams, J. M.; Antonysamy, S.; Bain, K.; Bergseid, M. G.; Buchanan, S. G.; Buchanan, M. D.; Batiyenko, Y.; Christopher, J. A.; Emtage, S.; Eroshkina, A.; Feil, I.; Furlong, E. B.; Gajiwala, K. S.; Gao, X.; He, D.; Hendle, J.; Huber, A.; Hoda, K.; Kearins, P.; Kissinger, C.; Laubert, B.; Lewis, H. A.; Lin, J.; Loomis, K.; Lorimer, D.; Louie, G.; Maletic, M.; Marsh, C. D.; Miller, I.; Molinari, J.; Muller-Dieckmann, H. J.; Newman, J. M.; Noland, B. W.; Pagarigan, B.; Park, F.; Peat, T. S.; Post, K. W.; Radojicic, S.; Ramos, A.; Romero, R.; Rutter, M. E.; Sanderson, W. E.; Schwinn, K. D.; Tresser, J.; Winhoven, J.; Wright, T. A.; Wu, L.; Xu, J.; Harris, T. J., Structural analysis of a set of proteins resulting from a bacterial genomics project. Proteins 2005, 60 (4), 787-96.

38. Vagin, A. A.; Steiner, R. A.; Lebedev, A. A.; Potterton, L.; McNicholas, S.; Long, F.; Murshudov, G. N., REFMAC5 dictionary: organization of prior chemical knowledge and guidelines for its use. Acta crystallographica. Section D, Biological crystallography 2004, 60 (Pt 12 Pt 1), 2184-95.

39. Emsley, P.; Lohkamp, B.; Scott, W. G.; Cowtan, K., Features and development of Coot. Acta crystallographica. Section D, Biological crystallography 2010, 66 (Pt 4), 486-501.

40. Afonine, P. V.; Grosse-Kunstleve, R. W.; Echols, N.; Headd, J. J.; Moriarty, N. W.; Mustyakimov, M.; Terwilliger, T. C.; Urzhumtsev, A.; Zwart, P. H.; Adams, P. D., Towards automated crystallographic structure refinement with phenix.refine. Acta crystallographica. Section D, Biological crystallography 2012, 68 (Pt 4), 352-67.

41. DeLano, W. L., The PyMOL molecular graphics system. http://www. pymol. org 2002.

42. Horbal, L.; Fedorenko, V.; Luzhetskyy, A., Novel and tightly regulated resorcinol and cumate-inducible expression systems for Streptomyces and other actinobacteria. Appl Microbiol Biot 2014, 98 (20), 8641-8655.

43. Kieser, T.; Hopwood, D. A., Genetic Manipulation of Streptomyces - Integrating Vectors and Gene Replacement. Method Enzymol 1991, 204, 430-458.

44. Robert, X.; Gouet, P., Deciphering key features in protein structures with the new ENDscript server. Nucleic acids research 2014, 42 (Web Server issue), W320-4.

45. Crooks, G. E.; Hon, G.; Chandonia, J. M.; Brenner, S. E., WebLogo: a sequence logo generator. Genome Res 2004, 14 (6), 1188-90.

46. Swartley, J. S.; Liu, L. J.; Miller, Y. K.; Martin, L. E.; Edupuganti, S.; Stephens, D. S., Characterization of the gene cassette required for biosynthesis of the (alpha1-->6)-linked N-acetyl-D-mannosamine-1-phosphate capsule of serogroup A Neisseria meningitidis. J Bacteriol 1998, 180 (6), 1533-9.

47. Salo, W. L., The incorporation of tritium from tritium-enriched water into UDP-N-Acetylglucosamine and UDP-N-Acetyl Mannosamine catalyzed by UDP-N-Acetylglucosamine 2-Epimerase from Escherichia coli. Biochimica et Biophysica Acta (BBA) - Enzymology 1976, 452 (2), 625-628.

48. Bellucci, M. C.; Volonterio, A., Aminoglycosides: From Antibiotics to Building Blocks for the Synthesis and Development of Gene Delivery Vehicles. Antibiotics (Basel, Switzerland) 2020, 9 (8).

49. Litovchick, A.; Lapidot, A.; Eisenstein, M.; Kalinkovich, A.; Borkow, G., Neomycin B−Arginine Conjugate, a Novel HIV-1 Tat Antagonist:  Synthesis and Anti-HIV Activities. Biochemistry 2001, 40 (51), 15612-15623.

50. Llewellyn, N. M.; Spencer, J. B., Chemoenzymatic acylation of aminoglycoside antibiotics. Chemical communications (Cambridge, England) 2008, (32), 3786-8.

51. Thamban Chandrika, N.; Garneau-Tsodikova, S., Comprehensive review of chemical strategies for the preparation of new aminoglycosides and their biological activities. Chemical Society Reviews 2018, 47 (4), 1189-1249.

52. Ban, Y. H.; Song, M. C.; Kim, H. J.; Lee, H.; Wi, J. B.; Park, J. W.; Lee, D. G.; Yoon, Y. J., Development of 6'-N-Acylated Isepamicin Analogs with Improved Antibacterial Activity Against Isepamicin-Resistant Pathogens. Biomolecules 2020, 10 (6).

53. Samuel, J.; Tanner, M. E., Active site mutants of the "non-hydrolyzing" UDP-N-acetylglucosamine 2-epimerase from Escherichia coli. Biochimica et biophysica acta 2004, 1700 (1), 85-91.

54. Whitworth, G. E.; Macauley, M. S.; Stubbs, K. A.; Dennis, R. J.; Taylor, E. J.; Davies, G. J.; Greig, I. R.; Vocadlo, D. J., Analysis of PUGNAc and NAG-thiazoline as transition state analogues for human O-GlcNAcase: mechanistic and structural insights into inhibitor selectivity and transition state poise. Journal of the American Chemical Society 2007, 129 (3), 635-44.

55. Hurlburt, N. K.; Guan, J.; Ong, H.; Yu, H.; Chen, X.; Fisher, A. J., Structural characterization of a nonhydrolyzing UDP-GlcNAc 2-epimerase from Neisseria meningitidis serogroup A. Acta crystallographica. Section F, Structural biology communications 2020, 76 (Pt 11), 557-567.

56. Campbell, R. E.; Mosimann, S. C.; Tanner, M. E.; Strynadka, N. C., The structure of UDP-N-acetylglucosamine 2-epimerase reveals homology to phosphoglycosyl transferases. Biochemistry 2000, 39 (49), 14993-5001.

57. Huang, C. M.; Lyu, S. Y.; Lin, K. H.; Chen, C. L.; Chen, M. H.; Shih, H. W.; Hsu, N. S.; Lo, I. W.; Wang, Y. L.; Li, Y. S.; Wu, C. J.; Li, T. L., Teicoplanin Reprogrammed with the N-Acyl-Glucosamine Pharmacophore at the Penultimate Residue of Aglycone Acquires Broad-Spectrum Antimicrobial Activities Effectively Killing Gram-Positive and -Negative Pathogens. ACS infectious diseases 2019, 5 (3), 430-442.

58. Fukagawa, Y.; Sawa, T.; Takeuchi, T.; Umezawa, H., Studies on biosynthesis of kasugamycin. I. Biosynthesis of kasugamycin and the kasugamine moiety. The Journal of antibiotics 1968, 21 (1), 50-4.

59. Fukagawa, Y.; Sawa, T.; Takeuchi, T.; Umezawa, H., Biosynthesis of kasugamycin. II. Biosynthesis of the two-carbon-side chain of kasugamycin. The Journal of antibiotics 1968, 21 (3), 182-4.

60. Fukagawa, Y.; Sawa, T.; Takeuchi, T.; Umezawa, H., Studies on biosynthesis of kasugamycin. 3. Biosynthesis of the d-inositol moiety. The Journal of antibiotics 1968, 21 (3), 185-8.

61. Sawa, T.; Fukagawa, Y.; Homma, I.; Takeuchi, T.; Umezawa, H., Studies on biosynthesis of kasugamycin. VI. Some relationships between the incorporation of 14C-compounds and the production of kasugamycin. The Journal of antibiotics 1968, 21 (6), 413-20.

62. Fukagawa, Y.; Sawa, T.; Homma, I.; Takeuchi, T.; Umezawa, H., Studies on biosynthesis of kasugamycin. V. Biosynthesis of the amidine group. The Journal of antibiotics 1968, 21 (6), 410-2.

 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *