|
1. Richards, J., Sundermeier, T., Svetlanov, A. and Karzai, A.W. (2008) Quality control of bacterial mRNA decoding and decay. Biochimica et Biophysica Acta, 1779, 574-582. 2. Silva, I.J., Saramago, M., Dressaire, C., Domingues, S., Viegas, S.C. and Arraiano, C.M. (2011) Importance and key events of prokaryotic RNA decay: the ultimate fate of an RNA molecule. Wiley Interdisciplinary Reviews: RNA, 2, 818-836. 3. Celesnik, H., Deana, A. and Belasco, J.G. (2007) Initiation of RNA Decay in Escherichia coli by 5′ Pyrophosphate Removal. Molecular Cell, 27, 79-90. 4. Mackie, G.A. (1998) Ribonuclease E is a 5′-end-dependent endonuclease. Nature, 395, 720-724. 5. Coburn, G.A., Miao, X., Briant, D.J. and Mackie, G.A. (1999) Reconstitution of a minimal RNA degradosome demonstrates functional coordination between a 3' exonuclease and a DEAD-box RNA helicase. Genes & Development, 13, 2594-2603. 6. Ghosh, S. and Deutscher, M.P. (1999) Oligoribonuclease is an essential component of the mRNA decay pathway. Proceedings of the National Academy of Sciences USA, 96, 4372. 7. Moraes, K.C.M. (2010) RNA surveillance: molecular approaches in transcript quality control and their implications in clinical diseases. Mol Med, 16, 53-68. 8. Rorbach, J. and Minczuk, M. (2012) The post-transcriptional life of mammalian mitochondrial RNA. The Biochemical Journal, 444, 357. 9. Minczuk, M., Piwowarski, J., Papworth, M.A., Awiszus, K., Schalinski, S., Dziembowski, A., Dmochowska, A., Bartnik, E., Tokatlidis, K., Stepien, P.P. et al. (2002) Localisation of the human hSuv3p helicase in the mitochondrial matrix and its preferential unwinding of dsDNA. Nucleic Acids Research, 30, 5074-5086. 10. Wang, D.D.-H., Shu, Z., Lieser, S.A., Chen, P.-L. and Lee, W.-H. (2009) Human mitochondrial SUV3 and polynucleotide phosphorylase form a 330-kDa heteropentamer to cooperatively degrade double-stranded RNA with a 3'-to-5' directionality. The Journal of Biological Chemistry, 284, 20812-20821. 11. Goldman, Seth R., Sharp, Josh S., Vvedenskaya, Irina O., Livny, J., Dove, Simon L. and Nickels, Bryce E. (2011) NanoRNAs Prime Transcription Initiation In Vivo. Molecular cell, 42, 817-825. 12. Bruni, F., Gramegna, P., Oliveira, J.M.A., Lightowlers, R.N. and Chrzanowska-Lightowlers, Z.M.A. (2013) REXO2 Is an Oligoribonuclease active in human mitochondria. PLoS ONE, 8, e64670. 13. Reis, F.P., Pobre, V., Silva, I.J., Malecki, M. and Arraiano, C.M. (2013) The RNase II/RNB family of exoribonucleases: putting the 'Dis' in disease. Wiley interdisciplinary reviews. RNA, 4, 607-615. 14. Cheng, Z., Zuo, Y., Li, Z., Rudd, K. and Deutscher, M. (1998) The vacB Gene Required for Virulence in Shigella flexneri and Escherichia coli Encodes the Exoribonuclease RNase R. The Journal of Biological Chemistry., 273, 14077-14080. 15. Lalonde, M.S., Zuo, Y., Zhang, J., Gong, X., Wu, S., Malhotra, A. and Li, Z. (2007) Exoribonuclease R in Mycoplasma genitalium can carry out both RNA processing and degradative functions and is sensitive to RNA ribose methylation. RNA, 13, 1957-1968. 16. Cheng, Z.F. and Deutscher, M.P. (2005) An important role for RNase R in mRNA decay. Molecular Cell, 17, 313-318. 17. Bollenbach, T.J., Lange, H., Gutierrez, R., Erhardt, M., Stern, D.B. and Gagliardi, D. (2005) RNR1, a 3'-5' exoribonuclease belonging to the RNR superfamily, catalyzes 3' maturation of chloroplast ribosomal RNAs in Arabidopsis thaliana. Nucleic Acids Research, 33, 2751-2763. 18. Sulthana, S. and Deutscher, M.P. (2013) Multiple exoribonucleases catalyze maturation of the 3' terminus of 16S ribosomal RNA (rRNA). The Journal of Biological Chemistry, 288, 12574-12579. 19. Arraiano, C., Matos, R. and Barbas, A. (2010) RNase II: the finer details of the Modus operandi of a molecular killer. RNA Biology., 7, 276-281. 20. Lorentzen, E., Basquin, J., Tomecki, R., Dziembowski, A. and Conti, E. (2008) Structure of the active subunit of the yeast exosome core, Rrp44: diverse modes of substrate recruitment in the RNase II nuclease family. Molecular Cell, 29, 717-728. 21. Mir, S.S., Fiedler, D. and Cashikar, A.G. (2009) Ssd1 is required for thermotolerance and Hsp104-mediated protein disaggregation in Saccharomyces cerevisiae. Molecular and Cellular Biology, 29, 187-200. 22. Robinson, S.R., Oliver, A.W., Chevassut, T.J. and Newbury, S.F. (2015) The 3' to 5' Exoribonuclease DIS3: From Structure and Mechanisms to Biological Functions and Role in Human Disease. Biomolecules, 5, 1515-1539. 23. Tomecki, R., Drazkowska, K., Kucinski, I., Stodus, K., Szczesny, R.J., Gruchota, J., Owczarek, E.P., Kalisiak, K. and Dziembowski, A. (2014) Multiple myeloma-associated hDIS3 mutations cause perturbations in cellular RNA metabolism and suggest hDIS3 PIN domain as a potential drug target. Nucleic Acids Research, 42, 1270-1290. 24. Staals, R.H.J., Bronkhorst, A.W., Schilders, G., Slomovic, S., Schuster, G., Heck, A.J.R., Raijmakers, R. and Pruijn, G.J.M. (2010) Dis3-like 1: a novel exoribonuclease associated with the human exosome. The EMBO Journal, 29, 2358-2367. 25. Pirouz, M., Du, P., Munafò, M. and Gregory, R.I. (2016) Dis3l2-Mediated Decay Is a Quality Control Pathway for Noncoding RNAs. Cell reports, 16, 1861-1873. 26. Chang, H.M., Triboulet, R., Thornton, J.E. and Gregory, R.I. (2013) A role for the Perlman syndrome exonuclease Dis3l2 in the Lin28-let-7 pathway. Nature, 497, 244-248. 27. Faehnle, C.R., Walleshauser, J. and Joshua-Tor, L. (2014) Mechanism of Dis3l2 substrate recognition in the Lin28-let-7 pathway. Nature, 514, 252-256. 28. Labno, A., Warkocki, Z., Kulinski, T., Krawczyk, P.S., Bijata, K., Tomecki, R. and Dziembowski, A. (2016) Perlman syndrome nuclease DIS3L2 controls cytoplasmic non-coding RNAs and provides surveillance pathway for maturing snRNAs. Nucleic Acids Research, 44, 10437-10453. 29. Donovan, W.P. and Kushner, S.R. (1986) Polynucleotide phosphorylase and ribonuclease II are required for cell viability and mRNA turnover in Escherichia coli K-12. Proceedings of the National Academy of Sciences USA, 83, 120-124. 30. Deana, A., Celesnik, H. and Belasco, J.G. (2008) The bacterial enzyme RppH triggers messenger RNA degradation by 5' pyrophosphate removal. Nature, 451, 355-358. 31. Mackie, G.A. (1998) Ribonuclease E is a 5'-end-dependent endonuclease. Nature, 395, 720-723. 32. Court, D.L., Gan, J., Liang, Y.-H., Shaw, G.X., Tropea, J.E., Costantino, N., Waugh, D.S. and Ji, X. (2013) RNase III: Genetics and Function; Structure and Mechanism. Annual Review of Genetics, 47, 405-431. 33. GA, C., X, M., DJ, B. and GA, M. (1999) Reconstitution of a minimal RNA degradosome demonstrates functional coordination between a 3' exonuclease and a DEAD-box RNA helicase. Genes Development., 13, 2594-2603. 34. Awano, N., Rajagopal, V., Arbing, M., Patel, S., Hunt, J., Inouye, M. and Phadtare, S. (2010) Escherichia coli RNase R has dual activities, helicase and RNase. Journal of Bacteriology, 192, 1344-1352. 35. Venkataraman, K., Zafar, H. and Karzai, A.W. (2014) Distinct tmRNA sequence elements facilitate RNase R engagement on rescued ribosomes for selective nonstop mRNA decay. NucleicAacids Research, 42, 11192-11202. 36. Vincent, H.A. and Deutscher, M.P. (2009) The roles of individual domains of RNase R in substrate binding and exoribonuclease activity. The nuclease domain is sufficient for digestion of structured RNA. Journal of Biological Chemistry, 284, 486-494. 37. Matos, R.G., Barbas, A., Gómez-Puertas, P. and Arraiano, C.M. (2011) Swapping the domains of exoribonucleases RNase II and RNase R: Conferring upon RNase II the ability to degrade ds RNA. Proteins: Structure, Function, and Bioinformatics, 79, 1853-1867. 38. Vincent, H.A. and Deutscher, M.P. (2009) Insights into how RNase R degrades structured RNA: analysis of the nuclease domain. Journal of Molecular Biology, 387, 570-583. 39. Lee, G., Bratkowski, M.A., Ding, F., Ke, A. and Ha, T. (2012) Elastic coupling between RNA degradation and unwinding by an exoribonuclease. Science, 336, 1726-1729. 40. Frazao, C., McVey, C.E., Amblar, M., Barbas, A., Vonrhein, C., Arraiano, C.M. and Carrondo, M.A. (2006) Unravelling the dynamics of RNA degradation by ribonuclease II and its RNA-bound complex. Nature, 443, 110-114. 41. Zinder, J.C., Wasmuth, E.V. and Lima, C.D. (2016) Nuclear RNA Exosome at 3.1 Å Reveals Substrate Specificities, RNA Paths, and Allosteric Inhibition of Rrp44/Dis3. Molecular Cell, 64, 734-745. 42. Makino, D.L., Baumgärtner, M. and Conti, E. (2013) Crystal structure of an RNA-bound 11-subunit eukaryotic exosome complex. Nature, 495, 70. 43. Bryksin, A.V. and Matsumura, I. (2010) Overlap extension PCR cloning: a simple and reliable way to create recombinant plasmids. BioTechniques, 48, 463-465. 44. Otwinowski, Z. and Minor, W. (1997) Processing of X-ray diffraction data collected in oscillation mode. Methods in Enzymology, 276, 307-326. 45. Adams, P.D., Grosse-Kunstleve, R.W., Hung, L.-W., Ioerger, T.R., McCoy, A.J., Moriarty, N.W., Read, R.J., Sacchettini, J.C., Sauter, N.K. and Terwilliger, T.C. (2002) PHENIX: building new software for automated crystallographic structure determination. Acta Crystallographica Section D, 58, 1948-1954. 46. Hulme, E.C. and Trevethick, M.A. (2010) Ligand binding assays at equilibrium: validation and interpretation. British Journal of Pharmacology, 161, 1219-1237. 47. Cheng, Z.F. and Deutscher, M.P. (2002) Purification and characterization of the Escherichia coli exoribonuclease RNase R. Comparison with RNase II. Journal of Biological Chemistry, 277, 21624-21629. 48. Matos, Rute G., Barbas, A. and Arraiano, Cecília M. (2009) RNase R mutants elucidate the catalysis of structured RNA: RNA-binding domains select the RNAs targeted for degradation. Biochemical Journal, 423, 291. 49. Hossain, S.T., Malhotra, A. and Deutscher, M.P. (2016) How RNase R Degrades Structured RNA: ROLE OF THE HELICASE ACTIVITY AND THE S1 DOMAIN. The Journal of Biological Chemistry, 291, 7877-7887. 50. Hossain, S.T., Malhotra, A. and Deutscher, M.P. (2015) The Helicase Activity of Ribonuclease R Is Essential for Efficient Nuclease Activity. The Journal of Biological Chemistry, 290, 15697-15706. 51. Smart, O.S., Neduvelil, J.G., Wang, X., Wallace, B.A. and Sansom, M.S.P. (1996) HOLE: A program for the analysis of the pore dimensions of ion channel structural models. Journal of Molecular Graphics, 14, 354-360. 52. Steitz, T.A. and Steitz, J.A. (1993) A general two-metal-ion mechanism for catalytic RNA. Proceedings of the National Academy of Sciences USA, 90. 53. Barbas, A., Matos, R.G., Amblar, M., Lopez-Vinas, E., Gomez-Puertas, P. and Arraiano, C.M. (2008) New insights into the mechanism of RNA degradation by ribonuclease II: identification of the residue responsible for setting the RNase II end product. Journal of Biological Chemistry, 283, 13070-13076. 54. Matos, R.G., Barbas, A. and Arraiano, C.M. (2009) RNase R mutants elucidate the catalysis of structured RNA: RNA-binding domains select the RNAs targeted for degradation. The Biochemical Journal, 423, 291-301. 55. Fazal, F.M., Koslover, D.J., Luisi, B.F. and Block, S.M. (2015) Direct observation of processive exoribonuclease motion using optical tweezers. Proceedings of the National Academy of Sciences USA, 112, 15101-15106. 56. Hardwick, S.W., Gubbey, T., Hug, I., Jenal, U. and Luisi, B.F. (2012) Crystal structure of Caulobacter crescentus polynucleotide phosphorylase reveals a mechanism of RNA substrate channelling and RNA degradosome assembly. Open Biology, 2, 120028-120028. 57. Yang, W. (2011) Nucleases: diversity of structure, function and mechanism. Quarterly Reviews of Biophysics, 44, 1-93. 58. Nguyen, L.H., Erzberger, J.P., Root, J. and Wilson, D.M. (2000) The Human Homolog of Escherichia coli Orn Degrades Small Single-stranded RNA and DNA Oligomers. The Journal of Biological Chemistry, 275, 25900-25906. 59. Zhang, X., Zhu, L. and Deutscher, M.P. (1998) Oligoribonuclease Is Encoded by a Highly Conserved Gene in the 3′-5′ Exonuclease Superfamily. Journal of Bacteriology, 180, 2779. 60. Orr, M.W., Donaldson, G.P., Severin, G.B., Wang, J.X., Sintim, H.O., Waters, C.M. and Lee, V.T. (2015) Oligoribonuclease is the primary degradative enzyme for pGpG in Pseudomonas aeruginosa that is required for cyclic-di-GMP turnover. Proceedings of the National Academy of Sciences USA, 112, E5048-E5057. 61. Hanekamp, T. and Thorsness, P.E. (1999) YNT20, a bypass suppressor of yme1 yme2, encodes a putative 3′-5′ exonuclease localized in mitochondria of Saccharomyces cerevisiae. Current Genetics, 34, 438-448. 62. Van Hoof, A., Lennertz, P. and Parker, R. (2000) Three conserved members of the RNase D family have unique and overlapping functions in the processing of 5S, 5.8S, U4, U5, RNase MRP and RNase P RNAs in yeast. The EMBO Journal, 19, 1357. 63. Chin, K.H., Yang, C.Y., Chou, C.C., Wang, A.H. and Chou, S.H. (2006) The crystal structure of XC847 from Xanthomonas campestris: a 3'-5' oligoribonuclease of DnaQ fold family with a novel opposingly shifted helix. Proteins, 65, 1036-1040. 64. Franklin, M.C., Cheung, J., Rudolph, M.J., Burshteyn, F., Cassidy, M., Gary, E., Hillerich, B., Yao, Z.K., Carlier, P.R., Totrov, M. et al. (2015) Structural genomics for drug design against the pathogen Coxiella burnetii. Proteins, 83, 2124-2136. 65. Lee, C.W., Park, S.-H., Jeong, C.-S., Cha, S.-S., Park, H. and Lee, J.H. (2019) Structural basis of small RNA hydrolysis by oligoribonuclease (CpsORN) from Colwellia psychrerythraea strain 34H. Scientific Reports, 9, 2649. 66. Fiedler, T.J., Vincent, H.A., Zuo, Y., Gavrialov, O. and Malhotra, A. (2004) Purification and crystallization of Escherichia coli oligoribonuclease. Acta Crystallographica Section D, 60, 736-739. 67. Hsiao, Y.-Y., Duh, Y., Chen, Y.-P., Wang, Y.-T. and Yuan, H.S. (2012) How an exonuclease decides where to stop in trimming of nucleic acids: crystal structures of RNase T-product complexes. Nucleic Acids Research, 40, 8144-8154. 68. Hsiao, Y.-Y., Fang, W.-H., Lee, C.-C., Chen, Y.-P. and Yuan, H.S. (2014) Structural insights into DNA repair by RNase T--an exonuclease processing 3' end of structured DNA in repair pathways. PLoS Biology, 12, e1001803-e1001803. 69. Hsiao, Y.-Y., Yang, C.-C., Lin, C.L., Lin, J.L.J., Duh, Y. and Yuan, H.S. (2011) Structural basis for RNA trimming by RNase T in stable RNA 3′-end maturation. Nature Chemical Biology, 7, 236. 70. Ito, S., Kita, K., Zhal, L., Wano, C., Suzuki, T., Yamaura, A. and Suzuki, N. (2007) Involvement of Human Small Fragment Nuclease in the Resistance of Human Cells to UV-C-induced Cell Death. Photochemistry and Photobiology, 80, 281-285. 71. Lin, J.L.J., Wu, C.-C., Yang, W.-Z. and Yuan, H.S. (2016) Crystal structure of endonuclease G in complex with DNA reveals how it nonspecifically degrades DNA as a homodimer. Nucleic Acids Research, 44, 10480-10490. 72. Lin, J.L.J., Nakagawa, A., Skeen-Gaar, R., Yang, W.-Z., Zhao, P., Zhang, Z., Ge, X., Mitani, S., Xue, D. and Yuan, H.S. (2016) Oxidative Stress Impairs Cell Death by Repressing the Nuclease Activity of Mitochondrial Endonuclease G. Cell Reports, 16, 279-287. 73. Liu, P., Huang, J., Zheng, Q., Xie, L., Lu, X., Jin, J. and Wang, G. (2017) Mammalian mitochondrial RNAs are degraded in the mitochondrial intermembrane space by RNASET2. Protein & Cell, 8, 735-749.
|