帳號:guest(3.137.177.164)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):朱利亞
作者(外文):Chu, Lee-Ya
論文名稱(中文):降解RNA之核酸外切酶的結構與功能研究
論文名稱(外文):Structural insights into 3′-to-5′ exoribonucleases in RNA turnover
指導教授(中文):袁小琀
呂平江
指導教授(外文):Yuan, Hanna S.
Lyu, Ping-Chiang
口試委員(中文):蘇士哲
殷献生
蕭傳鐙
蕭育源
口試委員(外文):Sue, Shih-Che
Yin, Hsien-Sheng
Hsiao, Chwan-Deng
Hsiao, Yu-Yuan
學位類別:博士
校院名稱:國立清華大學
系所名稱:生物資訊與結構生物研究所
學號:103080862
出版年(民國):108
畢業學年度:107
語文別:英文
論文頁數:75
中文關鍵詞:RNA降解核酸外切酶蛋白質結構
外文關鍵詞:RNA turnoverexoribonucleasecrystal structure
相關次數:
  • 推薦推薦:0
  • 點閱點閱:294
  • 評分評分:*****
  • 下載下載:7
  • 收藏收藏:0
細胞中的RNA降解,是調控蛋白質表現與RNA品質管制的重要機制。許多參與RNA降解的核酸水解酶在不同物種間有高度的保守性。探討這些核酸水解酶參與RNA降解的分子機制,可以讓我們更深入了解這些核酸水解酶,如何可以降解特定不同長度和結構的RNA,以及它們的為何會喪失活性而導致各種疾病。本研究探討兩個參與RNA降解的核酸水解外切酶,分別為大腸桿菌的RNase R (Section 1) 與人類的Rexo2 (Section 2) 。
RNase R為RNase II蛋白質家族的一員,可以降解單股RNA,以及帶有三端懸垂的雙股RNA。我們解析了大腸桿菌RNase R (87-725胺基酸區間) 的蛋白質晶體結構,解析度為1.85 Å。藉由比較RNase R與其同源的其他蛋白結構,我們發現一個位於RNB活性域的"錐子"區域,由三個α螺旋所構成,可能參與RNA解旋。我們製作了"錐子"區域的置換與移除的突變蛋白酶,我們發現這些突變會使RNase R喪失其解旋雙股RNA的能力,但不影響水解單股RNA的能力。根據我們的實驗結果,我們提出RNase R解旋與降解具有二級結構RNA的分子機制,解釋了這個外切酶如何經由其RNB區來移除RNA三端的核甘酸,並同時利用其錐子區來解開雙股RNA,達成降解雙股RNA的功效。
Rexo2為人類粒線體中的蛋白,屬於DEDDh蛋白家族的一員,同樣在不同物種間具有高度保守性。Rexo2具有分解小片段RNA (<5個寡核甘酸)的活性,我們的實驗結果顯示Rexo2可降解小片段RNA與DNA,對小片段RNA具有最高度的降解活性。同時,我們解析了三個解析度為1.8-2.2 Å 的Rexo2與單股RNA或是DNA結合的晶體結構。結構顯示,Rexo2主要與RNA和DNA的三端末兩個鹼基,透過π-π作用結合,故而解釋了為何Rexo2對小片段RNA具有有較高的降解活性。此研究並提出了Rexo2如何將小片段RNA降解成單核甘酸的分子機制,提供了Rexo2參與細胞RNA回收機制的重要資訊。綜合以上的研究,本篇論文探討了兩個參與RNA降解的核酸水解外切酶,他們獨特的RNA辨識與降解的分子機制。透過這些核酸水解酶作用於不同片段、不同結構的RNA,細胞得以有效率地進行RNA降解的程序。
RNA turnover pathways play key roles in protein expression regulation and RNA quality control. Many ribonucleases participating in the RNA turnover pathways are conserved among different species in all kingdoms of life. Understanding the molecular mechanisms of these ribonucleases could allow us to gain a better understanding of how the RNAs with various lengths and structures are degraded, and how the defects of these ribonucleases could lead to human diseases. This study focuses on two 3ʹ-to-5ʹ exoribonucleases, bacterial RNase R and human RNA exoribonuclease 2 (Rexo2), that target to different types of RNA and are involved in RNA turnover in E. coli and human mitochondria, respectively.
RNase R belongs to the RNase II protein family, capable of degrading single-stranded and double-stranded RNA with a 3ʹ overhang. We reported the first crystal structure of E. coli RNase R (residues 87-725) at a resolution of 1.85 Å. By comparing the structure with its homologs, we suggested a “wedge” region in the RNB domain that could participate in duplex RNA unwinding. We also generated RNase R mutants by truncating or replacing the tri-helix wedge region, and these mutants completely lost the RNA unwinding activity but with retained exoribonuclease activity for degrading single-stranded RNA. A model was proposed based on our results suggesting how RNase R binds and unwinds RNA by the wedge region and cleaves RNA by the RNB domain in a highly processive manner to coordinate its activity in degrading structural RNA with a 3ʹ overhang.
Rexo2 is an evolutionarily conserved 3ʹ-to-5ʹ DEDDh-family exonuclease in human mitochondria, but in contrast to RNase R, it primarily degrades RNA of less than five nucleotides (nanoRNA). Here, we show that Rexo2 preferentially binds and degrades both small RNA and DNA oligonucleotides in the presence of Mg2+ ions, but it has the highest degrading activity for nanoRNA. We also reported three crystal structures of Rexo2 in complex with single-stranded RNA and DNA at the resolutions of 1.8-2.2 Å. Our structures show that Rexo2 binds mainly with the last two 3ʹ-end nucleobases of substrates by hydrophobic and π-π stacking interactions, explaining its preference in binding and degrading small oligonucleotides. Our results thus explain how Rexo2 degrades small RNA into nucleoside monophosphates and play an important role in RNA salvage pathways in human mitochondria. Altogether this thesis reveals the distinct RNA recognition and degrading mechanisms for two typical 3ʹ-to-5ʹ exoribonucleases, RNase R and Rexo2, in RNA turnover. Bulk mRNAs are thus degraded efficiently by the cooperative efforts of various ribonucleases in prokaryotes and eukaryotes.
摘要....................2
Abstract....................3
Chapter 1 RNA decay pathways in bacteria and human mitochondria....................8
RNA decay pathways in bacteria....................8
RNA decay pathways in human mitochondria....................8
Chapter 2 Structural basis of RNA unwinding and degradation by RNase R....................10
RNase R is a conserved exoribonuclease in the RNase II protein family....................10
RNase R is a unique 3′-to-5′ exoribonuclease possessing both RNA unwinding and degrading activities....................10
RNase R plays an important role in cell growth and survival in E. coli....................11
RNase R unwinds RNA duplex by thermal breathing of the substrate during degradation and translocation....................11
Materials and methods....................13
Expression vector construction....................13
Protein expression and purification....................14
Crystallization and structure determination....................14
RNase activity assays....................15
RNA binding by fluorescence polarization assays....................16
Helicase assay....................16
Results....................17
RNase R degrades duplex RNA with a 3' overhang....................17
Crystal structure of RNase R ΔHTH-K....................18
Two RNA-binding channels were found in RNase R....................19
Hydrolysis mechanism of RNase R....................20
The tri-helix region in the RNB domain is the “wedge” for RNA unwinding....................21
Discussion....................22
Two open RNA-binding channels are identified in the apo-RNase R structure....................22
A tri-helix wedge region in the RNB domain is important in RNA unwinding....................23
Two RNA unwinding and degradation models for RNase R....................24
Chapter 3 Structural insights into nanoRNA degradation by human Rexo2....................25
Rexo2 is a DEDDh-family 3ʹ-to-5ʹ exoribonuclease in mitochondria....................25
Rexo2 degrades nanoRNAs of less than five nucleotides....................26
Materials and Methods....................27
Cloning, protein expression and purification....................27
RNA and DNA degradation assays....................28
RNA and DNA binding assays....................28
Crystallization and structural determination....................29
Results....................30
Rexo2 preferentially binds and degrades small RNAs into mononucleotides....................30
Crystal structures of Rexo2-RNA and Rexo2-DNA complexes....................32
Rexo2 interacts with the 3ʹ-end di-nucleotide bases by π-π stacking interactions....................34
Two-Mg-ion catalytic mechanism of Rexo2....................34
Discussion....................35
Rexo2 plays an essential role in RNA metabolism in mitochondria....................35
Rexo2 plays an important role in ribonucleotide salvage in human mitochondria....................36
Role of Rexo2 in deoryribonucleotide salvage pathway....................37
Conclusion....................38
Tables....................39
Table 1. X-ray data collection and crystal structure refinement statistics for RNase R mutant ∆HTH-K.....................39
Table 2. X-ray data collection and crystal structure refinement statistics for Rexo2-RNA and Rexo2-DNA complexes.....................40
Figures....................41
References....................67

1. Richards, J., Sundermeier, T., Svetlanov, A. and Karzai, A.W. (2008) Quality control of bacterial mRNA decoding and decay. Biochimica et Biophysica Acta, 1779, 574-582.
2. Silva, I.J., Saramago, M., Dressaire, C., Domingues, S., Viegas, S.C. and Arraiano, C.M. (2011) Importance and key events of prokaryotic RNA decay: the ultimate fate of an RNA molecule. Wiley Interdisciplinary Reviews: RNA, 2, 818-836.
3. Celesnik, H., Deana, A. and Belasco, J.G. (2007) Initiation of RNA Decay in Escherichia coli by 5′ Pyrophosphate Removal. Molecular Cell, 27, 79-90.
4. Mackie, G.A. (1998) Ribonuclease E is a 5′-end-dependent endonuclease. Nature, 395, 720-724.
5. Coburn, G.A., Miao, X., Briant, D.J. and Mackie, G.A. (1999) Reconstitution of a minimal RNA degradosome demonstrates functional coordination between a 3' exonuclease and a DEAD-box RNA helicase. Genes & Development, 13, 2594-2603.
6. Ghosh, S. and Deutscher, M.P. (1999) Oligoribonuclease is an essential component of the mRNA decay pathway. Proceedings of the National Academy of Sciences USA, 96, 4372.
7. Moraes, K.C.M. (2010) RNA surveillance: molecular approaches in transcript quality control and their implications in clinical diseases. Mol Med, 16, 53-68.
8. Rorbach, J. and Minczuk, M. (2012) The post-transcriptional life of mammalian mitochondrial RNA. The Biochemical Journal, 444, 357.
9. Minczuk, M., Piwowarski, J., Papworth, M.A., Awiszus, K., Schalinski, S., Dziembowski, A., Dmochowska, A., Bartnik, E., Tokatlidis, K., Stepien, P.P. et al. (2002) Localisation of the human hSuv3p helicase in the mitochondrial matrix and its preferential unwinding of dsDNA. Nucleic Acids Research, 30, 5074-5086.
10. Wang, D.D.-H., Shu, Z., Lieser, S.A., Chen, P.-L. and Lee, W.-H. (2009) Human mitochondrial SUV3 and polynucleotide phosphorylase form a 330-kDa heteropentamer to cooperatively degrade double-stranded RNA with a 3'-to-5' directionality. The Journal of Biological Chemistry, 284, 20812-20821.
11. Goldman, Seth R., Sharp, Josh S., Vvedenskaya, Irina O., Livny, J., Dove, Simon L. and Nickels, Bryce E. (2011) NanoRNAs Prime Transcription Initiation In Vivo. Molecular cell, 42, 817-825.
12. Bruni, F., Gramegna, P., Oliveira, J.M.A., Lightowlers, R.N. and Chrzanowska-Lightowlers, Z.M.A. (2013) REXO2 Is an Oligoribonuclease active in human mitochondria. PLoS ONE, 8, e64670.
13. Reis, F.P., Pobre, V., Silva, I.J., Malecki, M. and Arraiano, C.M. (2013) The RNase II/RNB family of exoribonucleases: putting the 'Dis' in disease. Wiley interdisciplinary reviews. RNA, 4, 607-615.
14. Cheng, Z., Zuo, Y., Li, Z., Rudd, K. and Deutscher, M. (1998) The vacB Gene Required for Virulence in Shigella flexneri and Escherichia coli Encodes the Exoribonuclease RNase R. The Journal of Biological Chemistry., 273, 14077-14080.
15. Lalonde, M.S., Zuo, Y., Zhang, J., Gong, X., Wu, S., Malhotra, A. and Li, Z. (2007) Exoribonuclease R in Mycoplasma genitalium can carry out both RNA processing and degradative functions and is sensitive to RNA ribose methylation. RNA, 13, 1957-1968.
16. Cheng, Z.F. and Deutscher, M.P. (2005) An important role for RNase R in mRNA decay. Molecular Cell, 17, 313-318.
17. Bollenbach, T.J., Lange, H., Gutierrez, R., Erhardt, M., Stern, D.B. and Gagliardi, D. (2005) RNR1, a 3'-5' exoribonuclease belonging to the RNR superfamily, catalyzes 3' maturation of chloroplast ribosomal RNAs in Arabidopsis thaliana. Nucleic Acids Research, 33, 2751-2763.
18. Sulthana, S. and Deutscher, M.P. (2013) Multiple exoribonucleases catalyze maturation of the 3' terminus of 16S ribosomal RNA (rRNA). The Journal of Biological Chemistry, 288, 12574-12579.
19. Arraiano, C., Matos, R. and Barbas, A. (2010) RNase II: the finer details of the Modus operandi of a molecular killer. RNA Biology., 7, 276-281.
20. Lorentzen, E., Basquin, J., Tomecki, R., Dziembowski, A. and Conti, E. (2008) Structure of the active subunit of the yeast exosome core, Rrp44: diverse modes of substrate recruitment in the RNase II nuclease family. Molecular Cell, 29, 717-728.
21. Mir, S.S., Fiedler, D. and Cashikar, A.G. (2009) Ssd1 is required for thermotolerance and Hsp104-mediated protein disaggregation in Saccharomyces cerevisiae. Molecular and Cellular Biology, 29, 187-200.
22. Robinson, S.R., Oliver, A.W., Chevassut, T.J. and Newbury, S.F. (2015) The 3' to 5' Exoribonuclease DIS3: From Structure and Mechanisms to Biological Functions and Role in Human Disease. Biomolecules, 5, 1515-1539.
23. Tomecki, R., Drazkowska, K., Kucinski, I., Stodus, K., Szczesny, R.J., Gruchota, J., Owczarek, E.P., Kalisiak, K. and Dziembowski, A. (2014) Multiple myeloma-associated hDIS3 mutations cause perturbations in cellular RNA metabolism and suggest hDIS3 PIN domain as a potential drug target. Nucleic Acids Research, 42, 1270-1290.
24. Staals, R.H.J., Bronkhorst, A.W., Schilders, G., Slomovic, S., Schuster, G., Heck, A.J.R., Raijmakers, R. and Pruijn, G.J.M. (2010) Dis3-like 1: a novel exoribonuclease associated with the human exosome. The EMBO Journal, 29, 2358-2367.
25. Pirouz, M., Du, P., Munafò, M. and Gregory, R.I. (2016) Dis3l2-Mediated Decay Is a Quality Control Pathway for Noncoding RNAs. Cell reports, 16, 1861-1873.
26. Chang, H.M., Triboulet, R., Thornton, J.E. and Gregory, R.I. (2013) A role for the Perlman syndrome exonuclease Dis3l2 in the Lin28-let-7 pathway. Nature, 497, 244-248.
27. Faehnle, C.R., Walleshauser, J. and Joshua-Tor, L. (2014) Mechanism of Dis3l2 substrate recognition in the Lin28-let-7 pathway. Nature, 514, 252-256.
28. Labno, A., Warkocki, Z., Kulinski, T., Krawczyk, P.S., Bijata, K., Tomecki, R. and Dziembowski, A. (2016) Perlman syndrome nuclease DIS3L2 controls cytoplasmic non-coding RNAs and provides surveillance pathway for maturing snRNAs. Nucleic Acids Research, 44, 10437-10453.
29. Donovan, W.P. and Kushner, S.R. (1986) Polynucleotide phosphorylase and ribonuclease II are required for cell viability and mRNA turnover in Escherichia coli K-12. Proceedings of the National Academy of Sciences USA, 83, 120-124.
30. Deana, A., Celesnik, H. and Belasco, J.G. (2008) The bacterial enzyme RppH triggers messenger RNA degradation by 5' pyrophosphate removal. Nature, 451, 355-358.
31. Mackie, G.A. (1998) Ribonuclease E is a 5'-end-dependent endonuclease. Nature, 395, 720-723.
32. Court, D.L., Gan, J., Liang, Y.-H., Shaw, G.X., Tropea, J.E., Costantino, N., Waugh, D.S. and Ji, X. (2013) RNase III: Genetics and Function; Structure and Mechanism. Annual Review of Genetics, 47, 405-431.
33. GA, C., X, M., DJ, B. and GA, M. (1999) Reconstitution of a minimal RNA degradosome demonstrates functional coordination between a 3' exonuclease and a DEAD-box RNA helicase. Genes Development., 13, 2594-2603.
34. Awano, N., Rajagopal, V., Arbing, M., Patel, S., Hunt, J., Inouye, M. and Phadtare, S. (2010) Escherichia coli RNase R has dual activities, helicase and RNase. Journal of Bacteriology, 192, 1344-1352.
35. Venkataraman, K., Zafar, H. and Karzai, A.W. (2014) Distinct tmRNA sequence elements facilitate RNase R engagement on rescued ribosomes for selective nonstop mRNA decay. NucleicAacids Research, 42, 11192-11202.
36. Vincent, H.A. and Deutscher, M.P. (2009) The roles of individual domains of RNase R in substrate binding and exoribonuclease activity. The nuclease domain is sufficient for digestion of structured RNA. Journal of Biological Chemistry, 284, 486-494.
37. Matos, R.G., Barbas, A., Gómez-Puertas, P. and Arraiano, C.M. (2011) Swapping the domains of exoribonucleases RNase II and RNase R: Conferring upon RNase II the ability to degrade ds RNA. Proteins: Structure, Function, and Bioinformatics, 79, 1853-1867.
38. Vincent, H.A. and Deutscher, M.P. (2009) Insights into how RNase R degrades structured RNA: analysis of the nuclease domain. Journal of Molecular Biology, 387, 570-583.
39. Lee, G., Bratkowski, M.A., Ding, F., Ke, A. and Ha, T. (2012) Elastic coupling between RNA degradation and unwinding by an exoribonuclease. Science, 336, 1726-1729.
40. Frazao, C., McVey, C.E., Amblar, M., Barbas, A., Vonrhein, C., Arraiano, C.M. and Carrondo, M.A. (2006) Unravelling the dynamics of RNA degradation by ribonuclease II and its RNA-bound complex. Nature, 443, 110-114.
41. Zinder, J.C., Wasmuth, E.V. and Lima, C.D. (2016) Nuclear RNA Exosome at 3.1 Å Reveals Substrate Specificities, RNA Paths, and Allosteric Inhibition of Rrp44/Dis3. Molecular Cell, 64, 734-745.
42. Makino, D.L., Baumgärtner, M. and Conti, E. (2013) Crystal structure of an RNA-bound 11-subunit eukaryotic exosome complex. Nature, 495, 70.
43. Bryksin, A.V. and Matsumura, I. (2010) Overlap extension PCR cloning: a simple and reliable way to create recombinant plasmids. BioTechniques, 48, 463-465.
44. Otwinowski, Z. and Minor, W. (1997) Processing of X-ray diffraction data collected in oscillation mode. Methods in Enzymology, 276, 307-326.
45. Adams, P.D., Grosse-Kunstleve, R.W., Hung, L.-W., Ioerger, T.R., McCoy, A.J., Moriarty, N.W., Read, R.J., Sacchettini, J.C., Sauter, N.K. and Terwilliger, T.C. (2002) PHENIX: building new software for automated crystallographic structure determination. Acta Crystallographica Section D, 58, 1948-1954.
46. Hulme, E.C. and Trevethick, M.A. (2010) Ligand binding assays at equilibrium: validation and interpretation. British Journal of Pharmacology, 161, 1219-1237.
47. Cheng, Z.F. and Deutscher, M.P. (2002) Purification and characterization of the Escherichia coli exoribonuclease RNase R. Comparison with RNase II. Journal of Biological Chemistry, 277, 21624-21629.
48. Matos, Rute G., Barbas, A. and Arraiano, Cecília M. (2009) RNase R mutants elucidate the catalysis of structured RNA: RNA-binding domains select the RNAs targeted for degradation. Biochemical Journal, 423, 291.
49. Hossain, S.T., Malhotra, A. and Deutscher, M.P. (2016) How RNase R Degrades Structured RNA: ROLE OF THE HELICASE ACTIVITY AND THE S1 DOMAIN. The Journal of Biological Chemistry, 291, 7877-7887.
50. Hossain, S.T., Malhotra, A. and Deutscher, M.P. (2015) The Helicase Activity of Ribonuclease R Is Essential for Efficient Nuclease Activity. The Journal of Biological Chemistry, 290, 15697-15706.
51. Smart, O.S., Neduvelil, J.G., Wang, X., Wallace, B.A. and Sansom, M.S.P. (1996) HOLE: A program for the analysis of the pore dimensions of ion channel structural models. Journal of Molecular Graphics, 14, 354-360.
52. Steitz, T.A. and Steitz, J.A. (1993) A general two-metal-ion mechanism for catalytic RNA. Proceedings of the National Academy of Sciences USA, 90.
53. Barbas, A., Matos, R.G., Amblar, M., Lopez-Vinas, E., Gomez-Puertas, P. and Arraiano, C.M. (2008) New insights into the mechanism of RNA degradation by ribonuclease II: identification of the residue responsible for setting the RNase II end product. Journal of Biological Chemistry, 283, 13070-13076.
54. Matos, R.G., Barbas, A. and Arraiano, C.M. (2009) RNase R mutants elucidate the catalysis of structured RNA: RNA-binding domains select the RNAs targeted for degradation. The Biochemical Journal, 423, 291-301.
55. Fazal, F.M., Koslover, D.J., Luisi, B.F. and Block, S.M. (2015) Direct observation of processive exoribonuclease motion using optical tweezers. Proceedings of the National Academy of Sciences USA, 112, 15101-15106.
56. Hardwick, S.W., Gubbey, T., Hug, I., Jenal, U. and Luisi, B.F. (2012) Crystal structure of Caulobacter crescentus polynucleotide phosphorylase reveals a mechanism of RNA substrate channelling and RNA degradosome assembly. Open Biology, 2, 120028-120028.
57. Yang, W. (2011) Nucleases: diversity of structure, function and mechanism. Quarterly Reviews of Biophysics, 44, 1-93.
58. Nguyen, L.H., Erzberger, J.P., Root, J. and Wilson, D.M. (2000) The Human Homolog of Escherichia coli Orn Degrades Small Single-stranded RNA and DNA Oligomers. The Journal of Biological Chemistry, 275, 25900-25906.
59. Zhang, X., Zhu, L. and Deutscher, M.P. (1998) Oligoribonuclease Is Encoded by a Highly Conserved Gene in the 3′-5′ Exonuclease Superfamily. Journal of Bacteriology, 180, 2779.
60. Orr, M.W., Donaldson, G.P., Severin, G.B., Wang, J.X., Sintim, H.O., Waters, C.M. and Lee, V.T. (2015) Oligoribonuclease is the primary degradative enzyme for pGpG in Pseudomonas aeruginosa that is required for cyclic-di-GMP turnover. Proceedings of the National Academy of Sciences USA, 112, E5048-E5057.
61. Hanekamp, T. and Thorsness, P.E. (1999) YNT20, a bypass suppressor of yme1 yme2, encodes a putative 3′-5′ exonuclease localized in mitochondria of Saccharomyces cerevisiae. Current Genetics, 34, 438-448.
62. Van Hoof, A., Lennertz, P. and Parker, R. (2000) Three conserved members of the RNase D family have unique and overlapping functions in the processing of 5S, 5.8S, U4, U5, RNase MRP and RNase P RNAs in yeast. The EMBO Journal, 19, 1357.
63. Chin, K.H., Yang, C.Y., Chou, C.C., Wang, A.H. and Chou, S.H. (2006) The crystal structure of XC847 from Xanthomonas campestris: a 3'-5' oligoribonuclease of DnaQ fold family with a novel opposingly shifted helix. Proteins, 65, 1036-1040.
64. Franklin, M.C., Cheung, J., Rudolph, M.J., Burshteyn, F., Cassidy, M., Gary, E., Hillerich, B., Yao, Z.K., Carlier, P.R., Totrov, M. et al. (2015) Structural genomics for drug design against the pathogen Coxiella burnetii. Proteins, 83, 2124-2136.
65. Lee, C.W., Park, S.-H., Jeong, C.-S., Cha, S.-S., Park, H. and Lee, J.H. (2019) Structural basis of small RNA hydrolysis by oligoribonuclease (CpsORN) from Colwellia psychrerythraea strain 34H. Scientific Reports, 9, 2649.
66. Fiedler, T.J., Vincent, H.A., Zuo, Y., Gavrialov, O. and Malhotra, A. (2004) Purification and crystallization of Escherichia coli oligoribonuclease. Acta Crystallographica Section D, 60, 736-739.
67. Hsiao, Y.-Y., Duh, Y., Chen, Y.-P., Wang, Y.-T. and Yuan, H.S. (2012) How an exonuclease decides where to stop in trimming of nucleic acids: crystal structures of RNase T-product complexes. Nucleic Acids Research, 40, 8144-8154.
68. Hsiao, Y.-Y., Fang, W.-H., Lee, C.-C., Chen, Y.-P. and Yuan, H.S. (2014) Structural insights into DNA repair by RNase T--an exonuclease processing 3' end of structured DNA in repair pathways. PLoS Biology, 12, e1001803-e1001803.
69. Hsiao, Y.-Y., Yang, C.-C., Lin, C.L., Lin, J.L.J., Duh, Y. and Yuan, H.S. (2011) Structural basis for RNA trimming by RNase T in stable RNA 3′-end maturation. Nature Chemical Biology, 7, 236.
70. Ito, S., Kita, K., Zhal, L., Wano, C., Suzuki, T., Yamaura, A. and Suzuki, N. (2007) Involvement of Human Small Fragment Nuclease in the Resistance of Human Cells to UV-C-induced Cell Death. Photochemistry and Photobiology, 80, 281-285.
71. Lin, J.L.J., Wu, C.-C., Yang, W.-Z. and Yuan, H.S. (2016) Crystal structure of endonuclease G in complex with DNA reveals how it nonspecifically degrades DNA as a homodimer. Nucleic Acids Research, 44, 10480-10490.
72. Lin, J.L.J., Nakagawa, A., Skeen-Gaar, R., Yang, W.-Z., Zhao, P., Zhang, Z., Ge, X., Mitani, S., Xue, D. and Yuan, H.S. (2016) Oxidative Stress Impairs Cell Death by Repressing the Nuclease Activity of Mitochondrial Endonuclease G. Cell Reports, 16, 279-287.
73. Liu, P., Huang, J., Zheng, Q., Xie, L., Lu, X., Jin, J. and Wang, G. (2017) Mammalian mitochondrial RNAs are degraded in the mitochondrial intermembrane space by RNASET2. Protein & Cell, 8, 735-749.
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *