帳號:guest(18.225.55.210)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):劉君浩
作者(外文):Liu, Chun-Hao
論文名稱(中文):膜脂質成分對HIV-1 Vpr蛋白與膜之間交互作用的影響
論文名稱(外文):The effect of lipid composition on the interaction between HIV-1 viral protein R (Vpr) and membrane
指導教授(中文):余慈顏
蘇士哲
指導教授(外文):Yu, Tsyr-Yan
Sue, Shih-Che
口試委員(中文):李賢明
黃介嶸
徐駿森
李以仁
口試委員(外文):Lee, Hsien-Ming
Huang, Jie-Rong
Hsu, Chun-Hua
Lee, I-Ren
學位類別:博士
校院名稱:國立清華大學
系所名稱:生物資訊與結構生物研究所
學號:103080861
出版年(民國):111
畢業學年度:110
語文別:英文
論文頁數:163
中文關鍵詞:人類免疫缺乏病毒1後天免疫缺乏症候群病毒蛋白R脂質成分石墨烯場效電晶體核磁共振鈣黃綠素釋出電壓依賴性陰離子選擇性通道膽固醇旋轉回聲雙共振膜蛋白
外文關鍵詞:HIV-1AIDSVprmembranelipid compositionG-FETNMRcalcein releaseVDACcholesterolREDORmembrane protein
相關次數:
  • 推薦推薦:0
  • 點閱點閱:194
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
Vpr蛋白在人類免疫缺乏病毒1的生命週期中扮演多重角色,例如,Vpr能夠協助預嵌入複合體(pre-integration complex)穿過核膜進入細胞核、反式激活長末端重複(long-terminal repeat)所調節的基因、誘發細胞凋亡以及引發細胞週期停滯於G2期,而這些角色使病毒對細胞的毒性及影響加劇。另外,研究指出Vpr能夠和膜脂質作用,例如,Vpr能在膜上形成陽離子選擇通道、促使膜的通透性增加,並且能有效的將DNA從膜外送入細胞。然而,我們並不清楚Vpr與膜作用的機制為何,以及此作用會受到哪些因素的影響。在過去,為了大量生產Vpr以研究其結構及特性,藉由大腸桿菌表達重組蛋白的方式,因受到細菌停滯效應的影響,產量並不理想。因此在之前的蛋白質結構研究中,主要藉由化學合成的方式製造蛋白質,並因受限其溶解度,結構是在極端的有機溶劑中鑑定。
在此研究中,我們設計了一個利用大腸桿菌表現His-tagged GB1-fused Vpr蛋白的新穎載體,顯著地提升了蛋白質的產量。藉由細菌在攝氏18度、自訂的培養基(defined growth medium)中所產出高達每升10毫克的蛋白質產量,使後續對Vpr的生物化學及生物物理性質的系統性鑑定更加容易。為了更深入了解Vpr與膜之間的作用,我們分析了Vpr在許多不同類膜構造中的整體二級結構,包括在脂疊(bicelle)、微脂體(liposome) 以及利用十二烷基膽鹼(dodecylphosphorylcholine)界面活性劑來形成的微胞(micelle)。另外,在鈣黃綠素釋出實驗與共組裝奈米圓盤實驗中,我們發現Vpr與膜之間的交互作用在含有1,2-dioleoyl-sn-glycero-3-phospho-(1'-rac-glycerol)(DOPG)脂質的情況勝於只含有1,2-dioleoyl-sn-glycero-3-phosphocholine(DOPC)脂質。為了量化Vpr和膜之間的結合強度,我們更進一步的利用石墨烯場效電晶體(graphene based field effect transistor)生物感測器,測得Vpr和含有DOPG的膜之間的解離常數為9.6 ± 2.1 μM。而Vpr與只有DOPC的膜之間的作用,無法量測到顯著的變化,證明Vpr與DOPC之間的作用相對微弱。
在過去,Vpr促使細胞凋亡的現象被認為是來自於Vpr和電壓依賴性陰離子選擇性通道(voltage-dependent anion channel)之間的交互作用,為了更加了解他們的作用強度,我們利用上述生物感測器來定量。當人類電壓依賴性陰離子選擇性通道1(hVDAC-1)置於只含有DOPC脂質的膜時,我們量測到Vpr和hVDAC-1之間的解離常數為5.1 ± 0.9 μM,為其他鑑定提供了參考依據。
在細胞膜中膽固醇是脂筏的主要成分,在HIV-1的生命週期,特別是病毒組裝及出芽的過程中,扮演重要的角色。因此,我們希望進一步探討膽固醇對Vpr和膜之間的影響。首先,在鈣黃綠素釋放實驗中,發現膜的通透性會隨著膽固醇濃度增加而減少。另外,我們還使用了固態核磁共振來得知Vpr在蛋白微脂體(proteoliposome)中局部區域的化學環境。在交叉極化(cross polarization)魔術角旋轉(magic angle spinning)核磁共振的訊號中,我們發現碳13呈現出較寬的化學位移分布,表示Vpr在蛋白微脂體中感受到多樣的化學環境。在碳{磷}的旋轉回聲雙共振(rotational-echo double-resonance)實驗中,我們發現兩種不同退相特徵(dephasing feature)的共振訊號,分別對應於Vpr上的半胱胺酸跟脂質上的磷酸基之間不同的距離。儘管我們並沒有足夠證據顯示膽固醇會直接作用於Vpr,或是改變其結構,但是膽固醇的存在確實改變了Vpr在不同化學環境的分布,這顯示出Vpr跟膜之間的作用確實會受到膽固醇的調控。
此篇研究顯示,對於Vpr和膜之間的作用,膜脂質的成分是一個重要的影響因素。我們相信,藉由更深入的了解Vpr的功能以及所扮演的角色,有助於對後天免疫缺乏症候群提供新的治療方法。
Vpr protein plays multiple roles in the human immunodeficiency virus type 1 (HIV-1) life cycle, such as assisting the nuclear import of pre-integration complex (PIC), transactivating the long-terminal repeat (LTR) directed gene expression, inducing the apoptosis and triggering the G2 cell cycle arrest, which exacerbate virulence and cell toxicity. Moreover, Vpr can interact with the membrane to form a cation-selective channel, increase membrane permeability and efficiently transfect cells with associated DNA. However, how Vpr interacts with the membrane and what factors affect the interaction remain unclear. Hampered by the bacteriostatic effect leading to the low yield of the recombinant protein by E. coli expression, only synthesized proteins and peptide fragments in the extreme conditions have been used for structural studies.
In this work, we designed a novel E. coli expression construct encoding His-tagged GB1-fused Vpr, giving significant improvement in yield. Up to ~10 mg/L of protein production expressed by the cells at 18°C in a defined growth medium, offered an opportunity to systematically characterize the biochemical and biophysical properties of Vpr. To gain insight into the role of interaction between Vpr and membrane, we have analyzed the global secondary structure of Vpr in various membrane mimics, including dodecylphosphorylcholine (DPC) detergent micelles, bicelles and liposomes. In addition, we have demonstrated the effect of lipid composition on the Vpr-membrane interaction using calcein release assay and nanodisc co-assembly assay. The interaction between Vpr and the membrane containing 1,2-dioleoyl-sn-glycero-3-phospho-(1'-rac-glycerol) (DOPG) was found to be much stronger than the interaction between Vpr and the membrane containing solely 1,2-dioleoyl-sn-glycero-3-phosphocholine (DOPC). We further used a graphene field-effect transistor (G-FET) biosensor, with the modification of a supported lipid bilayer (SLB), to quantify the interaction of Vpr and the membrane containing DOPG lipids with the dissociation constant determined to be Kd = 9.6 ± 2.1 μM. In contrast, the interaction between Vpr and the membrane containing solely DOPC lipids is too weak to be quantified by SLB/G-FET. As the interaction of Vpr and voltage-dependent anion channel (VDAC) was thought to be responsible for the apoptosis triggered by Vpr, we further used a SLB/G-FET biosensor to characterize their interaction. The dissociation constant, describing the affinity between Vpr and human voltage-dependent anion channel 1 (hVDAC-1) embedded in the membrane containing solely DOPC lipid, was determined to be Kd = 5.1 ± 0.9 μM. This data can serve as a reference for other studies. Cholesterol, a major component in the lipid raft within plasma membrane, plays important roles in the HIV-1 life cycle, especially in the process of virus assembly and budding. Therefore, we further explored the effect of cholesterol on the Vpr-membrane interaction. Using calcein release assay, we first observed that the membrane permeability was reduced in response to the increasing of cholesterol concentration. To gain more insight into the Vpr-membrane complex, solid-state NMR (ssNMR) was used to characterize Vpr proteoliposome in order to probe the local chemical environments of Vpr. The 13C CPMAS NMR signal, exhibiting broad chemical shift distribution, revealed that Vpr experienced multiple chemical environments in the proteoliposome. The 13C{31P} rotational-echo double-resonance (REDOR) experiment demonstrated two resonance peaks were with distinct difference in terms of dephasing feature, corresponding to the existence of the two different distances between the cysteine residue and the phosphate group on the lipid. The presence of cholesterol altered the distribution of Vpr in these two environments, suggesting that the Vpr-membrane interaction could indeed be modulated by cholesterol, albeit no evidence supporting that cholesterol binds to the protein or changes the conformation of Vpr. These studies revealed that the lipid composition of membrane is an important factor in the Vpr-membrane interaction. We believe that more insights into the functional roles of Vpr will contribute to the new treatment of acquired immune deficiency syndrome (AIDS).
Abstract (Chinese) /page ii
Abstract (English) / page v
Acknowledgements /page viii
Abbreviations /page xii
List of chemicals and instruments /page xv
List of scheme and figures /page xvii
List of tables /page xx
Table of contents /page xxi
Chapter 1 Background and motivations /page 1
1.1 Background
1.1.1 The importance of Vpr in HIV-1 /page 1
1.1.2 The roles of Vpr in pre-integration complex /page 4
1.1.3 The roles of Vpr in nuclear import /page 4
1.1.4 The roles of Vpr in LTR transactivation /page 6
1.1.5 The roles of Vpr in apoptosis /page 7
1.1.6 The roles of Vpr in G2 cell cycle arrest /page 8
1.1.7 The structure and molecular properties of Vpr /page 10
1.1.8 The Vpr-membrane interaction /page 12
1.1.9 The potential role of cholesterol in the Vpr-membrane interaction /page 13
1.2 Motivations /page 16
Chapter 2 Vpr gene construct, protein expression and purification /page 17
2.1 Challenges for the Vpr protein production /page 17
2.2 Materials and methods /page 18
2.2.1 A construct for His-tagged GB1-fused Vpr expression /page 18
2.2.2 A construct for R77Q His-tagged GB1-fused Vpr expression /page 21
2.2.3 His-tagged GB1-fused Vpr protein expression /page 24
2.2.4 His-tagged GB1-fused Vpr protein purification /page 27
2.3 Results and discussions /page 28
2.3.1 The production of soluble GB1-fused Vpr /page 28
2.3.2 Characterization of soluble GB1-fused Vpr aggregation /page 31
2.3.3 Characterization of the protein expression /page 32
2.3.4 Production of Vpr protein by TEV protease cleavage /page 34
2.4 Conclusions /page 40


Chapter 3 Structural and functional characterizations of Vpr protein in membrane mimic systems /page 41
3.1 Challenges for studying the Vpr-membrane interaction /page 41
3.2 Materials and methods /page 43
3.2.1 The solubilization of Vpr in DPC detergent micelles /page 43
3.2.2 The incorporation of Vpr into liposomes /page 44
3.2.3 The secondary structure characterization by CD spectroscopy /page 46
3.2.4 Characterization of the Vpr-membrane interaction by SPR /page 49
3.2.5 Characterization of the Vpr-membrane interaction by MST /page 51
3.2.6 Characterization of the Vpr-membrane interaction by nanodiscs co-assembly assay /page 53
3.2.7 Characterization of the Vpr-membrane interaction by calcein release assay /page 55
3.2.8 Characterization of the Vpr-membrane interaction by graphene based field effect transistor (G-FET) biosensor /page 58
Device fabrication of G-FET /page 58
Preparation of liposomes/proteoliposomes /page 59
Preparation of SLB/G-FETs /page 60
Electrical measurements /page 61
3.3 Results and discussions /page 64
3.3.1 The secondary structure characterization of Vpr protein in DPC detergent micelles /page 64
3.3.2 Tm measurement of Vpr protein /page 66
3.3.3 The secondary structure characterization of Vpr protein in bicelles /page 68
3.3.4 The secondary structure characterization of Vpr protein in proteoliposomes /page 70
3.3.5 The Vpr-membrane interaction was lipid composition dependent characterized by calcein release assay /page 73
3.3.6 The Vpr-membrane interaction was lipid composition dependent characterized by lipid nanodisc co-assembly with Vpr /page 77
3.3.7 The Vpr-membrane interaction was lipid composition dependent characterized by G-FET biosensor /page 80
3.3.8 The characterization of Vpr-hVDAC-1 interaction by G-FET biosensor /page 87
3.4 Conclusions /page 89



Chapter 4 Cholesterol modulates the Vpr-membrane interaction /page 90
4.1 Introduction /page 90
4.1.1 Probing the residue specific membrane location /page 90
4.1.2 Challenges for ssNMR analysis of the Vpr proteoliposomes /page 91
4.2 Materials and methods /page 98
4.2.1 Vpr protein production and purification /page 98
4.2.2 Sample preparation of [U-2H,13C,15N] labeled Vpr in [2H25, 98%] DPC detergent micelles for solution NMR analysis /page 101
4.2.3 Sample preparation of the Vpr proteoliposomes /page 101
4.2.4 Calcein release assay /page 102
4.2.5 CD spectroscopic characterization /page 104
4.2.6 Solution NMR spectroscopic characterization /page 104
4.2.7 Solid-state NMR spectroscopic characterization /page 106
4.3 Results and discussions /page 108
4.3.1 The secondary structure characterization of the Vpr proteoliposomes in the presence of cholesterol /page 108
4.3.2 The [1H,15N] TROSY-HSQC spectra of WT Vpr in DPC detergent micelles /page 110
4.3.3 Sequence specific resonance assignment of Vpr protein by solution NMR spectroscopy /page 112
4.3.4 Titration of cholesterol to Vpr protein characterized by solution NMR spectroscopy /page 116
4.3.5 Cholesterol effect of the Vpr-membrane interaction characterized by calcein release assay /page 118
4.3.6 Cholesterol effect of the Vpr-membrane interaction studied by ssNMR spectroscopy /page 121
4.4 Possible mechanistic explanation /page 127
4.5 Conclusions /page 128
Chapter 5 Biological importance and outlook /page 129
5.1 Significance of the study /page 129
5.2 Biological importance /page 130
5.3 Outlook /page 132
References /page 135
Appendix /page 151
1. Castro, K.G.; Ward, J.W.; Slutsker, L.; Buehler, J.W.; Jaffe, H.W.; Berkelman, R.L.; Curran, J.W., 1993 Revised Classification-System for Hiv-Infection and Expanded Surveillance Case-Definition for Aids among Adolescents and Adults (Reprinted from Mmwr, Vol 41, Pg Rr 17, 1992). Clin. Infect. Dis. 1993, 17, 802-810.
2. Davies, M.A., HIV and risk of COVID-19 death: a population cohort study from the Western Cape Province, South Africa. medRxiv 2020,
3. Geretti, A.M.; Stockdale, A.J.; Kelly, S.H.; Cevik, M.; Collins, S.; Waters, L.; Villa, G.; Docherty, A.; Harrison, E.M.; Turtle, L.; Openshaw, P.J.M.; Baillie, J.K.; Sabin, C.A.; Semple, M.G., Outcomes of Coronavirus Disease 2019 (COVID-19) Related Hospitalization Among People With Human Immunodeficiency Virus (HIV) in the ISARIC World Health Organization (WHO) Clinical Characterization Protocol (UK): A Prospective Observational Study. Clin. Infect. Dis. 2021, 73, E2095-E2105.
4. Bhaskaran, K.; Rentsch, C.T.; MacKenna, B.; Schultze, A.; Mehrkar, A.; Bates, C.J.; Eggo, R.M.; Morton, C.E.; Bacon, S.C.J.; Inglesby, P.; Douglas, I.J.; Walker, A.J.; McDonald, H.I.; Cockburn, J.; Williamson, E.J.; Evans, D.; Forbes, H.J.; Curtis, H.J.; Hulme, W.J.; Parry, J.; Hester, F.; Harper, S.; Evans, S.J.W.; Smeeth, L.; Goldacre, B., HIV infection and COVID-19 death: a population-based cohort analysis of UK primary care data and linked national death registrations within the OpenSAFELY platform. Lancet HIV 2021, 8, e24-e32.
5. German Advisory Committee Blood, S.A.o.P.T.b.B., Human Immunodeficiency Virus (HIV). Transfus. Med. Hemother. 2016, 43, 203-222.
6. Dedera, D.; Hu, W.; Vanderheyden, N.; Ratner, L., Viral Protein-R of Human Immunodeficiency Virus Type-1 and Type-2 Is Dispensable for Replication and Cytopathogenicity in Lymphoid-Cells. J. Virol. 1989, 63, 3205-3208.
7. Levy, D.N.; Refaeli, Y.; MacGregor, R.R.; Weiner, D.B., Serum Vpr regulates productive infection and latency of human immunodeficiency virus type 1. Proc. Natl. Acad. Sci. U. S. A. 1994, 91, 10873-10877.
8. Hoch, J.; Lang, S.M.; Weeger, M.; Stahl-Hennig, C.; Coulibaly, C.; Dittmer, U.; Hunsmann, G.; Fuchs, D.; Muller, J.; Sopper, S.; et al., vpr deletion mutant of simian immunodeficiency virus induces AIDS in rhesus monkeys. J. Virol. 1995, 69, 4807-4813.
9. Lang, S.M.; Weeger, M.; Stahl-Hennig, C.; Coulibaly, C.; Hunsmann, G.; Muller, J.; Muller-Hermelink, H.; Fuchs, D.; Wachter, H.; Daniel, M.M.; et al., Importance of vpr for infection of rhesus monkeys with simian immunodeficiency virus. J. Virol. 1993, 67, 902-912.
10. Mansky, L.M.; Preveral, S.; Selig, L.; Benarous, R.; Benichou, S., The interaction of vpr with uracil DNA glycosylase modulates the human immunodeficiency virus type 1 In vivo mutation rate. J. Virol. 2000, 74, 7039-7047.
11. Fassati, A.; Goff, S.P., Characterization of intracellular reverse transcription complexes of human immunodeficiency virus type 1. J. Virol. 2001, 75, 3626-3635.
12. Lange, A.; Mills, R.E.; Lange, C.J.; Stewart, M.; Devine, S.E.; Corbett, A.H., Classical nuclear localization signals: Definition, function, and interaction with importin alpha. J. Biol. Chem. 2007, 282, 5101-5105.
13. Twyffels, L.; Gueydan, C.; Kruys, V., Transportin-1 and Transportin-2: protein nuclear import and beyond. FEBS Lett. 2014, 588, 1857-1868.
14. Jenkins, Y.; McEntee, M.; Weis, K.; Greene, W.C., Characterization of HIV-1 vpr nuclear import: analysis of signals and pathways. J. Cell Biol. 1998, 143, 875-885.
15. Jans, D.A.; Jans, P.; Julich, T.; Briggs, L.J.; Xiao, C.Y.; Piller, S.C., Intranuclear binding by the HIV-1 regulatory protein VPR is dependent on cytosolic factors. Biochem. Biophys. Res. Commun. 2000, 270, 1055-1062.
16. Miyatake, H.; Sanjoh, A.; Murakami, T.; Murakami, H.; Matsuda, G.; Hagiwara, K.; Yokoyama, M.; Sato, H.; Miyamoto, Y.; Dohmae, N.; Aida, Y., Molecular Mechanism of HIV-1 Vpr for Binding to Importin-alpha. J. Mol. Biol. 2016, 428, 2744-2757.
17. Caly, L.; Saksena, N.K.; Piller, S.C.; Jans, D.A., Impaired nuclear import and viral incorporation of Vpr derived from a HIV long-term non-progressor. Retrovirology 2008, 5, 67.
18. Varadarajan, P.; Mahalingam, S.; Liu, P.; Ng, S.B.; Gandotra, S.; Dorairajoo, D.S.; Balasundaram, D., The functionally conserved nucleoporins Nup124p from fission yeast and the human Nup153 mediate nuclear import and activity of the Tf1 retrotransposon and HIV-1 Vpr. Mol. Biol. Cell 2005, 16, 1823-1838.
19. Le Rouzic, E.; Mousnier, A.; Rustum, C.; Stutz, F.; Hallberg, E.; Dargemont, C.; Benichou, S., Docking of HIV-1 Vpr to the nuclear envelope is mediated by the interaction with the nucleoporin hCG1. J. Biol. Chem. 2002, 277, 45091-45098.
20. Fouchier, R.A.; Meyer, B.E.; Simon, J.H.; Fischer, U.; Albright, A.V.; Gonzalez-Scarano, F.; Malim, M.H., Interaction of the human immunodeficiency virus type 1 Vpr protein with the nuclear pore complex. J. Virol. 1998, 72, 6004-6013.
21. Popov, S.; Rexach, M.; Ratner, L.; Blobel, G.; Bukrinsky, M., Viral protein R regulates docking of the HIV-1 preintegration complex to the nuclear pore complex. J. Biol. Chem. 1998, 273, 13347-13352.
22. Popov, S.; Rexach, M.; Zybarth, G.; Reiling, N.; Lee, M.A.; Ratner, L.; Lane, C.M.; Moore, M.S.; Blobel, G.; Bukrinsky, M., Viral protein R regulates nuclear import of the HIV-1 pre-integration complex. EMBO J. 1998, 17, 909-917.
23. Miller, M.D.; Farnet, C.M.; Bushman, F.D., Human immunodeficiency virus type 1 preintegration complexes: studies of organization and composition. J. Virol. 1997, 71, 5382-5390.
24. de Noronha, C.M.; Sherman, M.P.; Lin, H.W.; Cavrois, M.V.; Moir, R.D.; Goldman, R.D.; Greene, W.C., Dynamic disruptions in nuclear envelope architecture and integrity induced by HIV-1 Vpr. Science 2001, 294, 1105-1108.
25. Wang, L.; Mukherjee, S.; Jia, F.; Narayan, O.; Zhao, L.J., Interaction of virion protein Vpr of human immunodeficiency virus type 1 with cellular transcription factor Sp1 and trans-activation of viral long terminal repeat. J. Biol. Chem. 1995, 270, 25564-25569.
26. Sawaya, B.E.; Khalili, K.; Gordon, J.; Taube, R.; Amini, S., Cooperative interaction between HIV-1 regulatory proteins Tat and Vpr modulates transcription of the viral genome. J. Biol. Chem. 2000, 275, 35209-35214.
27. Kino, T.; Gragerov, A.; Kopp, J.B.; Stauber, R.H.; Pavlakis, G.N.; Chrousos, G.P., The HIV-1 virion-associated protein Vpr is a coactivator of the human glucocorticoid receptor. J. Exp. Med. 1999, 189, 51-61.
28. Felzien, L.K.; Woffendin, C.; Hottiger, M.O.; Subbramanian, R.A.; Cohen, E.A.; Nabel, G.J., HIV transcriptional activation by the accessory protein, VPR, is mediated by the p300 co-activator. Proc. Natl. Acad. Sci. U. S. A. 1998, 95, 5281-5286.
29. Agostini, I.; Navarro, J.M.; Rey, F.; Bouhamdan, M.; Spire, B.; Vigne, R.; Sire, J., The human immunodeficiency virus type 1 Vpr transactivator: cooperation with promoter-bound activator domains and binding to TFIIB. J. Mol. Biol. 1996, 261, 599-606.
30. Kino, T.; Tsukamoto, M.; Chrousos, G., Transcription factor TFIIH components enhance the GR coactivator activity but not the cell cycle-arresting activity of the human immunodeficiency virus type-1 protein Vpr. Biochem. Biophys. Res. Commun. 2002, 298, 17-23.
31. Hoshino, S.; Konishi, M.; Mori, M.; Shimura, M.; Nishitani, C.; Kuroki, Y.; Koyanagi, Y.; Kano, S.; Itabe, H.; Ishizaka, Y., HIV-1 Vpr induces TLR4/MyD88-mediated IL-6 production and reactivates viral production from latency. J. Leukoc. Biol. 2010, 87, 1133-1143.
32. Roux, P.; Alfieri, C.; Hrimech, M.; Cohen, E.A.; Tanner, J.E., Activation of transcription factors NF-kappaB and NF-IL-6 by human immunodeficiency virus type 1 protein R (Vpr) induces interleukin-8 expression. J. Virol. 2000, 74, 4658-4665.
33. Gangwani, M.R.; Noel, R.J., Jr.; Shah, A.; Rivera-Amill, V.; Kumar, A., Human immunodeficiency virus type 1 viral protein R (Vpr) induces CCL5 expression in astrocytes via PI3K and MAPK signaling pathways. J. Neuroinflammation 2013, 10, 136.
34. Liu, R.K.; Tan, J.; Lin, Y.Q.; Jia, R.; Yang, W.; Liang, C.; Geng, Y.Q.; Qiao, W.T., HIV-1 Vpr activates both canonical and noncanonical NF-kappa B pathway by enhancing the phosphorylation of IKK alpha/beta. Virology 2013, 439, 47-56.
35. Liu, R.; Lin, Y.; Jia, R.; Geng, Y.; Liang, C.; Tan, J.; Qiao, W., HIV-1 Vpr stimulates NF-kappaB and AP-1 signaling by activating TAK1. Retrovirology 2014, 11, 45.
36. Postler, T.S.; Desrosiers, R.C., The cytoplasmic domain of the HIV-1 glycoprotein gp41 induces NF-kappaB activation through TGF-beta-activated kinase 1. Cell Host Microbe 2012, 11, 181-193.
37. Muthumani, K.; Choo, A.Y.; Zong, W.X.; Madesh, M.; Hwang, D.S.; Premkumar, A.; Thieu, K.P.; Emmanuel, J.; Kumar, S.; Thompson, C.B.; Weiner, D.B., The HIV-1 Vpr and glucocorticoid receptor complex is a gain-of-function interaction that prevents the nuclear localization of PARP-1. Nat. Cell Biol. 2006, 8, 170-179.
38. Jacotot, E.; Ravagnan, L.; Loeffler, M.; Ferri, K.F.; Vieira, H.L.; Zamzami, N.; Costantini, P.; Druillennec, S.; Hoebeke, J.; Briand, J.P.; Irinopoulou, T.; Daugas, E.; Susin, S.A.; Cointe, D.; Xie, Z.H.; Reed, J.C.; Roques, B.P.; Kroemer, G., The HIV-1 viral protein R induces apoptosis via a direct effect on the mitochondrial permeability transition pore. J. Exp. Med. 2000, 191, 33-46.
39. Qiao, H.; McMillan, J.R., Gelsolin segment 5 inhibits HIV-induced T-cell apoptosis via Vpr-binding to VDAC. FEBS Lett. 2007, 581, 535-540.
40. Jacotot, E.; Ferri, K.F.; El Hamel, C.; Brenner, C.; Druillennec, S.; Hoebeke, J.; Rustin, P.; Metivier, D.; Lenoir, C.; Geuskens, M.; Vieira, H.L.; Loeffler, M.; Belzacq, A.S.; Briand, J.P.; Zamzami, N.; Edelman, L.; Xie, Z.H.; Reed, J.C.; Roques, B.P.; Kroemer, G., Control of mitochondrial membrane permeabilization by adenine nucleotide translocator interacting with HIV-1 viral protein rR and Bcl-2. J. Exp. Med. 2001, 193, 509-519.
41. Sabbah, E.N.; Druillennec, S.; Morellet, N.; Bouaziz, S.; Kroemer, G.; Roques, B.P., Interaction between the HIV-1 protein Vpr and the adenine nucleotide translocator. Chem. Biol. Drug Des. 2006, 67, 145-154.
42. Arunagiri, C.; Macreadie, I.; Hewish, D.; Azad, A., A C-terminal domain of HIV-1-accessory protein Vpr is involved in penetration, mitochondrial dysfunction and apoptosis of human CD4(+) lymphocytes. Apoptosis 1997, 2, 69-76.
43. Lum, J.J.; Cohen, O.J.; Nie, Z.; Weaver, J.G.; Gomez, T.S.; Yao, X.J.; Lynch, D.; Pilon, A.A.; Hawley, N.; Kim, J.E.; Chen, Z.; Montpetit, M.; Sanchez-Dardon, J.; Cohen, E.A.; Badley, A.D., Vpr R77Q is associated with long-term nonprogressive HIV infection and impaired induction of apoptosis. J. Clin. Invest. 2003, 111, 1547-1554.
44. Soares, R.; Rocha, G.; Nogueira, C.; Melico-Silvestre, A.; Goncalves, T., R77Q and Q3R HIV1-VPR mutations in an otherwise asymptomatic 5-year-old child with repeated ear infections. JMM Case Rep. 2014, 1, e002709.
45. Somasundaran, M.; Sharkey, M.; Brichacek, B.; Luzuriaga, K.; Emerman, M.; Sullivan, J.L.; Stevenson, M., Evidence for a cytopathogenicity determinant in HIV-1 Vpr. Proc. Natl. Acad. Sci. U. S. A. 2002, 99, 9503-9508.
46. Re, F.; Braaten, D.; Franke, E.K.; Luban, J., Human immunodeficiency virus type 1 Vpr arrests the cell cycle in G2 by inhibiting the activation of p34cdc2-cyclin B. J. Virol. 1995, 69, 6859-6864.
47. Andersen, J.L.; Le Rouzic, E.; Planelles, V., HIV-1 Vpr: mechanisms of G2 arrest and apoptosis. Exp. Mol. Pathol. 2008, 85, 2-10.
48. Morgan, D.O., Principles of CDK regulation. Nature 1995, 374, 131-134.
49. Zhao, L.J.; Wang, L.; Mukherjee, S.; Narayan, O., Biochemical mechanism of HIV-1 Vpr function. Oligomerization mediated by the N-terminal domain. J. Biol. Chem. 1994, 269, 32131-32137.
50. Wecker, K.; Roques, B.P., NMR structure of the (1-51) N-terminal domain of the HIV-1 regulatory protein Vpr. Eur. J. Biochem. 1999, 266, 359-369.
51. Engler, A.; Stangler, T.; Willbold, D., Structure of human immunodeficiency virus type 1 Vpr(34-51) peptide in micelle containing aqueous solution. Eur. J. Biochem. 2002, 269, 3264-3269.
52. Wecker, K.; Morellet, N.; Bouaziz, S.; Roques, B.P., NMR structure of the HIV-1 regulatory protein Vpr in H2O/trifluoroethanol. Comparison with the Vpr N-terminal (1-51) and C-terminal (52-96) domains. Eur. J. Biochem. 2002, 269, 3779-3788.
53. Engler, A.; Stangler, T.; Willbold, D., Solution structure of human immunodeficiency virus type 1 Vpr(13-33) peptide in micelles. Eur. J. Biochem. 2001, 268, 389-395.
54. Morellet, N.; Bouaziz, S.; Petitjean, P.; Roques, B.P., NMR structure of the HIV-1 regulatory protein VPR. J. Mol. Biol. 2003, 327, 215-227.
55. Yao, S.; Torres, A.M.; Azad, A.A.; Macreadie, I.G.; Norton, R.S., Solution structure of peptides from HIV-1 Vpr protein that cause membrane permeabilization and growth arrest. J. Pept. Sci. 1998, 4, 426-435.
56. Wu, Y.; Zhou, X.; Barnes, C.O.; DeLucia, M.; Cohen, A.E.; Gronenborn, A.M.; Ahn, J.; Calero, G., The DDB1-DCAF1-Vpr-UNG2 crystal structure reveals how HIV-1 Vpr steers human UNG2 toward destruction. Nat. Struct. Mol. Biol. 2016, 23, 933-940.
57. Bodeus, M.; Margottin, F.; Durand, H.; Rouer, E.; Benarous, R., Inhibition of prokaryotic cell growth by HIV1 Vpr. Res. Virol. 1997, 148, 207-213.
58. Singh, S.P.; Tomkowicz, B.; Lai, D.S.; Cartas, M.; Mahalingam, S.; Kalyanaraman, V.S.; Murali, R.; Srinivasan, A., Functional role of residues corresponding to helical domain II (amino acids 35 to 46) of human immunodeficiency virus type 1 Vpr. J. Virol. 2000, 74, 10650-10657.
59. Fritz, J.V.; Didier, P.; Clamme, J.P.; Schaub, E.; Muriaux, D.; Cabanne, C.; Morellet, N.; Bouaziz, S.; Darlix, J.L.; Mely, Y.; de Rocquigny, H., Direct Vpr-Vpr interaction in cells monitored by two photon fluorescence correlation spectroscopy and fluorescence lifetime imaging. Retrovirology 2008, 5, 87.
60. Venkatachari, N.J.; Walker, L.A.; Tastan, O.; Le, T.; Dempsey, T.M.; Li, Y.M.; Yanamala, N.; Srinivasan, A.; Klein-Seetharaman, J.; Montelaro, R.C.; Ayyavoo, V., Human immunodeficiency virus type 1 Vpr: oligomerization is an essential feature for its incorporation into virus particles. Virol. J. 2010, 7:119
61. Bolton, D.L.; Lenardo, M.J., Vpr cytopathicity independent of G2/M cell cycle arrest in human immunodeficiency virus type 1-infected CD4+ T cells. J. Virol. 2007, 81, 8878-8890.
62. Bourbigot, S.; Beltz, H.; Denis, J.; Morellet, N.; Roques, B.P.; Mely, Y.; Bouaziz, S., The C-terminal domain of the HIV-1 regulatory protein Vpr adopts an antiparallel dimeric structure in solution via its leucine-zipper-like domain. Biochem. J. 2005, 387, 333-341.
63. Kamiyama, T.; Miura, T.; Takeuchi, H., His-Trp cation-pi interaction and its structural role in an alpha-helical dimer of HIV-1 Vpr protein. Biophys. Chem. 2013, 173-174, 8-14.
64. Zhang, S.; Pointer, D.; Singer, G.; Feng, Y.; Park, K.; Zhao, L.J., Direct binding to nucleic acids by Vpr of human immunodeficiency virus type 1. Gene 1998, 212, 157-166.
65. Wang, L.; Mukherjee, S.; Narayan, O.; Zhao, L.J., Characterization of a leucine-zipper-like domain in Vpr protein of human immunodeficiency virus type 1. Gene 1996, 178, 7-13.
66. Agostini, I.; Navarro, J.M.; Bouhamdan, M.; Willetts, K.; Rey, F.; Spire, B.; Vigne, R.; Pomerantz, R.; Sire, J., The HIV-1 Vpr co-activator induces a conformational change in TFIIB. FEBS Lett. 1999, 450, 235-239.
67. Henklein, P.; Bruns, K.; Sherman, M.P.; Tessmer, U.; Licha, K.; Kopp, J.; de Noronha, C.M.; Greene, W.C.; Wray, V.; Schubert, U., Functional and structural characterization of synthetic HIV-1 Vpr that transduces cells, localizes to the nucleus, and induces G2 cell cycle arrest. J. Biol. Chem. 2000, 275, 32016-32026.
68. Piller, S.C.; Ewart, G.D.; Premkumar, A.; Cox, G.B.; Gage, P.W., Vpr protein of human immunodeficiency virus type 1 forms cation-selective channels in planar lipid bilayers. Proc. Natl. Acad. Sci. U. S. A. 1996, 93, 111-115.
69. Piller, S.C.; Ewart, G.D.; Jans, D.A.; Gage, P.W.; Cox, G.B., The amino-terminal region of Vpr from human immunodeficiency virus type 1 forms ion channels and kills neurons. J. Virol. 1999, 73, 4230-4238.
70. Coeytaux, E.; Coulaud, D.; Le Cam, E.; Danos, O.; Kichler, A., The cationic amphipathic alpha-helix of HIV-1 viral protein R (Vpr) binds to nucleic acids, permeabilizes membranes, and efficiently transfects cells. J. Biol. Chem. 2003, 278, 18110-18116.
71. Greiner, V.J.; Shvadchak, V.; Fritz, J.; Arntz, Y.; Didier, P.; Frisch, B.; Boudier, C.; Mely, Y.; de Rocquigny, H., Characterization of the mechanisms of HIV-1 Vpr(52-96) internalization in cells. Biochimie 2011, 93, 1647-1658.
72. Nguyen, D.H.; Hildreth, J.E., Evidence for budding of human immunodeficiency virus type 1 selectively from glycolipid-enriched membrane lipid rafts. J. Virol. 2000, 74, 3264-3272.
73. de Meyer, F.; Smit, B., Effect of cholesterol on the structure of a phospholipid bilayer. Proc. Natl. Acad. Sci. U. S. A. 2009, 106, 3654-3658.
74. Aguilar, J.J.; Anel, A.; Torres, J.M.; Semmel, M.; Uriel, J., Changes in lipid composition of human peripheral blood lymphocytes infected by HIV. AIDS Res. Hum. Retroviruses 1991, 7, 761-765.
75. Aloia, R.C.; Tian, H.; Jensen, F.C., Lipid composition and fluidity of the human immunodeficiency virus envelope and host cell plasma membranes. Proc. Natl. Acad. Sci. U. S. A. 1993, 90, 5181-5185.
76. Aloia, R.C.; Jensen, F.C.; Curtain, C.C.; Mobley, P.W.; Gordon, L.M., Lipid composition and fluidity of the human immunodeficiency virus. Proc. Natl. Acad. Sci. U. S. A. 1988, 85, 900-904.
77. Kwon, B.; Mandal, T.; Elkins, M.R.; Oh, Y.; Cui, Q.; Hong, M., Cholesterol Interaction with the Trimeric HIV Fusion Protein gp41 in Lipid Bilayers Investigated by Solid-State NMR Spectroscopy and Molecular Dynamics Simulations. J. Mol. Biol. 2020, 432, 4705-4721.
78. Meher, G.; Sinha, S.; Pattnaik, G.P.; Ghosh Dastidar, S.; Chakraborty, H., Cholesterol Modulates Membrane Properties and the Interaction of gp41 Fusion Peptide To Promote Membrane Fusion. J. Phys. Chem. B 2019, 123, 7113-7122.
79. Brugger, B.; Glass, B.; Haberkant, P.; Leibrecht, I.; Wieland, F.T.; Krausslich, H.G., The HIV lipidome: a raft with an unusual composition. Proc. Natl. Acad. Sci. U. S. A. 2006, 103, 2641-2646.
80. Favard, C.; Chojnacki, J.; Merida, P.; Yandrapalli, N.; Mak, J.; Eggeling, C.; Muriaux, D., HIV-1 Gag specifically restricts PI(4,5)P2 and cholesterol mobility in living cells creating a nanodomain platform for virus assembly. Sci. Adv. 2019, 5, eaaw8651.
81. Zhou, W.; Parent, L.J.; Wills, J.W.; Resh, M.D., Identification of a membrane-binding domain within the amino-terminal region of human immunodeficiency virus type 1 Gag protein which interacts with acidic phospholipids. J. Virol. 1994, 68, 2556-2569.
82. Ono, A.; Freed, E.O., Plasma membrane rafts play a critical role in HIV-1 assembly and release. Proc. Natl. Acad. Sci. U. S. A. 2001, 98, 13925-13930.
83. Ono, A.; Waheed, A.A.; Freed, E.O., Depletion of cellular cholesterol inhibits membrane binding and higher-order multimerization of human immunodeficiency virus type 1 Gag. Virology 2007, 360, 27-35.
84. Gottlinger, H.G.; Dorfman, T.; Sodroski, J.G.; Haseltine, W.A., Effect of mutations affecting the p6 gag protein on human immunodeficiency virus particle release. Proc. Natl. Acad. Sci. U. S. A. 1991, 88, 3195-3199.
85. Demirov, D.G.; Orenstein, J.M.; Freed, E.O., The late domain of human immunodeficiency virus type 1 p6 promotes virus release in a cell type-dependent manner. J. Virol. 2002, 76, 105-117.
86. Waldhuber, M.G.; Bateson, M.; Tan, J.; Greenway, A.L.; McPhee, D.A., Studies with GFP-Vpr fusion proteins: induction of apoptosis but ablation of cell-cycle arrest despite nuclear membrane or nuclear localization. Virology 2003, 313, 91-104.
87. Kondo, E.; Mammano, F.; Cohen, E.A.; Gottlinger, H.G., The p6gag domain of human immunodeficiency virus type 1 is sufficient for the incorporation of Vpr into heterologous viral particles. J. Virol. 1995, 69, 2759-2764.
88. Muller, B.; Tessmer, U.; Schubert, U.; Krausslich, H.G., Human immunodeficiency virus type 1 Vpr protein is incorporated into the virion in significantly smaller amounts than Gag and is phosphorylated in infected cells. J. Virol. 2000, 74, 9727-9731.
89. Wang, J.J.; Lu, Y.; Ratner, L., Particle assembly and Vpr expression in human immunodeficiency virus type 1-infected cells demonstrated by immunoelectron microscopy. J. Gen. Virol. 1994, 75 ( Pt 10), 2607-2614.
90. Jenkins, Y.; Pornillos, O.; Rich, R.L.; Myszka, D.G.; Sundquist, W.I.; Malim, M.H., Biochemical analyses of the interactions between human immunodeficiency virus type 1 Vpr and p6(Gag). J. Virol. 2001, 75, 10537-10542.
91. Salgado, G.F.; Marquant, R.; Vogel, A.; Alves, I.D.; Feller, S.E.; Morellet, N.; Bouaziz, S., Structural studies of HIV-1 Gag p6ct and its interaction with Vpr determined by solution nuclear magnetic resonance. Biochemistry 2009, 48, 2355-2367.
92. Zhu, H.; Jian, H.; Zhao, L.J., Identification of the 15FRFG domain in HIV-1 Gag p6 essential for Vpr packaging into the virion. Retrovirology 2004, 1, 26.
93. Salgado, G.F.; Vogel, A.; Marquant, R.; Feller, S.E.; Bouaziz, S.; Alves, I.D., The role of membranes in the organization of HIV-1 Gag p6 and Vpr: p6 shows high affinity for membrane bilayers which substantially increases the interaction between p6 and Vpr. J. Med. Chem. 2009, 52, 7157-7162.
94. He, J.; Choe, S.; Walker, R.; Di Marzio, P.; Morgan, D.O.; Landau, N.R., Human immunodeficiency virus type 1 viral protein R (Vpr) arrests cells in the G2 phase of the cell cycle by inhibiting p34cdc2 activity. J. Virol. 1995, 69, 6705-6711.
95. Jowett, J.B.; Planelles, V.; Poon, B.; Shah, N.P.; Chen, M.L.; Chen, I.S., The human immunodeficiency virus type 1 vpr gene arrests infected T cells in the G2 + M phase of the cell cycle. J. Virol. 1995, 69, 6304-6313.
96. Rogel, M.E.; Wu, L.I.; Emerman, M., The human immunodeficiency virus type 1 vpr gene prevents cell proliferation during chronic infection. J. Virol. 1995, 69, 882-888.
97. Bartz, S.R.; Rogel, M.E.; Emerman, M., Human immunodeficiency virus type 1 cell cycle control: Vpr is cytostatic and mediates G2 accumulation by a mechanism which differs from DNA damage checkpoint control. J. Virol. 1996, 70, 2324-2331.
98. Macreadie, I.G.; Castelli, L.A.; Hewish, D.R.; Kirkpatrick, A.; Ward, A.C.; Azad, A.A., A domain of human immunodeficiency virus type 1 Vpr containing repeated H(S/F)RIG amino acid motifs causes cell growth arrest and structural defects. Proc. Natl. Acad. Sci. U. S. A. 1995, 92, 2770-2774.
99. Schuler, W.; Wecker, K.; de Rocquigny, H.; Baudat, Y.; Sire, J.; Roques, B.P., NMR structure of the (52-96) C-terminal domain of the HIV-1 regulatory protein Vpr: Molecular insights into its biological functions. J. Mol. Biol. 1999, 285, 2105-2117.
100. Wecker, K.; Roques, B.P., NMR structure of the (1-51) N-terminal domain of the HIV-1 regulatory protein Vpr. Eur. J. Biochem. 1999, 266, 359-369.
101. Wecker, K.; Morellet, N.; Bouaziz, S.; Roques, B.P., NMR structure of the HIV-1 regulatory protein Vpr in H2O/trifluoroethanol - Comparison with the Vpr N-terminal (1-51) and C-terminal (52-96) domains. Eur. J. Biochem. 2002, 269, 3779-3788.
102. Zhou, P.; Wagner, G., Overcoming the solubility limit with solubility-enhancement tags: successful applications in biomolecular NMR studies. J. Biomol. NMR 2010, 46, 23-31.
103. Thomson, M.M.; Najera, R., Molecular epidemiology of HIV-1 variants in the global AIDS pandemic: an update. AIDS Rev. 2005, 7, 210-224.
104. Cai, M.L.; Huang, Y.; Sakaguchi, K.; Clore, G.M.; Gronenborn, A.M.; Craigie, R., An efficient and cost-effective isotope labeling protocol for proteins expressed in Escherichia coli. J. Biomol. NMR 1998, 11, 97-102.
105. Lum, J.J.; Cohen, O.J.; Nie, Z.L.; Weaver, J.G.; Gomez, T.S.; Yao, X.J.; Lynch, D.; Pilon, A.A.; Hawley, N.; Kim, J.E.; Chen, Z.X.; Montpetit, M.; Sanchez-Dardon, J.; Cohen, E.A.; Badley, A.D., Vpr R77Q is associated with long-term nonprogressive HIV infection and impaired induction of apoptosis. J. Clin. Invest. 2003, 111, 1547-1554.
106. Cooper, M.A.; Hansson, A.; Lofas, S.; Williams, D.H., A vesicle capture sensor chip for kinetic analysis of interactions with membrane-bound receptors. Anal. Biochem. 2000, 277, 196-205.
107. Besenicar, M.; Macek, P.; Lakey, J.H.; Anderluh, G., Surface plasmon resonance in protein-membrane interactions. Chem. Phys. Lipids 2006, 141, 169-178.
108. Jia, L.H.; Liang, S.; Sackett, K.; Xie, L.; Ghosh, U.; Weliky, D.P., REDOR solid-state NMR as a probe of the membrane locations of membrane-associated peptides and proteins. J. Magn. Reson. 2015, 253, 154-165.
109. Kelly, S.M.; Price, N.C., The Use of Circular Dichroism in the Investigation of Protein Structure and Function. Curr. Protein Pept. Sc. 2000, 1, 349-384.
110. Gasteiger, E.; Gattiker, A.; Hoogland, C.; Ivanyi, I.; Appel, R.D.; Bairoch, A., ExPASy: The proteomics server for in-depth protein knowledge and analysis. Nucleic Acids Res. 2003, 31, 3784-3788.
111. Sreerama, N.; Woody, R.W., Estimation of protein secondary structure from circular dichroism spectra: comparison of CONTIN, SELCON, and CDSSTR methods with an expanded reference set. Anal. Biochem. 2000, 287, 252-260.
112. Hagn, F.; Nasr, M.L.; Wagner, G., Assembly of phospholipid nanodiscs of controlled size for structural studies of membrane proteins by NMR. Nat. Protoc. 2018, 13, 79-98.
113. Hiller, S.; Garces, R.G.; Malia, T.J.; Orekhov, V.Y.; Colombini, M.; Wagner, G., Solution structure of the integral human membrane protein VDAC-1 in detergent micelles. Science 2008, 321, 1206-1210.
114. Raschle, T.; Hiller, S.; Yu, T.Y.; Rice, A.J.; Walz, T.; Wagner, G., Structural and functional characterization of the integral membrane protein VDAC-1 in lipid bilayer nanodiscs. J. Am. Chem. Soc. 2009, 131, 17777-17779.
115. Lin, C.M.; Li, C.S.; Sheng, Y.J.; Wu, D.T.; Tsao, H.K., Size-dependent properties of small unilamellar vesicles formed by model lipids. Langmuir 2012, 28, 689-700.
116. Schedin, F.; Geim, A.K.; Morozov, S.V.; Hill, E.W.; Blake, P.; Katsnelson, M.I.; Novoselov, K.S., Detection of individual gas molecules adsorbed on graphene. Nat. Mater. 2007, 6, 652-655.
117. Zhou, N.E.; Kay, C.M.; Hodges, R.S., Synthetic model proteins. Positional effects of interchain hydrophobic interactions on stability of two-stranded alpha-helical coiled-coils. J. Biol. Chem. 1992, 267, 2664-2670.
118. Marquette, A.; Leborgne, C.; Schartner, V.; Salnikov, E.; Bechinger, B.; Kichler, A., Peptides derived from the C-terminal domain of HIV-1 Viral Protein R in lipid bilayers: Structure, membrane positioning and gene delivery. Biochim. Biophys. Acta Biomembr. 2020, 1862, 183149.
119. Kuo, C.J.; Chiang, H.C.; Tseng, C.A.; Chang, C.F.; Ulaganathan, R.K.; Ling, T.T.; Chang, Y.J.; Chen, C.C.; Chen, Y.R.; Chen, Y.T., Lipid-Modified Graphene-Transistor Biosensor for Monitoring Amyloid-beta Aggregation. ACS Appl. Mater. Interfaces 2018, 10, 12311-12316.
120. Bolotin, K.I.; Sikes, K.J.; Jiang, Z.; Klima, M.; Fudenberg, G.; Hone, J.; Kim, P.; Stormer, H.L., Ultrahigh electron mobility in suspended graphene. Solid State Commun. 2008, 146, 351-355.
121. Moon, J.S.; Antcliffe, M.; Seo, H.C.; Curtis, D.; Lin, S.; Schmitz, A.; Milosavljevic, I.; Kiselev, A.A.; Ross, R.S.; Gaskill, D.K.; Campbell, P.M.; Fitch, R.C.; Lee, K.M.; Asbeck, P., Ultra-low resistance ohmic contacts in graphene field effect transistors. Appl. Phys. Lett. 2012, 100, 203512-203514
122. Ang, P.K.; Chen, W.; Wee, A.T.S.; Loh, K.P., Solution-Gated Epitaxial Graphene as pH Sensor. J. Am. Chem. Soc. 2008, 130, 14392-14393.
123. Yoshida, K.; Mukai, Y.; Niidome, T.; Takashi, C.; Tokunaga, Y.; Hatakeyama, T.; Aoyagi, H., Interaction of pleurocidin and its analogs with phospholipid membrane and their antibacterial activity. J. Pept. Res. 2001, 57, 119-126.
124. Saint, N.; Cadiou, H.; Bessin, Y.; Molle, G., Antibacterial peptide pleurocidin forms ion channels in planar lipid bilayers. Biochim. Biophys. Acta 2002, 1564, 359-364.
125. Syvitski, R.T.; Burton, I.; Mattatall, N.R.; Douglas, S.E.; Jakeman, D.L., Structural characterization of the antimicrobial peptide pleurocidin from winter flounder. Biochemistry 2005, 44, 7282-7293.
126. Mason, A.J.; Chotimah, I.N.; Bertani, P.; Bechinger, B., A spectroscopic study of the membrane interaction of the antimicrobial peptide Pleurocidin. Mol. Membr. Biol. 2006, 23, 185-194.
127. Lan, Y.; Ye, Y.; Kozlowska, J.; Lam, J.K.; Drake, A.F.; Mason, A.J., Structural contributions to the intracellular targeting strategies of antimicrobial peptides. Biochim. Biophys. Acta 2010, 1798, 1934-1943.
128. Michalek, M.; Aisenbrey, C.; Bechinger, B., Investigation of membrane penetration depth and interactions of the amino-terminal domain of huntingtin: refined analysis by tryptophan fluorescence measurement. Eur. Biophys. J. 2014, 43, 347-360.
129. Su, Y.; Mani, R.; Hong, M., Asymmetric insertion of membrane proteins in lipid bilayers by solid-state NMR paramagnetic relaxation enhancement: a cell-penetrating Peptide example. J. Am. Chem. Soc. 2008, 130, 8856-8864.
130. Lin, P.; Chen, X.; Moktan, H.; Arrese, E.L.; Duan, L.; Wang, L.; Soulages, J.L.; Zhou, D.H., Membrane attachment and structure models of lipid storage droplet protein 1. Biochim. Biophys. Acta 2014, 1838, 874-881.
131. Agirre, A.; Flach, C.; Goni, F.M.; Mendelsohn, R.; Valpuesta, J.M.; Wu, F.; Nieva, J.L., Interactions of the HIV-1 fusion peptide with large unilamellar vesicles and monolayers. A cryo-TEM and spectroscopic study. Biochim. Biophys. Acta 2000, 1467, 153-164.
132. Haque, M.E.; Koppaka, V.; Axelsen, P.H.; Lentz, B.R., Properties and structures of the influenza and HIV fusion peptides on lipid membranes: implications for a role in fusion. Biophys. J. 2005, 89, 3183-3194.
133. Macosko, J.C.; Kim, C.H.; Shin, Y.K., The membrane topology of the fusion peptide region of influenza hemagglutinin determined by spin-labeling EPR. J. Mol. Biol. 1997, 267, 1139-1148.
134. Han, X.; Bushweller, J.H.; Cafiso, D.S.; Tamm, L.K., Membrane structure and fusion-triggering conformational change of the fusion domain from influenza hemagglutinin. Nat. Struct. Biol. 2001, 8, 715-720.
135. Yu, H.Y.; Yip, B.S.; Tu, C.H.; Chen, H.L.; Chu, H.L.; Chih, Y.H.; Cheng, H.T.; Sue, S.C.; Cheng, J.W., Correlations between membrane immersion depth, orientation, and salt-resistance of tryptophan-rich antimicrobial peptides. Bba-Biomembranes 2013, 1828, 2720-2728.
136. Toke, O.; Maloy, W.L.; Kim, S.J.; Blazyk, J.; Schaefer, J., Secondary structure and lipid contact of a peptide antibiotic in phospholipid bilayers by REDOR. Biophys. J. 2004, 87, 662-674.
137. Xie, L.; Ghosh, U.; Schmick, S.D.; Weliky, D.P., Residue-specific membrane location of peptides and proteins using specifically and extensively deuterated lipids and (1)(3)C-(2)H rotational-echo double-resonance solid-state NMR. J. Biomol. NMR 2013, 55, 11-17.
138. Schmidt, A.; Mckay, R.A.; Schaefer, J., Internuclear Distance Measurement between Deuterium (I = 1) and a Spin-1/2 Nucleus in Rotating Solids. J. Magn. Reson. 1992, 96, 644-650.
139. Sack, I.; Balazs, Y.S.; Rahimipour, S.; Vega, S., Solid-state NMR determination of peptide torsion angles: Applications of H-2-dephased REDOR. J. Am. Chem. Soc. 2000, 122, 12263-12269.
140. Gullion, T.; Kishore, R.; Asakura, T., Determining dihedral angles and local structure in silk peptide by 13C-2H REDOR. J. Am. Chem. Soc. 2003, 125, 7510-7511.
141. Lacabanne, D.; Meier, B.H.; Bockmann, A., Selective labeling and unlabeling strategies in protein solid-state NMR spectroscopy. J. Biomol. NMR 2018, 71, 141-150.
142. Gullion, T.; Schaefer, J., Elimination of Resonance Offset Effects in Rotational-Echo, Double-Resonance Nmr. J. Magn. Reson. 1991, 92, 439-442.
143. Shen, Y.; Delaglio, F.; Cornilescu, G.; Bax, A., TALOS+: a hybrid method for predicting protein backbone torsion angles from NMR chemical shifts. J. Biomol. NMR 2009, 44, 213-223.
144. Mayer, M.; Meyer, B., Characterization of Ligand Binding by Saturation Transfer Difference NMR Spectroscopy. Angew. Chem. Int. Ed. Engl. 1999, 38, 1784-1788.
145. Takahashi, H.; Nakanishi, T.; Kami, K.; Arata, Y.; Shimada, I., A novel NMR method for determining the interfaces of large protein-protein complexes. Nat. Struct. Biol. 2000, 7, 220-223.
146. Nicol, F.; Nir, S.; Szoka, F.C., Jr., Effect of cholesterol and charge on pore formation in bilayer vesicles by a pH-sensitive peptide. Biophys. J. 1996, 71, 3288-3301.
147. Pae, J.; Saalik, P.; Liivamagi, L.; Lubenets, D.; Arukuusk, P.; Langel, U.; Pooga, M., Translocation of cell-penetrating peptides across the plasma membrane is controlled by cholesterol and microenvironment created by membranous proteins. J. Control Release 2014, 192, 103-113.
148. Kichler, A.; Pages, J.C.; Leborgne, C.; Druillennec, S.; Lenoir, C.; Coulaud, D.; Delain, E.; Le Cam, E.; Roques, B.P.; Danos, O., Efficient DNA transfection mediated by the C-terminal domain of human immunodeficiency virus type 1 viral protein R. J. Virol .2000, 74, 5424-5431.
149. Ratnayake, P.U.; Sackett, K.; Nethercott, M.J.; Weliky, D.P., pH-dependent vesicle fusion induced by the ectodomain of the human immunodeficiency virus membrane fusion protein gp41: Two kinetically distinct processes and fully-membrane-associated gp41 with predominant beta sheet fusion peptide conformation. Biochim. Biophys. Acta 2015, 1848, 289-298.
150. Schmick, S.D.; Weliky, D.P., Major antiparallel and minor parallel beta sheet populations detected in the membrane-associated human immunodeficiency virus fusion peptide. Biochemistry 2010, 49, 10623-10635.
151. Morcombe, C.R.; Zilm, K.W., Chemical shift referencing in MAS solid state NMR. J. Magn. Reson. 2003, 162, 479-486.
152. Whitelegge, J., Lipid Modulation of Membrane Protein Function. Cell Chem. Biol. 2018, 25, 803-804.
153. Muller, M.P.; Jiang, T.; Sun, C.; Lihan, M.; Pant, S.; Mahinthichaichan, P.; Trifan, A.; Tajkhorshid, E., Characterization of Lipid-Protein Interactions and Lipid-Mediated Modulation of Membrane Protein Function through Molecular Simulation. Chem. Rev. 2019, 119, 6086-6161.
154. Reading, E.; Laganowsky, A.; Allison, T.M.; Robinson, C.V., Membrane Proteins Bind Lipids Selectively To Modulate Their Structure And Function. Protein Sci. 2014, 23, 231-231.
155. Jodaitis, L.; van Oene, T.; Martens, C., Assessing the Role of Lipids in the Molecular Mechanism of Membrane Proteins. Int. J. Mol. Sci. 2021, 22, 7267.
156. Zhang, J.; Li, Q.; Wu, Y.; Wang, D.; Xu, L.; Zhang, Y.; Wang, S.; Wang, T.; Liu, F.; Zaky, M.Y.; Hou, S.; Liu, S.; Zou, K.; Lei, H.; Zou, L.; Zhang, Y.; Liu, H., Cholesterol content in cell membrane maintains surface levels of ErbB2 and confers a therapeutic vulnerability in ErbB2-positive breast cancer. Cell Commun. Signal. 2019, 17, 15.
157. Yeagle, P.L., Modulation of membrane function by cholesterol. Biochimie 1991, 73, 1303-1310.
158. Boesze-Battaglia, K.; Albert, A.D., Cholesterol modulation of photoreceptor function in bovine retinal rod outer segments. J. Biol. Chem. 1990, 265, 20727-20730.
159. Mitchell, D.C.; Straume, M.; Miller, J.L.; Litman, B.J., Modulation of metarhodopsin formation by cholesterol-induced ordering of bilayer lipids. Biochemistry 1990, 29, 9143-9149.
160. Vance, J.E., Phosphatidylserine and phosphatidylethanolamine in mammalian cells: two metabolically related aminophospholipids. J. Lipid. Res. 2008, 49, 1377-1387.
161. Murphy, E.J.; Anderson, D.K.; Horrocks, L.A., Phospholipid and phospholipid fatty acid composition of mixed murine spinal cord neuronal cultures. J. Neurosci. Res. 1993, 34, 472-477.
162. Murphy, E.J.; Schapiro, M.B.; Rapoport, S.I.; Shetty, H.U., Phospholipid composition and levels are altered in Down syndrome brain. Brain Res. 2000, 867, 9-18.
163. Stahelin, R.V.; Digman, M.A.; Medkova, M.; Ananthanarayanan, B.; Rafter, J.D.; Melowic, H.R.; Cho, W., Mechanism of diacylglycerol-induced membrane targeting and activation of protein kinase Cdelta. J. Biol. Chem. 2004, 279, 29501-29512.
164. Verdaguer, N.; Corbalan-Garcia, S.; Ochoa, W.F.; Fita, I.; Gomez-Fernandez, J.C., Ca(2+) bridges the C2 membrane-binding domain of protein kinase Calpha directly to phosphatidylserine. EMBO J. 1999, 18, 6329-6338.
165. Stahelin, R.V.; Rafter, J.D.; Das, S.; Cho, W., The molecular basis of differential subcellular localization of C2 domains of protein kinase C-alpha and group IVa cytosolic phospholipase A2. J. Biol. Chem. 2003, 278, 12452-12460.
166. Stahelin, R.V.; Hwang, J.H.; Kim, J.H.; Park, Z.Y.; Johnson, K.R.; Obeid, L.M.; Cho, W., The mechanism of membrane targeting of human sphingosine kinase 1. J. Biol. Chem. 2005, 280, 43030-43038.
167. Manna, D.; Bhardwaj, N.; Vora, M.S.; Stahelin, R.V.; Lu, H.; Cho, W., Differential roles of phosphatidylserine, PtdIns(4,5)P2, and PtdIns(3,4,5)P3 in plasma membrane targeting of C2 domains. Molecular dynamics simulation, membrane binding, and cell translocation studies of the PKCalpha C2 domain. J. Biol. Chem. 2008, 283, 26047-26058.
168. Yeung, T.; Gilbert, G.E.; Shi, J.; Silvius, J.; Kapus, A.; Grinstein, S., Membrane phosphatidylserine regulates surface charge and protein localization. Science 2008, 319, 210-213.
169. Henson, P.M.; Bratton, D.L.; Fadok, V.A., The phosphatidylserine receptor: a crucial molecular switch? Nat. Rev. Mol. Cell Biol. 2001, 2, 627-633.
170. Callahan, M.K.; Popernack, P.M.; Tsutsui, S.; Truong, L.; Schlegel, R.A.; Henderson, A.J., Phosphatidylserine on HIV envelope is a cofactor for infection of monocytic cells. J. Immunol. 2003, 170, 4840-4845.
171. Macedo-Ribeiro, S.; Bode, W.; Huber, R.; Quinn-Allen, M.A.; Kim, S.W.; Ortel, T.L.; Bourenkov, G.P.; Bartunik, H.D.; Stubbs, M.T.; Kane, W.H.; Fuentes-Prior, P., Crystal structures of the membrane-binding C2 domain of human coagulation factor V. Nature 1999, 402, 434-439.
172. Chukkapalli, V.; Hogue, I.B.; Boyko, V.; Hu, W.S.; Ono, A., Interaction between the human immunodeficiency virus type 1 Gag matrix domain and phosphatidylinositol-(4,5)-bisphosphate is essential for efficient Gag membrane binding. J. Virol. 2008, 82, 2405-2417.
173. Yandrapalli, N.; Lubart, Q.; Tanwar, H.S.; Picart, C.; Mak, J.; Muriaux, D.; Favard, C., Self assembly of HIV-1 Gag protein on lipid membranes generates PI(4,5)P2/Cholesterol nanoclusters. Sci. Rep. 2016, 6, 39332.
174. Lorizate, M.; Sachsenheimer, T.; Glass, B.; Habermann, A.; Gerl, M.J.; Krausslich, H.G.; Brugger, B., Comparative lipidomics analysis of HIV-1 particles and their producer cell membrane in different cell lines. Cell Microbiol. 2013, 15, 292-304.
175. Mucksch, F.; Citir, M.; Luchtenborg, C.; Glass, B.; Traynor-Kaplan, A.; Schultz, C.; Brugger, B.; Krausslich, H.G., Quantification of phosphoinositides reveals strong enrichment of PIP2 in HIV-1 compared to producer cell membranes. Sci. Rep. 2019, 9, 17661.
176. Vance, J.E.; Steenbergen, R., Metabolism and functions of phosphatidylserine. Prog. Lipid Res. 2005, 44, 207-234.
177. Zwaal, R.F.; Comfurius, P.; Bevers, E.M., Surface exposure of phosphatidylserine in pathological cells. Cell Mol. Life Sci. 2005, 62, 971-988.
178. Gordesky, S.E.; Marinetti, G.V., The asymetric arrangement of phospholipids in the human erythrocyte membrane. Biochem. Biophys. Res. Commun. 1973, 50, 1027-1031.
179. Pike, L.J.; Han, X.L.; Chung, K.N.; Gross, R.W., Lipid rafts are enriched in arachidonic acid and plasmenylethanolamine and their composition is independent of caveolin-1 expression: A quantitative electrospray ionization/mass spectrometric analysis. Biochemistry 2002, 41, 2075-2088.
180. Zambrano, F.; Fleischer, S.; Fleischer, B., Lipid composition of the Golgi apparatus of rat kidney and liver in comparison with other subcellular organelles. Biochim. Biophys. Acta 1975, 380, 357-369.
181. Daum, G., Lipids of mitochondria. Biochim Biophys Acta 1985, 822, 1-42.
182. Comte, J.; Maisterrena, B.; Gautheron, D.C., Lipid composition and protein profiles of outer and inner membranes from pig heart mitochondria. Comparison with microsomes. Biochim. Biophys. Acta 1976, 419, 271-284.
183. Alenghat, F.J.; Golan, D.E., Membrane Protein Dynamics and Functional Implications in Mammalian Cells. Curr. Top Membr. 2013, 72, 89-120.
184. Hamann, S.; Kiilgaard, J.F.; Litman, T.; Alvarez-Leefmans, F.J.; Winther, B.R.; Zeuthen, T., Measurement of cell volume changes by fluorescence self-quenching. J. Fluoresc. 2002, 12, 139-145.
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top

相關論文

無相關論文
 
* *