帳號:guest(18.188.168.104)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):曾麒逢
作者(外文):Tseng, Chi-Feng
論文名稱(中文):探討肝腫瘤對蕾莎瓦產生抗藥性之分子調控機制及可能的治療策略
論文名稱(外文):Explore the Molecular Mechanisms and Therapeutic Strategies of Sorafenib Resistance in Liver Cancer
指導教授(中文):汪宏達
夏興國
指導教授(外文):Wang, Horng-Dar
Shiah, Shine-Gwo
口試委員(中文):莊雙恩
郭靜娟
邱慶豐
口試委員(外文):Chuang, Shuang-En
Kuo, Ching-Chuan
Chiu, Ching-Feng
學位類別:博士
校院名稱:國立清華大學
系所名稱:生物科技研究所
學號:103080823
出版年(民國):111
畢業學年度:110
語文別:中文
論文頁數:119
中文關鍵詞:蕾莎瓦抗藥性肝癌
外文關鍵詞:ANGPTL1DicerEZH2SorafenibLiver-cancer
相關次數:
  • 推薦推薦:0
  • 點閱點閱:17
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
肝癌是世界上常見的惡性腫瘤之一,手術切除、肝臟移植及化療是早期肝癌患者的典型治療策略。不幸的是約有70%的病人會在治療後五年復發。蕾莎瓦為一種多重激酶抑制劑,已被核可用於臨床治療中晚期的肝癌病人,提高病人整體的存活率。然而,一旦病人對蕾莎瓦產生抗藥性則會導致預後效果不佳。因此,探討病人對蕾莎瓦產生抗藥性的分子機制,不僅可提供未來蕾莎瓦用藥的依據還可提升蕾莎瓦治療效用,並促進個人化醫學的發展。此篇研究中,我們發現兩種調控蕾莎瓦抗藥性的機制:(1) 已知Angiopoietin-like protein 1 (ANGPTL1)可以抑制血管新生及癌症轉移,且被認為是腫瘤抑制因子。我們在此篇研究中觀察到ANGPTL1的表現量與病人對蕾莎瓦治療的成效呈現正相關。此外,我們證實ANGPTL1會與MET受體結合並抑制其活化,進而阻斷下游AKT/ERK/Egr-1的訊息傳遞,抑制Slug表現。ANGPTL1藉由阻斷MET/AKT/ERK/Egr-1/Slug的訊息傳遞進而抑制肝癌上皮細胞間質化(EMT),並降低肝癌細胞對蕾莎瓦產生之抗藥性及癌幹細胞特性。(2) Dicer在微核糖核酸(MicroRNA)的生合成過程中扮演著重要的角色,而在多種癌症中也發現Dicer的異常表現會導致病人預後狀況不佳及增加對藥物的抗藥性。此篇研究中,我們發現肝癌病人的Dicer表現量與Enhancer of zeste homolog 2 (EZH2)及長鏈非編碼RNA (lncRNA) HOXB-AS3的表現量呈現負相關。同時,在肝癌細胞中大量表現Dicer也會降低細胞對蕾莎瓦的抗藥性。而在機制層面上,我們證實HOXB-AS3會與EZH2結合,並誘導EZH2結合至Dicer的基因啟動子上,使其組蛋白H3之27號位的離胺酸(H3K27me3) 產生甲基化,從而抑制Dicer基因轉錄且導致細胞對蕾莎瓦產生抗藥性。此外,以上所述之機制皆透過體外和體內試驗及臨床的數據分析驗證。總而言之,我們的研究成果闡述蕾莎瓦產生抗藥性的機制,並提供研究人員進一步研究肝癌腫瘤惡化的依據,進而為肝癌患者開發更好的治療策略。
Liver cancer is one of the most common malignant tumors worldwide. Surgical resection, liver transplantation and chemotherapy are typical treatments for early stage of liver cancer. Unfortunately, the successful approach is limited because approximately 70% of these patients develop recurrent tumors within five years. Sorafenib is a multi-kinase inhibitor which is clinically approved for treatment with advanced liver cancer and shows an overall survival benefit. However, acquired resistance to sorafenib is responsible for a poor prognosis. Thus, uncovering the molecular mechanisms underlying sorafenib resistance can potential target for sorafenib treatment and improve sorafenib efficacy, as so called “precision medicine”. Herein, we discover the two distinct mechanisms which affect the activity of sorafenib: (1) Angiopoietin-like protein 1 (ANGPTL1) is considered as a tumor suppressor that blocks angiogenesis and cancer metastasis. In our study, we showed the expression of ANGPTL1 positively correlates with sensitivity to sorafenib of liver cancer cells and liver tumor tissues. Furthermore, we found that ANGPTL1 binds to and blocks the activation of MET receptor, which results in Slug suppression via inhibition of the extracellular receptor kinase/protein kinase B (ERK/AKT)-dependent early growth response protein 1 (Egr-1) pathway. We also found that ANGPTL1 inhibits sorafenib resistance and cancer stemness in liver cancer cells by repressing EMT through inhibition of the MET receptor/AKT/ERK2/Egr-1/Slug signaling cascade. (2) Dicer plays a key role of microRNA (miRNA) maturation and deregulation of Dicer is connected with a poor prognosis and drug resistance in various cancer types. Here, we found the expression of Dicer is inversely correlated with the expression of Enhancer of zeste homolog 2 (EZH2) and long non-coding RNA (lncRNA) HOXB-AS3 in liver cancer patients. Moreover, ectopic expression of Dicer declined the sorafenib resistance in liver cancer cells. Mechanistically, we found HOXB-AS3 acts as a recruiter that physically interacts with EZH2 and promotes EZH2 binding to Dicer promoter, which is followed by trimethylation on Lys 27 of histone H3, thereby transcriptional repressing of Dicer and driving sorafenib resistance. The above proposed mechanisms are strongly supported by in vitro and in vivo experiments and clinical analyses. In conclusion, our findings could provide important insights in sorafenib resistance and offer useful information for researchers on studying tumor progression of liver cancer, as well as development of better cancer therapies for liver cancer patients.
摘要 I
Abstract III
致謝 VI
目錄 VII
Chapter 1: Introduction 1
1.1 Liver cancer 1
1.2 Sorafenib resistance 2
1.3 Epithelial-mesenchymal transition (EMT) and Cancer stemness 3
1.4 Angiopoietin-like protein 1 (ANGPTL1) 4
1.5 Dicer 6
1.6 Enhancer of zeste homolog 2 (EZH2) 7
1.7 Aims of this study 9
Chapter 2: Materials and Methods 10
2.1 Cell lines 10
2.2 Western blotting 11
2.3 RNA isolation, reverse transcription PCR and qRT-PCR. 11
2.4 Flow cytometry analysis. 12
2.5 Sphere Formation Assay. 12
2.6 MTT assay. 13
2.7 In vitro binding assay. 13
2.8 Immunoprecipitation assay. 14
2.9 Animal Studies. 15
2.10 Specimens. 15
2.11 Luciferase reporter assay. 16
2.12 Chromatin immunoprecipitation assay. 17
2.13 RNA-immunoprecipitation assay. 17
2.14 Statistical analysis. 17
Chapter 3: Results and Discussions 19
3.1 Angiopoietin-like protein 1 antagonizes MET receptor activity to repress sorafenib resistance and cancer stemness in liver cancer. 19
3.1.1 The expression of ANGPTL1 enhances the sorafenib sensitivity of liver cancer in vivo and in vitro. 19
3.1.2 Suppression of Slug is involved in ANGPTL1-mediated sorafenib sensitization. 20
3.1.3 Slug rescues ANGPTL1-mediated repression of cancer stemness in liver cancer cells. 22
3.1.4 Inhibition of MET receptor/AKT/ERK signaling pathway is involved in ANGPTL1-mediate Slug suppression and sorafenib sensitization. 24
3.1.5 ANGPTL1 represses Slug-induced sorafenib resistance in an Egr-1 dependent manner. 26
3.1.6 ANGPTL1 blocks the interaction between HGF and the MET receptor by direct binding with MET. 27
3.1.7 Discussion 27
3.2 Transcriptional suppression of Dicer by HOXB- AS3/EZH2 complex dictates sorafenib resistance and cancer stemness. 31
3.2.1 Dicer enhances sorafenib sensitivity and suppresses the cancer stemness of liver cancer. 31
3.2.2 The expression of Dicer is transcriptional repressed by EZH2. 33
3.2.3 EZH2 enhances the sorafenib resistance and increases cancer stemness by suppressing the transcription of Dicer in live cancer. 35
3.2.4 LncRNA HOXB-AS3 acts as a recruiter that promotes EZH2 binds to Dicer promoter. 37
3.2.5 HOXB-AS3 suppresses the transcription of Dicer results in sorafenib resistance and cancer stemness. 38
3.2.6 Discussion. 39
Chapter 4: Conclusion and Future Perspectives 44
References 45
List of Figures and Tables 61
Figure 1. Decreased expression of ANGPTL1 reduces sorafenib sensitization in vitro. 61
Figure 2. Decreased expression of ANGPTL1 reduces sorafenib sensitization in vivo. 63
Figure 3. The expression of EMT markers in Huh7 and Huh7/SR cells. 65
Figure 4. The expression of Slug is suppressed by ANGPTL1. 66
Figure 5. ANGPTL1 suppresses the expression of Slug and involves in sorafenib sensitization in vitro. 67
Figure 6. ANGPTL1 suppresses the expression of Slug and involves in sorafenib sensitization in clinical data. 68
Figure 7. ANGPTL1 suppresses the Slug expression that represses the sphere formation ability. 69
Figure 8. ANGPTL1 decreases cancer stemness by suppressing the expression of Slug. 70
Figure 9. ANGPTL1 suppresses the phosphorylation of MET receptor. 71
Figure 10. ANGPTL1 promotes sorafenib sensitization by inhibiting MET activation. 73
Figure 11. ANGPTL1 promotes sorafenib sensitization by inhibiting MET/AKT/ERK activation. 74
Figure 12. ANGPTL1 suppresses Slug-mediated sorafenib resistance by inactivation of Egr-1 signaling. 75
Figure 13. ANGPTL1 suppresses Slug-mediated sorafenib resistance by inactivation of MET/AKT/ERK-Egr-1 signaling. 77
Figure 14. ANGPTL1 binds to MET and inactivates MET by competing with HGF. 78
Figure 15. Schematic diagram depicts the effect of ANGPTL1 on MET phosphorylation and the downstream signaling pathway. 80
Figure 16. The expression of Dicer is decreased in sorafenib resistance liver cancer cells. 81
Figure 17. Dicer expression is crucial for sorafenib sensitization of liver cancer in vitro. 83
Figure 18. Dicer expression is involved in cancer stemness of liver cancer in vitro. 85
Figure 19. Dicer expression is involved in sorafenib resistance and cancer stemness of liver cancer in vivo. 86
Figure 20. The mRNA and protein stability of Dicer in Huh7 and Huh7/SR cells. 88
Figure 21. EZH2 binds to Dicer promoter and catalyzes H3K27me3. 90
Figure 22. Knock-down of EZH2 results in increasing Dicer and sorafenib sensitization. 92
Figure 23. Overexpression of EZH2 results in reducing Dicer and sorafenib resistance. 94
Figure 24. EZH2-mediated Dicer suppression is crucial for sorafenib resistance of liver cancer in vitro. 96
Figure 25. EZH2-mediated Dicer suppression is crucial for cancer stemness of liver cancer in vitro. 98
Figure 26. EZH2-mediated Dicer suppression is crucial for sorafenib resistance and cancer stemness of liver cancer in vivo. 100
Figure 27. EZH2 inhibitor promotes the effect of sorafenib. 102
Figure 28. Candidates lncRNA are identified by lncRNA microarray. 103
Figure 29. The expressions of lncRNAs are depleted by siRNA. 105
Figure 30. LncRNA HOXB-AS3 negatively regulates the expression of Dicer. 106
Figure 31. HOXB-AS3 is crucial for EZH2 to bind to Dicer promoter and triggers H3K27me3. 108
Figure 32. HOXB-AS3-suppressed Dicer expression is crucial for sorafenib resistance of liver cancer in vitro. 109
Figure 33. HOXB-AS3-suppressed Dicer expression is crucial for cancer stemness of liver cancer in vitro. 110
Figure 34. HOXB-AS3-suppressed Dicer expression is crucial for sorafenib resistance and cancer stemness of liver cancer patients. 112
Figure 35. A schematic model illustrats downregulation of Dicer via the HOXB- AS3/EZH2 complex. 113
Table 1. Clinicopathologic characteristics of patients with high and low expression of ANGPTL1 in liver cancer. 114
Table 2. Clinicopathological features of sorafenib responders and non-responders in liver cancer patients. 115
Appendix 116
Appendix 1. List of antibodies. 116
Appendix 2. Sequences and information of primers 117
Abdel-Rahman, O., and Lamarca, A. (2016). Development of sorafenib-related side effects in patients diagnosed with advanced hepatocellular carcinoma treated with sorafenib: a systematic-review and meta-analysis of the impact on survival. Expert Review of Gastroenterology & Hepatology 11, 75-83.

Adams, L. (2017). Pri-miRNA processing: structure is key. Nat Rev Genet 18, 145-145.

Bachmann, I.M., Halvorsen, O.J., Collett, K., Stefansson, I.M., Straume, O., Haukaas, S.A., Salvesen, H.B., Otte, A.P., and Akslen, L.A. (2006). EZH2 expression is associated with high proliferation rate and aggressive tumor subgroups in cutaneous melanoma and cancers of the endometrium, prostate, and breast. J Clin Oncol 24, 268-273.

Carbone, C., Piro, G., Merz, V., Simionato, F., Santoro, R., Zecchetto, C., Tortora, G., and Melisi, D. (2018). Angiopoietin-Like Proteins in Angiogenesis, Inflammation and Cancer. International Journal of Molecular Sciences 19, 431.

Chen, K.-F., Tai, W.-T., Hsu, C.-Y., Huang, J.-W., Liu, C.-Y., Chen, P.-J., Kim, I., and Shiau, C.-W. (2012). Blockade of STAT3 activation by sorafenib derivatives through enhancing SHP-1 phosphatase activity. European Journal of Medicinal Chemistry 55, 220-227.

Cheng, J.C., Chang, H.M., and Leung, P.C.K. (2012). Egr-1 mediates epidermal growth factor-induced downregulation of E-cadherin expression via Slug in human ovarian cancer cells. Oncogene 32, 1041-1049.

Chow, A.K.M., Ng, L., Lam, C.S.C., Wong, S.K.M., Wan, T.M.H., Cheng, N.S.M., Yau, T.C.C., Poon, R.T.P., and Pang, R.W.C. (2013). The Enhanced Metastatic Potential of Hepatocellular Carcinoma (HCC) Cells with Sorafenib Resistance. Plos One 8.

de Kock, L., Wang, Y.C., Revil, T., Badescu, D., Rivera, B., Sabbaghian, N., Wu, M., Weber, E., Sandoval, C., Hopman, S.M.J., et al. (2016). High-sensitivity sequencing reveals multi-organ somatic mosaicism causing DICER1 syndrome. Journal of Medical Genetics 53, 43-52.

Deng, M., Lu, Z.G., Zheng, J.K., Wan, X., Chen, X.L., Hirayasu, K., Sun, H.Z., Lam, Y., Chen, L.P., Wang, Q.H., et al. (2014). A motif in LILRB2 critical for Angptl2 binding and activation. Blood 124, 924-935.

Dhanabal, M., Jeffers, M., LaRochelle, W.J., and Lichenstein, H.S. (2005). Angioarrestin: A unique angiopoietin-related protein with anti-angiogenic properties. Biochemical and Biophysical Research Communications 333, 308-315.

Dongre, A., and Weinberg, R.A. (2018). New insights into the mechanisms of epithelial–mesenchymal transition and implications for cancer. Nat Rev Mol Cell Bio 20, 69-84.

Duan, R., Du, W., and Guo, W. (2020). EZH2: a novel target for cancer treatment. J Hematol Oncol 13.

Ebert, Margaret S., and Sharp, Phillip A. (2012). Roles for MicroRNAs in Conferring Robustness to Biological Processes. Cell 149, 515-524.

El-Serag, H.B., Marrero, J.A., Rudolph, L., and Reddy, K.R. (2008). Diagnosis and Treatment of Hepatocellular Carcinoma. Gastroenterology 134, 1752-1763.

Fan, D.C., Zhao, Y.R., Qi, H., Hou, J.X., and Zhang, T.H. (2020). MiRNA-506 presents multiple tumor suppressor activities by targeting EZH2 in nasopharyngeal carcinoma. Auris Nasus Larynx 47, 632-642.

Feinberg-Gorenshtein, G., Guedj, A., Shichrur, K., Jeison, M., Luria, D., Kodman, Y., Ash, S., Feinmesser, M., Edry, L., Shomron, N., et al. (2013). miR-192 Directly Binds and Regulates Dicer1 Expression in Neuroblastoma. Plos One 8.

Forner, A., Reig, M., and Bruix, J. (2018). Hepatocellular carcinoma. The Lancet 391, 1301-1314.

Fu, J., Su, X., Li, Z., Deng, L., Liu, X., Feng, X., and Peng, J. (2021). HGF/c-MET pathway in cancer: from molecular characterization to clinical evidence. Oncogene 40, 4625-4651.

Fu, X.M., Lin, J.Z., Qin, F.J., Yang, Z.H., Ding, Y.C., Zhang, Y., Han, L., Zhu, X.Y., and Zhang, Q.X. (2018). LncAPC drives Wnt/-catenin activation and liver TIC self-renewal through EZH2 mediated APC transcriptional inhibition. Mol Carcinogen 57, 408-418.

Gan, L., Xu, M.D., Hua, R.X., Tan, C., Zhang, J.Y., Gong, Y.W., Wu, Z.H., Weng, W.W., Sheng, W.Q., and Guo, W.J. (2018). The polycomb group protein EZH2 induces epithelial-mesenchymal transition and pluripotent phenotype of gastric cancer cells by binding to PTEN promoter. J Hematol Oncol 11.

Geng, Y.J., Xie, S.L., Li, Q., Ma, J., and Wang, G.Y. (2011). Large Intervening Non-coding RNA HOTAIR is Associated with Hepatocellular Carcinoma Progression. J Int Med Res 39, 2119-2128.

Goh, Y.Y., Pal, M., Chong, H.C., Zhu, P.C., Tan, M.J., Punugu, L., Lam, C.R.I., Yau, Y.H., Tan, C.K., Huang, R.L., et al. (2010). Angiopoietin-Like 4 Interacts with Integrins beta 1 and beta 5 to Modulate Keratinocyte Migration. Am J Pathol 177, 2791-2803.

Gross, T.J., Powers, L.S., Boudreau, R.L., Brink, B., Reisetter, A., Goel, K., Gerke, A.K., Hassan, I.H., and Monick, M.M. (2014). A MicroRNA Processing Defect in Smokers' Macrophages Is Linked to SUMOylation of the Endonuclease DICER. J Biol Chem 289, 12823-12834.

Gupta, R.A., Shah, N., Wang, K.C., Kim, J., Horlings, H.M., Wong, D.J., Tsai, M.C., Hung, T., Argani, P., Rinn, J.L., et al. (2010). Long non-coding RNA HOTAIR reprograms chromatin state to promote cancer metastasis. Nature 464, 1071-U1148.

Han, H.B., Du, Y.T., Zhao, W., Li, S., Chen, D.J., Zhang, J., Liu, J., Suo, Z.H., Bian, X.W., Xing, B.C., et al. (2019). PBX3 is targeted by multiple miRNAs and is essential for liver tumour-initiating cells (vol 6, 8271, 2015). Nat Commun 10.

Han, J.J., Lee, Y., Yeom, K.H., Kim, Y.K., Jin, H., and Kim, V.N. (2004). The Drosha-DGCR8 complex in primary microRNA processing. Gene Dev 18, 3016-3027.

He, B., Zhao, Z., Cai, Q., Zhang, Y., Zhang, P., Shi, S., Xie, H., Peng, X., Yin, W., Tao, Y., et al. (2020). miRNA-based biomarkers, therapies, and resistance in Cancer. International Journal of Biological Sciences 16, 2628-2647.

Hinkal, G.W., Grelier, G., Puisieux, A., and Moyret-Lalle, C. (2011). Complexity in the regulation of Dicer expression: Dicer variant proteins are differentially expressed in epithelial and mesenchymal breast cancer cells and decreased during EMT. Brit J Cancer 104, 387-388.

Huang, X.Y., Ke, A.W., Shi, G.M., Zhang, X., Zhang, C., Shi, Y.H., Wang, X.Y., Ding, Z.B., Xiao, Y.S., Yan, J., et al. (2013). B-crystallin complexes with 14-3-3 to induce epithelial-mesenchymal transition and resistance to sorafenib in hepatocellular carcinoma. Hepatology 57, 2235-2247.

Ito, T., Teo, Y.V., Evans, S.A., Neretti, N., and Sedivy, J.M. (2018). Regulation of Cellular Senescence by Polycomb Chromatin Modifiers through Distinct DNA Damage-and Histone Methylation-Dependent Pathways. Cell Reports 22, 3480-3492.

Jiang, K., Chen, H.Y., Fang, Y.M., Chen, L.B., Zhong, C.H., Bu, T.T., Dai, S.Q., Pan, X., Fu, D.L., Qian, Y.C., et al. (2021). Exosomal ANGPTL1 attenuates colorectal cancer liver metastasis by regulating Kupffer cell secretion pattern and impeding MMP9 induced vascular leakiness. J Exp Clin Canc Res 40.

Jones, N., Iljin, K., Dumont, D.J., and Alitalo, K. (2001). Tie receptors: New modulators of angiogenic and lymphangiogenic responses. Nat Rev Mol Cell Bio 2, 257-267.

Katoh, Y., and Katoh, M. (2006). Comparative integromics on Angiopoietin family members. Int J Mol Med 17, 1145-1149.

Kawahara, K., Nakayama, H., Nagata, M., Yoshida, R., Hirosue, A., Tanaka, T., Nakagawa, Y., Matsuoka, Y., Kojima, T., Takamune, Y., et al. (2014). A low dicer expression is associated with resistance to 5-FU-based chemoradiotherapy and a shorter overall survival in patients with oral squamous cell carcinoma. J Oral Pathol Med 43, 350-356.

Khalil, A.M., Guttman, M., Huarte, M., Garber, M., Raj, A., Morales, D.R., Thomas, K., Presser, A., Bernstein, B.E., van Oudenaarden, A., et al. (2009). Many human large intergenic noncoding RNAs associate with chromatin-modifying complexes and affect gene expression. P Natl Acad Sci USA 106, 11667-11672.

Koch, L. (2014). GENE REGULATION Yin and Yang of Polycomb/Trithorax response elements. Nat Rev Mol Cell Bio 15, 630-+.

Konze, K.D., Ma, A., Li, F.L., Barsyte-Lovejoy, D., Parton, T., MacNevin, C.J., Liu, F., Gao, C., Huang, X.P., Kuznetsova, E., et al. (2013). An Orally Bioavailable Chemical Probe of the Lysine Methyltransferases EZH2 and EZH1. Acs Chem Biol 8, 1324-1334.

Kuang, Y., Cai, J., Li, D.L., Han, Q., Cao, J., and Wang, Z.H. (2013). Repression of Dicer is associated with invasive phenotype and chemoresistance in ovarian cancer. Oncol Lett 5, 1149-1154.

Kumar, M.S., Lu, J., Mercer, K.L., Golub, T.R., and Jacks, T. (2007). Impaired microRNA processing enhances cellular transformation and tumorigenesis. Nat Genet 39, 673-677.

Kuo, T.-C., Tan, C.-T., Chang, Y.-W., Hong, C.-C., Lee, W.-J., Chen, M.-W., Jeng, Y.-M., Chiou, J., Yu, P., Chen, P.-S., et al. (2013). Angiopoietin-like protein 1 suppresses SLUG to inhibit cancer cell motility. Journal of Clinical Investigation 123, 1082-1095.

Lai, H.H., Li, J.N., Wang, M.Y., Huang, H.Y., Croce, C.M., Sun, H.L., Lyu, Y.J., Kang, J.W., Chiu, C.F., Hung, M.C., et al. (2018). HIF-1 alpha promotes autophagic proteolysis of Dicer and enhances tumor metastasis. Journal of Clinical Investigation 128, 625-643.

Laugesen, A., Hojfeldt, J.W., and Helin, K. (2019). Molecular Mechanisms Directing PRC2 Recruitment and H3K27 Methylation. Mol Cell 74, 8-18.

Levy, C., Khaled, M., Robinson, K.C., Veguilla, R.A., Chen, P.H., Yokoyama, S., Makino, E., Lu, J., Larue, L., Beermann, F., et al. (2010). Lineage-Specific Transcriptional Regulation of DICER by MITF in Melanocytes. Cell 141, 994-1005.

Lim, J.R., Mouawad, J., Gorton, O.K., Bubb, W.A., and Kwan, A.H. (2021). Cancer stem cell characteristics and their potential as therapeutic targets. Med Oncol 38.

Liu, L., Cao, Y., Chen, C., Zhang, X., McNabola, A., Wilkie, D., Wilhelm, S., Lynch, M., and Carter, C. (2006). Sorafenib Blocks the RAF/MEK/ERK Pathway, Inhibits Tumor Angiogenesis, and Induces Tumor Cell Apoptosis in Hepatocellular Carcinoma Model PLC/PRF/5. Cancer Research 66, 11851-11858.

Llovet, J.M., Zucman-Rossi, J., Pikarsky, E., Sangro, B., Schwartz, M., Sherman, M., and Gores, G. (2016). Hepatocellular carcinoma. Nature Reviews Disease Primers 2.

Lu, A.Q., Lv, B., Qiu, F., Wang, X.Y., and Cao, X.H. (2017). Upregulation of miR-137 reverses sorafenib resistance and cancer-initiating cell phenotypes by degrading ANT2 in hepatocellular carcinoma. Oncol Rep 37, 2071-2078.

Ma, J., Zhang, J., Weng, Y.C., and Wang, J.C. (2018). EZH2-Mediated microRNA-139-5p Regulates Epithelial-Mesenchymal Transition and Lymph Node Metastasis of Pancreatic Cancer. Mol Cells 41, 868-880.

Malanchi, I., Santamaria-Martinez, A., Susanto, E., Peng, H., Lehr, H.A., Delaloye, J.F., and Huelsken, J. (2012). Interactions between cancer stem cells and their niche govern metastatic colonization. Nature 481, 85-U95.

Matsumoto, K., Nakamura, T., Sakai, K., and Nakamura, T. (2008). Hepatocyte growth factor and Met in tumor biology and therapeutic approach with NK4. Proteomics 8, 3360-3370.

Miranda, T.B., Cortez, C.C., Yoo, C.B., Liang, G.N., Abe, M., Kelly, T.K., Marquez, V.E., and Jones, P.A. (2009). DZNep is a global histone methylation inhibitor that reactivates developmental genes not silenced by DNA methylation. Mol Cancer Ther 8, 1579-1588.

Nutt, S.L., Keenan, C., Chopin, M., and Allan, R.S. (2020). EZH2 function in immune cell development. Biol Chem 401, 933-943.

Okada, C., Yamashita, E., Lee, S.J., Shibata, S., Katahira, J., Nakagawa, A., Yoneda, Y., and Tsukihara, T. (2009). A High-Resolution Structure of the Pre-microRNA Nuclear Export Machinery. Science 326, 1275-1279.

Qiu, B.Q., Lin, X.H., Ye, X.D., Huang, W., Pei, X., Xiong, D., Long, X., Zhu, S.Q., Lu, F., Lin, K., et al. (2020). Long non-coding RNA PSMA3-AS1 promotes malignant phenotypes of esophageal cancer by modulating the miR-101/EZH2 axis as a ceRNA. Aging-Us 12, 1824-1837.

Reya, T., Morrison, S.J., Clarke, M.F., and Weissman, I.L. (2001). Stem cells, cancer, and cancer stem cells. Nature 414, 105-111.

Rigbolt, K.T.G., Prokhorova, T.A., Akimov, V., Henningsen, J., Johansen, P.T., Kratchmarova, I., Kassem, M., Mann, M., Olsen, J.V., and Blagoev, B. (2011). System-Wide Temporal Characterization of the Proteome and Phosphoproteome of Human Embryonic Stem Cell Differentiation. Sci Signal 4.

Rinn, J.L., Kertesz, M., Wang, J.K., Squazzo, S.L., Xu, X., Brugmann, S.A., Goodnough, L.H., Helms, J.A., Farnham, P.J., Segal, E., et al. (2007). Functional demarcation of active and silent chromatin domains in human HOX loci by Noncoding RNAs. Cell 129, 1311-1323.

Rupaimoole, R., Calin, G.A., Lopez-Berestein, G., and Sood, A.K. (2016). miRNA Deregulation in Cancer Cells and the Tumor Microenvironment. Cancer Discov 6, 235-246.

Santulli, G. (2014). Angiopoietin-Like Proteins: A Comprehensive Look. Frontiers in Endocrinology 5.

Sha, L.Y., Zhang, Y., Wang, W., Sui, X., Liu, S.K., Wang, T., and Zhang, H. (2016). MiR-18a upregulation decreases Dicer expression and confers paclitaxel resistance in triple negative breast cancer. Eur Rev Med Pharmaco 20, 2201-2208.

Shibue, T., and Weinberg, R.A. (2017). EMT, CSCs, and drug resistance: the mechanistic link and clinical implications. Nature Reviews Clinical Oncology 14, 611-629.

Sia, D., Villanueva, A., Friedman, S.L., and Llovet, J.M. (2017). Liver Cancer Cell of Origin, Molecular Class, and Effects on Patient Prognosis. Gastroenterology 152, 745-761.

Siegel, R.L., Miller, K.D., Fuchs, H.E., and Jemal, A. (2021). Cancer Statistics, 2021. CA: A Cancer Journal for Clinicians 71, 7-33.

Simon, J.A., and Lange, C.A. (2008). Roles of the EZH2 histone methyltransferase in cancer epigenetics. Mutat Res-Fund Mol M 647, 21-29.

Su, X.H., Chakravarti, D., Cho, M.S., Liu, L.Z., Gi, Y.J., Lin, Y.L., Leung, M.L., El-Naggar, A., Creighton, C.J., Suraokar, M.B., et al. (2010). TAp63 suppresses metastasis through coordinate regulation of Dicer and miRNAs. Nature 467, 986-U168.

Su, Y.H., Hsu, T.W., Chen, H.A., Su, C.M., Huang, M.T., Chuang, T.H., Su, J.L., Hsieh, C.L., and Chiu, C.F. (2021). ERK-mediated transcriptional activation of Dicer is involved in gemcitabine resistance of pancreatic cancer. J Cell Physiol 236, 4420-4434.

Sun, R.X., Yang, L.Y., Hu, Y.P., Wang, Y., Zhang, Q., Zhang, Y.Y., Ji, Z.L., and Zhao, D. (2020). ANGPTL1 is a potential biomarker for differentiated thyroid cancer diagnosis and recurrence. Oncol Lett 20.

Tak, E., Lee, S., Lee, J., Rashid, M.A., Kim, Y.W., Park, J.-H., Park, W.S., Shokat, K.M., Ha, J., and Kim, S.S. (2011). Human carbonyl reductase 1 upregulated by hypoxia renders resistance to apoptosis in hepatocellular carcinoma cells. Journal of Hepatology 54, 328-339.

Takano, M., Hirose, N., Sumi, C., Yanoshita, M., Nishiyama, S., Onishi, A., Asakawa, Y., and Tanimoto, K. (2021). ANGPTL2 Promotes Inflammation via Integrin alpha 5 beta 1 in Chondrocytes. Cartilage 13, 885s-897s.

Tarhini, A.A., Rafique, I., Floros, T., Tran, P., Gooding, W.E., Villaruz, L.C., Burns, T.F., Friedland, D.M., Petro, D.P., Farooqui, M., et al. (2017). Phase 1/2 Study of Rilotumumab (AMG 102), a Hepatocyte Growth Factor Inhibitor, and Erlotinib in Patients With Advanced Non-Small Cell Lung Cancer. Cancer-Am Cancer Soc 123, 2936-2944.

Teresita NJ Flores-Téllez, S.V.-T., Carolina Piña-Vázquez (2017). road to stemness in hepatocellular carcinoma. World Journal of Gastroenterology 23, 6750-6776.

Theotoki, E.I., Pantazopoulou, V.I., Georgiou, S., Kakoulidis, P., Filippa, V., Stravopodis, D.J., and Anastasiadou, E. (2020). Dicing the Disease with Dicer: The Implications of Dicer Ribonuclease in Human Pathologies. International Journal of Molecular Sciences 21, 7223.

Thiery, J.P., Acloque, H., Huang, R.Y.J., and Nieto, M.A. (2009). Epithelial-Mesenchymal Transitions in Development and Disease. Cell 139, 871-890.

van Malenstein, H., Dekervel, J., Verslype, C., Van Cutsem, E., Windmolders, P., Nevens, F., and van Pelt, J. (2013). Long-term exposure to sorafenib of liver cancer cells induces resistance with epithelial-to-mesenchymal transition, increased invasion and risk of rebound growth. Cancer Lett 329, 74-83.

Varambally, S., Dhanasekaran, S.M., Zhou, M., Barrette, T.R., Kumar-Sinha, C., Sanda, M.G., Ghosh, D., Pienta, K.J., Sewalt, R.G.A.B., Otte, A.P., et al. (2002). The polycomb group protein EZH2 is involved in progression of prostate cancer. Nature 419, 624-629.

Vergani-Junior, C.A., Tonon-da-Silva, G., Inan, M.D., and Mori, M.A. (2021). DICER: structure, function, and regulation. Biophysical Reviews 13, 1081-1090.

Wang, C.J., Lv, Y.L., Sha, Z.Y., Zhang, J.J., Wu, J.H., Qi, Y.X., and Guo, Z.J. (2021). Dicer Enhances Bevacizumab-Related Inhibition of Hepatocellular Carcinoma via Blocking the Vascular Endothelial Growth Factor Pathway. J Hepatocell Carcino 8, 1643-1653.

Wang, X., Chen, H., Wen, Y.P., Yang, X.X., Han, Q., Jiang, P., Huang, Z.J., Cai, J., and Wang, Z.H. (2018). Dicer affects cisplatin-mediated apoptosis in epithelial ovarian cancer cells. Mol Med Rep 18, 4381-4387.

Wilhelm, S.M., Carter, C., Tang, L.Y., Wilkie, D., McNabola, A., Rong, H., Chen, C., Zhang, X.M., Vincent, P., McHugh, M., et al. (2004). BAY 43-9006 exhibits broad spectrum oral antitumor activity and targets the RAF/MEK/ERK pathway and receptor tyrosine kinases involved in tumor progression and angiogenesis. Cancer Research 64, 7099-7109.

Wu, Z.X., Yang, Y.Q., Teng, Q.X., Wang, J.Q., Lei, Z.N., Wang, J.Q., Lusvarghi, S., Ambudkar, S.V., Yang, D.H., and Chen, Z.S. (2020). Tivantinib, A c-Met Inhibitor in Clinical Trials, Is Susceptible to ABCG2-Mediated Drug Resistance. Cancers 12.

Xia, L.L., Zhu, X.H., Zhang, L., Xu, Y.H., Chen, G.P., and Luo, J. (2020). EZH2 enhances expression of CCL5 to promote recruitment of macrophages and invasion in lung cancer. Biotechnol Appl Bioc.

Xin, H.-W., Ambe, C.M., Hari, D.M., Wiegand, G.W., Miller, T.C., Chen, J.-Q., Anderson, A.J., Ray, S., Mullinax, J.E., Koizumi, T., et al. (2013a). Label-retaining liver cancer cells are relatively resistant to sorafenib. Gut 62, 1777-1786.

Xin, H.W., Ambe, C.M., Hari, D.M., Wiegand, G.W., Miller, T.C., Chen, J.Q., Anderson, A.J., Ray, S., Mullinax, J.E., Koizumi, T., et al. (2013b). Label-retaining liver cancer cells are relatively resistant to sorafenib. Gut 62, 1777-1786.

Yamashita, T., and Wang, X.W. (2013). Cancer stem cells in the development of liver cancer. Journal of Clinical Investigation 123, 1911-1918.

Yan, Q., Jiang, L., Liu, M., Yu, D., Zhang, Y., Li, Y., Fang, S., Li, Y., Zhu, Y.-H., Yuan, Y.-F., et al. (2017). ANGPTL1 Interacts with Integrin α1β1 to Suppress HCC Angiogenesis and Metastasis by Inhibiting JAK2/STAT3 Signaling. Cancer Research 77, 5831-5845.

Yan, X.L., Liu, X.H., Wang, Z.H., Cheng, Q., Ji, G.H., Yang, H., Wan, L.F., Ge, C., Zeng, Q., Huang, H., et al. (2019). MicroRNA-486-5p functions as a tumor suppressor of proliferation and cancer stem-like cell properties by targeting Sirt1 in liver cancer. Oncol Rep 41, 1938-1948.

Yang, J.D., Hainaut, P., Gores, G.J., Amadou, A., Plymoth, A., and Roberts, L.R. (2019). A global view of hepatocellular carcinoma: trends, risk, prevention and management. Nature Reviews Gastroenterology & Hepatology 16, 589-604.

Yao, Y.Z., Hu, H., Yang, Y., Zhou, G.Q., Shang, Z.F., Yang, X.D., Sun, K., Zhan, S.H.,
Yu, Z.Y., Li, P.Y., et al. (2016). Downregulation of Enhancer of Zeste Homolog 2 (EZH2) Is Essential for the Induction of Autophagy and Apoptosis in Colorectal Cancer Cells. Genes-Basel 7.

Yap, T.A., Winter, J.N., Giulino-Roth, L., Longley, J., Lopez, J., Michot, J.M., Leonard, J.P., Ribrag, V., McCabe, M.T., Creasy, C.L., et al. (2019). Phase I Study of the Novel Enhancer of Zeste Homolog 2 (EZH2) Inhibitor GSK2816126 in Patients with Advanced Hematologic and Solid Tumors. Clin Cancer Res 25, 7331-7339.

Yin, X.J., Yang, S.Y., Zhang, M.Y., and Yue, Y. (2019). The role and prospect of JMJD3 in stem cells and cancer. Biomed Pharmacother 118.

Yoda, M., Kawamata, T., Paroo, Z., Ye, X.C., Iwasaki, S., Liu, Q.H., and Tomari, Y. (2010). ATP-dependent human RISC assembly pathways. Nat Struct Mol Biol 17, 17-U29.

Zhang, H., Kolb, F.A., Jaskiewicz, L., Westhof, E., and Filipowicz, W. (2004). Single Processing Center Models for Human Dicer and Bacterial RNase III. Cell 118, 57-68.

Zhang, X., Jiang, P., Shuai, L., Chen, K., Li, Z.H., Zhang, Y.J., Jiang, Y., and Li, X.W. (2016). miR-589-5p inhibits MAP3K8 and suppresses CD90(+) cancer stem cells in hepatocellular carcinoma. J Exp Clin Canc Res 35.

Zhu, Y.-j., Zheng, B., Wang, H.-y., and Chen, L. (2017). New knowledge of the mechanisms of sorafenib resistance in liver cancer. Acta Pharmacologica Sinica 38, 614-622.

 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *