帳號:guest(18.226.185.25)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):林孟均
作者(外文):Lin, Meng-Jin
論文名稱(中文):家蠶絲質蛋白敷料共軛第一型類胰島素生長因子應用於藥物遞送及糖尿病傷口治療之研究
論文名稱(外文):An Insulin-Like Growth Factor-1 Conjugated Bombyx mori Silk Fibroin Dressing for Drug Delivery and Diabetic Wound Therapy
指導教授(中文):張晃猷
指導教授(外文):Chang, Hwan-You
口試委員(中文):王雲銘
王子威
張建文
董國忠
口試委員(外文):Wang, Yun-Ming
Wang, Tzu-Wei
Chang, Chien-Wen
Dong, Guo-Chung
學位類別:博士
校院名稱:國立清華大學
系所名稱:分子醫學研究所
學號:103080802
出版年(民國):110
畢業學年度:109
語文別:英文
論文頁數:85
中文關鍵詞:家蠶蠶絲絲質蛋白第一型類胰島素生長因子傷口癒合敷料糖尿病
外文關鍵詞:Bombyx mori Lsilkworminsulin-like growth factor-1wound healingwound dressingdiabetes
相關次數:
  • 推薦推薦:0
  • 點閱點閱:565
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
本研究目標開發用於治療慢性糖尿病傷口的蠶絲絲質蛋白薄膜敷料 (SF-film),並評估該敷料作為藥物載體對遞送第一型類胰島素生長因子 (IGF-1) 的動力及對傷口的治療效果。蠶絲經新式的高溫脫膠製程技術 (HD)可萃取出高純度的絲質蛋白,並可製成具有疏水層的薄膜敷料,相較於傳統鹼脫膠製程 (AD),可提高薄膜透明度達42%,並提高BALB/3T3成纖維細胞增生率達32%。經傅立葉轉換紅外線光譜分析顯示,不論AD或HD製程均可維持 SF-film的二級結構,惟HD製程可提高β-折疊的結晶度。藥物動力分析顯示,SF-film的釋放速率遵循零級動力學 (zero-order kinetics),經Ritger &Peppas公式計算確認,負載0.65、6.5 和 65 pmol IGF-1的 SF-film,在37°C下的釋放速率常數分別為每小時0.11、0.23 和 0.09 %,值得注意地是IGF-1負載在SF-film載體上可維持藥物活性,並持續釋放IGF-長達30天以上。在劑量評估中,顯示IGF-1具有劑量依賴性,高糖度培養基下的BALB/3T3 成纖維細胞添加0.65 pmol IGF-1對細胞刻痕癒合速度最佳;動物試驗顯示,施用SF-film與IGF-1對於糖尿病傷口癒合具有協同作用,相較於施用65 pmol 游離型 IGF-1,糖尿病鼠 (db/db) 於施用SF-film負載3.25 pmol IGF-1處理,於13天後可顯著加速傷口閉合率達13%。分析傷口修復參數顯示,可提高傷口組織再上皮率、表皮組織面積、肉芽組織生成和血管生成等。進一步探討分子機制,施用SF-film負載IGF-1的敷料於糖尿病鼠上,可顯著提高傷口組織中IGF-1受體(IGF1R)磷酸化的比率,推論由於SF-film持續遞送IGF-1,活化了IGF1R下游路徑,進而達到促進傷口細胞生合成與組織修復的效果。綜合上述,使用HD製程生產之SF-film具有極大的發展潛能,除可作為緩釋IGF-1的藥物載體,亦可作為傷口敷料,有效治癒糖尿病傷口。
This study aimed to develop a high purity patented silk fibroin (SF)-film and test its suitability to be used as a slow-release delivery for insulin-like growth factor-1 (IGF-1) for chronic diabetic wounds. Silk fibroin was purified through a newly developed heating degumming (HD) process and casted on a hydrophobic surface to form SF-films. The process allowed the fabricated film to achieve a 42% increase in transparency and a 32% higher proliferation rate for BALB/3T3 fibroblasts compared to that obtained by conventional alkaline degumming treatment. Fourier transform infrared analysis demonstrated that secondary structure was retained in both HD- and alkaline degumming-derived SF preparations, although the crystallinity of beta-sheet in SF-film after the HD processing was slightly increased. The release rate of the SF film delivering IGF-1 followed zero-order kinetics as determined via the Ritger and Peppas equation. The release rate constant was identified as 0.11, 0.23, and 0.09% h−1 at 37 °C for SF films loaded with 0.65, 6.5, and 65 pmol IGF-1, respectively. More importantly, the IGF-1 activity was preserved for more than 30 days when complexed with the SF film. This study also investigated whether IGF-1-loaded SF films accelerated in vitro (BALB/3T3) and in vivo (diabetic mice) wound healing and what the optimal dosage is. This study demonstrated that the optimal IGF-1 dosage to promote the BALB/3T3 cell growth in a hyperglycemic medium was approximately 0.65 pmol. Further analysis indicated that SF-films loaded with 3.25 pmol of IGF-1 showed significantly superior wound closure, a 13% increase at the 13th day after treatment relative to treatment with 65 pmol of free IGF-1 in a diabetic mice. IGF-1 also increased the epithelial tissue area and micro-vessel formation in a dose-dependent manner at a low dosage range (3.25 pmol) when loaded to SF-films. Improvement of diabetic wound healing was exerted synergistically by SF-film and IGF-1, as reflected by parameters including levels of re-epithelialization, epithelial tissue area, granulation tissue, and angiogenesis. Western blotting analysis demonstrated that IGF-1 receptor (IGF1R) phosphorylation in diabetic wounds increased more significantly in the IGF-1-loaded SF films group than in other experimental groups. The findings suggest that IGF-1 released from SF-films promotes wound healing through continuously activating the IGF1R pathway thereby accelerating the downstream wound repair process. Collectively, these results indicate that SF films produced using HD have considerable potential to be used as an IGF-1 drug delivery wound dressing for diabetic wound therapy.
Chapter 1:General Introduction 1-1
1.1 Diabetes mellitus and chronic wound 1-2
1.2 Insulin-like growth factor-1 1-2
1.3 Sericulture and Bombyx mori L. silkworm 1-3
1.4 Bombyx mori L. silk fiber fibroin 1-3
1.5 Wound healing 1-5
1.6 Wound dressing 1-5
1.7 Discussion 1-6
Chapter 2:An Insulin-Like Growth Factor-1 Conjugated Bombyx mori L. Silk Fibroin Dressing for Diabetic Wound Healing: Physicochemical Property, Characterization, and Dosage Optimization. 2-1
2.1 Introduction 2-2
2.2 Materials and methods 2-3
2.3. Results 2-9
2.4. Discussion 2-29
Chapter 3: An Insulin-Like Growth Factor-1 Conjugated Bombyx mori L. Silk Fibroin Dressing: Drug Delivery and Sustained Release 3-1
3.1 Introduction 3-2
3.2 Materials and methods 3-5
3.3 Results 3-8
3.4 Discussion 3-21
Chapter 4:Conclusion and Future Perspective 4-1
References R-1
Publication List R-14

1. Saeedi, P.; Petersohn, I.; Salpea, P.; Malanda, B.; Karuranga, S.; Unwin, N.; Colagiuri, S.; Guariguata, L.; Motala, A. A.; Ogurtsova, K.; Shaw, J. E.; Bright, D.; Williams, R.; Committee, I. D. F. D. A., Global and regional diabetes prevalence estimates for 2019 and projections for 2030 and 2045: Results from the International Diabetes Federation Diabetes Atlas, 9(th) edition. Diabetes Res Clin Pract 2019, 157, 107843.
2. Liang, Y. W.; Chang, H. F.; Lin, Y. H., Effects of health-information-based diabetes shared care program participation on preventable hospitalizations in Taiwan. BMC Health Serv Res 2019, 19, (1), 890.
3. Cheng, L. J.; Chen, J. H.; Lin, M. Y.; Chen, L. C.; Lao, C. H.; Luh, H.; Hwang, S. J., A competing risk analysis of sequential complication development in Asian type 2 diabetes mellitus patients. Sci Rep 2015, 5, 15687.
4. Singh, N.; Armstrong, D. G.; Lipsky, B. A., Preventing foot ulcers in patients with diabetes. JAMA 2005, 293, (2), 217-228.
5. Berlanga-Acosta, J.; Fernandez-Montequin, J.; Valdes-Perez, C.; Savigne-Gutierrez, W.; Mendoza-Mari, Y.; Garcia-Ojalvo, A.; Falcon-Cama, V.; Garcia Del Barco-Herrera, D.; Fernandez-Mayola, M.; Perez-Saad, H.; Pimentel-Vazquez, E.; Urquiza-Rodriguez, A.; Kulikovsky, M.; Guillen-Nieto, G., Diabetic foot ulcers and epidermal growth factor: Revisiting the local delivery route for a successful outcome. Biomed. Res. Int. 2017, 2017, 2923759.
6. Frykberg, R. G.; Banks, J., Challenges in the treatment of chronic wounds. Adv Wound Care (New Rochelle) 2015, 4, (9), 560-582.
7. Jayarama Reddy, V.; Radhakrishnan, S.; Ravichandran, R.; Mukherjee, S.; Balamurugan, R.; Sundarrajan, S.; Ramakrishna, S., Nanofibrous structured biomimetic strategies for skin tissue regeneration. Wound Repair Regen. 2013, 21, (1), 1–16.
8. Randeria, P. S.; Seeger, M. A.; Wang, X. Q.; Wilson, H.; Shipp, D.; Mirkin, C. A.; Paller, A. S., siRNA-based spherical nucleic acids reverse impaired wound healing in diabetic mice by ganglioside GM3 synthase knockdown. Proc. Natl. Acad. Sci. USA 2015, 112, (18), 5573–5578.
9. Li, J.; Zhang, Y. P.; Kirsner, R. S., Angiogenesis in wound repair: Angiogenic growth factors and the extracellular matrix. Microsc Res Tech 2003, 60, (1), 107-14.
10. Soneja, A.; Drews, M.; Malinski, T., Role of nitric oxide, nitroxidative and oxidative stress in wound healing. Pharmacol. Rep. 2005, 57 (suppl.), 108–119.
11. Greene, A. K.; Puder, M.; Roy, R.; Arsenault, D.; Kwei, S.; Moses, M. A.; Orgill, D. P., Microdeformational wound therapy: effects on angiogenesis and matrix metalloproteinases in chronic wounds of 3 debilitated patients. Annals of plastic surgery 2006, 56, (4), 418-22.
12. Xiang, J.; Wang, S.; He, Y.; Xu, L.; Zhang, S.; Tang, Z., Reasonable glycemic control would help wound healing during the treatment of diabetic foot ulcers. Diabetes Ther 2019, 10, (1), 95-105.
13. Baker, J.; Liu, J. P.; Robertson, E. J.; Efstratiadis, A., Role of insulin-like growth factors in embryonic and postnatal growth. Cell 1993, 8, (75), 73-82.
14. Garoufalia, Z.; Papadopetraki, A.; Karatza, E.; Vardakostas, D.; Philippou, A.; Kouraklis, G.; Mantas, D., Insulin-like growth factor-I and wound healing, a potential answer to non-healing wounds: A systematic review of the literature and future perspectives. Biomed Rep 2021, 15, (2), 66.
15. Sadagurski, M.; Yakar, S.; Weingarten, G.; Holzenberger, M.; Rhodes, C. J.; Breitkreutz, D.; Leroith, D.; Wertheimer, E., Insulin-like growth factor 1 receptor signaling regulates skin development and inhibits skin keratinocyte differentiation. Mol. Cell. Biol. 2006, 26, (7), 2675–2687.
16. Achar, R. A. N.; SilvaI, T. C.; Achar, E.; Martines, R. B.; Machado, J. L. M., Use of insulin-like growth factor in the healing of open wounds in diabetic and non-diabetic rats. Acta Cir. Bras. 2014, 29, (2), 125–131.
17. Jung, H. J.; Suh, Y., Regulation of IGF -1 signaling by microRNAs. Front. Genet. 2015, 5, (472), 1–13.
18. Lee, Y. R.; Oshita, Y.; Tsuboi, R.; Ogawa, H., Combination of insulin-like growth factor (IGF)-I and IGF-binding protein-1 promotes fibroblast-embedded collagen gel contraction. Endocrinology 1996, 137, (12), 5278-5283.
19. Kuroda, K.; Utani, A.; Hamasaki, Y.; Shinkai, H., Up-regulation of putative hyaluronan synthase mRNA by basic fibroblast growth factor and insulin-like growth factor-1 in human skin fibroblasts. Journal of Dermatological Science 2001, 26, (2), 156-160.
20. Blakytny, R.; Jude, E. B.; Gibson, J. M.; Boulton, A. J. M.; Ferguson, M. W. J., Lack of insulin-like growth factor 1 (IGF1) in the basal keratinocyte layer of diabetic skin and diabetic foot ulcers. J. Pathol. 2000, 190, (5), 589–594.
21. Balaji, S.; LeSaint, M.; Bhattacharya, S. S.; Moles, C.; Dhamija, Y.; Kidd, M.; Le, L. D.; King, A.; Shaaban, A.; Crombleholme, T. M.; Bollyky, P.; Keswani, S. G., Adenoviral-mediated gene transfer of insulin-like growth factor 1 enhances wound healing and induces angiogenesis. J. Surg. Res. 2014, 190, (1), 367-77.
22. Guler, H. P.; Zapf, J.; Schmid, C.; Froesch, E. R., Insulin-like growth factors I and II in healthy man. Estimations of half-lives and production rates. Acta Endocrinol. 1989, 121, (6), 753–758.
23. Demling, R. H., The role of anabolic hormones for wound healing in catabolic states. J. Burns Wounds 2005, 17, (4), 46-62.
24. Tanaka, T., Manufacturing pharmaceutical-grade interferons using silkworm- baculovirus system. Journal of Biotechnology & Biomaterials 2012, s9, (01).
25. Boregowda, M. H., Chapter 16 - Silkworm genomics: Current status and limitations. In Advances in Animal Genomics, Mondal, S.; Singh, R. L., Eds. Academic Press: 2021; pp 259-280.
26. Foundation, T. S. D., The sericulture in Taiwan. Taiwan Sericulture Development Foundation 2019, https://www.silkworm.org.tw.
27. Kwak, H. W.; Ju, J. E.; Shin, M.; Holland, C.; Lee, K. H., Sericin promotes fibroin silk I stabilization across a phase-separation. Biomacromolecules 2017, 18, (8), 2343-2349.
28. Zhao, Z.; Li, Y.; Xie, M.-B., Silk fibroin-based nanoparticles for drug delivery. Int. J. Mol. Sci. 2015, 16, (3), 4880–4903.
29. Zhou, C.-Z.; Confalonieri, F.; Medina, N.; Zivanovic, Y.; Esnault, C.; Yang, T.; Jacquet, M.; Janin, J.; Duguet, M.; Perasso, R.; Li, Z.-G., Fine organization of Bombyx mori fibroin heavy chain gene. Nucleic Acids Res. 2000, 28, (12), 2413–2419.
30. Qi, Y.; Wang, H.; Wei, K.; Yang, Y.; Zheng, R. Y.; Kim, I. S.; Zhang, K. Q., A review of structure construction of silk fibroin biomaterials from single structures to multi-level structures. Int. J. Mol. Sci. 2017, 18, (3).
31. Altman, G. H.; Diaz, F.; Jakuba, C.; Calabro, T.; Horan, R. L.; Chen, J.; Lu, H.; Richmond, J.; Kaplan, D. L., Silk-based biomaterials. Biomaterials 2003, 24, 401–416.
32. Arai, T.; Freddi, G.; Innocenti, R.; Tsukada, M., Biodegradation of Bombyx mori silk fibroin fibers and films. Journal of Applied Polymer Science 2004, 91, (4), 2383 - 2390.
33. Vepari, C.; Kaplan, D. L., Silk as a biomaterial. Prog Polym Sci 2007, 32, (8-9), 991-1007.
34. Zhang, Y. Q.; Ma, Y.; Xia, Y. Y.; Shen, W. D.; Mao, J. P.; Zha, X. M.; Shirai, K.; Kiguchi, K., Synthesis of silk fibroin-insulin bioconjugates and their characterization and activities in vivo. J. Biomed. Mater. Res. B. Appl. Biomater. 2006, 79, (2), 275–283.
35. Sato, M.; Kojima, K.; Sakuma, C.; Murakami, M.; Aratani, E.; Takenouchi, T.; Tamada, Y.; Kitani, H., Production of scFv-conjugated affinity silk powder by transgenic silkworm technology. PLoS One 2012, 7, (4), e34632.
36. Mottaghitalab, F.; Farokhi, M.; Shokrgozar, M. A.; Atyabi, F.; Hosseinkhani, H., Silk fibroin nanoparticle as a novel drug delivery system. J. Control Release 2015, 206, 161-76.
37. Yucel, T.; Lovett, M. L.; Kaplan, D. L., Silk-based biomaterials for sustained drug delivery. J. Control Release 2014, 190, 381-97.
38. Zhou, Y.; Damasceno, P. F.; Somashekar, B. S.; Engel, M.; Tian, F.; Zhu, J.; Huang, R.; Johnson, K.; McIntyre, C.; Sun, K.; Yang, M.; Green, P. F.; Ramamoorthy, A.; Glotzer, S. C.; Kotov, N. A., Unusual multiscale mechanics of biomimetic nanoparticle hydrogels. Nat Commun 2018, 9, (1), 181.
39. Shaw, T. J.; Martin, P., Wound repair at a glance. J Cell Sci 2009, 122, (Pt 18), 3209-13.
40. Gonzalez, A. C.; Costa, T. F.; Andrade, Z. A.; Medrado, A. R., Wound healing - a literature review. An. Bras. Dermatol. 2016, 91, (5), 614-620.
41. Velnar, T.; Bailey, T.; Smrkolj, V., The wound healing process: An overview of the cellular and molecular mechanisms. J. Int. Med. Res. 2009, 37, (5), 1528 – 1542.
42. Whitney, J. D., Overview: Acute and chronic wounds. Nursing Clinics of North America 2005, 40, (2), 191-205.
43. Chaby, G.; Senet, P.; Vaneau, M.; Martel, P.; Guillaume, J. C.; Meaume, S.; Téot, L.; Debure, C.; Dompmartin, A.; Bachelet, H.; Carsin, H.; Matz, V.; Richard, J. L.; Rochet, J. M.; Sales-Aussias, N.; Zagnoli, A.; Denis, C.; Guillot, B.; Chosidow, O., Dressings for acute and chronic wounds: A systematic review. Archives of dermatology 2007, 143, (10), 1297-304.
44. Demidova-Rice, T. N.; Hamblin, M. R.; Herman, I. M., Acute and impaired wound healing: pathophysiology and current methods for drug delivery, part 1: normal and chronic wounds: Biology, causes, and approaches to care. Advances in skin & wound care 2012, 25, (7), 304-14.
45. Diligence, M., Worldwide wound management, forecast to 2024: Established and emerging products, technologies and markets in the Americas, Europe, Asia/Pacific and rest of world. MedMarket Diligence 2015, Report #S251, http://mediligence.com/rpt/rpt-s251.htm.
46. Jones, V.; Grey, J. E.; Harding, K. G., Wound dressings. BMJ (Clinical research ed.) 2006, 332, (7544), 777-780.
47. Dhivya, S.; Padma, V. V.; Santhini, E., Wound dressings - a review. Biomedicine (Taipei) 2015, 5, (4), 22.
48. Stoica, A. E.; Chircov, C.; Grumezescu, A. M., Nanomaterials for wound dressings: An up-to-date overview. Molecules 2020, 25, (11).
49. Alven, S.; Nqoro, X.; Aderibigbe, B. A., Polymer-based materials loaded with curcumin for wound healing applications. Polymers (Basel) 2020, 12, (10).
50. Weller, C. D.; Team, V.; Sussman, G., First-line interactive wound dressing update: A comprehensive review of the evidence. Front Pharmacol 2020, 11, 155.
51. WHO, Global report on diabetes. World Health Org, Geneva, 2016.
52. Yach, D.; Stuckler, D.; Brownell, K. D., Epidemiologic and economic consequences of the global epidemics of obesity and diabetes. Nat. Med. 2006, 12, (1), 62–67.
53. Lamers, M. L.; Almeida, M. E.; Vicente-Manzanares, M.; Horwitz, A. F.; Santos, M. F., High glucose-mediated oxidative stress impairs cell migration. PLoS One 2011, 6, (8), e22865.
54. Everett, E.; Mathioudakis, N., Update on management of diabetic foot ulcers. Ann N Y Acad Sci 2018, 1411, (1), 153-165.
55. Ram, M.; Singh, V.; Kumawat, S.; Kant, V.; Tandan, S. K.; Kumar, D., Bilirubin modulated cytokines, growth factors and angiogenesis to improve cutaneous wound healing process in diabetic rats. Int Immunopharmacol 2016, 30, 137-49.
56. Wu, Y. C.; Zhu, M.; Robertson, D. M., Novel nuclear localization and potential function of insulin-like growth factor-1 receptor/insulin receptor hybrid in corneal epithelial cells. PLoS One 2012, 7, (8), e42483.
57. Nagano, T.; Nakamura, M.; Nakata, K.; Yamaguchi, T.; Takase, K.; Okahara, A.; Ikuse, T.; Nishida, T., Effects of substance P and IGF-1 in corneal epithelial barrier function and wound healing in a rat model of neurotrophic keratopathy. Invest. Ophthalmol. Vis. Sci. 2003, 44, (9), 3810–3815.
58. Stuard, W. L.; Titone, R.; Robertson, D. M., The IGF/insulin-IGFBP axis in corneal development, wound healing, and disease. Front. Endocrinol. (Lausanne) 2020, 11, (24), 1–15.
59. Cao, Y.; Wang, B., Biodegradation of silk biomaterials. Int. J. Mol. Sci. 2009, 10, (4), 1514–24.
60. Huang, W.; Ling, S.; Li, C.; Omenetto, F. G.; Kaplan, D. L., Silkworm silk-based materials and devices generated using bio-nanotechnology. Chem. Soc. Rev. 2018, 47, (17), 6486–6504.
61. Inoue, S.; Tanaka, K.; Arisaka, F.; Kimura, S.; Ohtomo, K.; Mizuno, S., Silk fibroin of Bombyx mori is secreted, assembling a high molecular mass elementary unit consisting of H-chain, L-chain, and P25, with a 6:6:1 molar ratio. J. Biol. Chem. 2000, 275, (51), 40517–28.
62. Shen, Y.; Johnson, M. A.; Martin, D. C., Microstructural characterization of Bombyx mori silk fibers. Macromolecules 1998, 31, (25), 8857–8864.
63. Padol, A. R.; Jayakumar, K.; Shridhar, N. B.; Swamy, H. D. N.; Mohan, K.; S., M., Efficacy of the silk protein based biofilms as a novel wound healing agent. Int. J. Toxicol. Appl. Pharm. 2012, 2, (3), 31–36.
64. Farokhi, M.; Mottaghitalab, F.; Fatahi, Y.; Khademhosseini, A.; Kaplan, D. L., Overview of silk fibroinuse in wound dressings. Trends Biotechnol. 2018, 36, (9), 907–922.
65. Tran, S. H.; Wilson, C. G.; Seib, F. P., A review of the emerging role of silk for the treatment of the eye. Pharm. Res. 2018, 35, (248), 1–16.
66. Gil, E. S.; Panilaitis, B.; Bellas, E.; Kaplan, D. L., Functionalized silk biomaterials for wound healing. Adv. Healthc. Mater. 2013, 2, (1), 206–17.
67. Shan, Y. H.; Peng, L. H.; Liu, X.; Chen, X.; Xiong, J.; Gao, J. Q., Silk fibroin/gelatin electrospun nanofibrous dressing functionalized with astragaloside IV induces healing and anti-scar effects on burn wound. Int. J. Pharm. 2015, 479, (2), 291–301.
68. Lawrence, B. D.; Marchant, J. K.; Pindrus, M. A.; Omenetto, F. G.; Kaplan, D. L., Silk film biomaterials for cornea tissue engineering. Biomaterials 2009, 30, (7), 1299–308.
69. Gil, E. S.; Mandal, B. B.; Park, S. H.; Marchant, J. K.; Omenetto, F. G.; Kaplan, D. L., Helicoidal multi-lamellar features of RGD-functionalized silk biomaterials for corneal tissue engineering. Biomaterials 2010, 31, (34), 8953–63.
70. Liu, J.; Lawrence, B. D.; Liu, A.; Schwab, I. R.; Oliveira, L. A.; Rosenblatt, M. I., Silk fibroin as a biomaterial substrate for corneal epithelial cell sheet generation. Invest. Ophthalmol. Vis. Sci. 2012, 53, (7), 4130–4138.
71. Kambe, Y.; Kojima, K.; Tamada, Y.; Tomita, N.; Kameda, T., Silk fibroin sponges with cell growth-promoting activity induced by genetically fused basic fibroblast growth factor. J. Biomed. Mater. Res. A. 2016, 104, (1), 82–93.
72. Yodmuang, S.; McNamara, S. L.; Nover, A. B.; Mandal, B. B.; Agarwal, M.; Kelly, T. A.; Chao, P. H.; Hung, C.; Kaplan, D. L.; Vunjak-Novakovic, G., Silk microfiber–reinforced silk hydrogel composites for functional cartilage tissue repair. Acta Biomater. 2015, 11, 27–36.
73. Min, B. M.; Lee, G.; Kim, S. H.; Nam, Y. S.; Lee, T. S.; Park, W. H., Electrospinning of silk fibroin nanofibers and its effect on the adhesion and spreading of normal human keratinocytes and fibroblasts in vitro. Biomaterials 2004, 25, (7–8), 1289–97.
74. Schneider, A.; Wang, X. Y.; Kaplan, D. L.; Garlick, J. A.; Egles, C., Biofunctionalized electrospun silk mats as a topical bioactive dressing for accelerated wound healing. Acta Biomater. 2009, 5, (7), 2570–2578.
75. Wittmer, C. R.; Claudepierre, T.; Reber, M.; Wiedemann, P.; Garlick, J. A.; Kaplan, D.; Egles, C., Multifunctionalized electrospun silk fibers promote axon regeneration in central nervous system. Adv. Funct. Mater. 2011, 21, (22), 4202.
76. Lin, M.-J.; Lu, M.-C.; Chang, H.-Y., Sustained release of insulin-like growth factor-1 from Bombyx mori L. silk fibroin delivery for diabetic wound therapy. International Journal of Molecular Sciences 2021, 22, (12).
77. Millan-Rivero, J. E.; Martinez, C. M.; Romecin, P. A.; Aznar-Cervantes, S. D.; Carpes-Ruiz, M.; Cenis, J. L.; Moraleda, J. M.; Atucha, N. M.; Garcia-Bernal, D., Silk fibroin scaffolds seeded with Wharton's jelly mesenchymal stem cells enhance re-epithelialization and reduce formation of scar tissue after cutaneous wound healing. Stem Cell Res Ther 2019, 10, (1), 126.
78. Chopra, S.; Gulrajanii, M. L., Comparative evaluation of the various methods of degumming silk. Indian J. of Fibre Text. Res. 1994, 19, 76–83.
79. Allardyce, B. J.; Rajkhowa, R.; Dilley, R. J.; Atlas, M. D.; Kaur, J.; Wang, X., The impact of degumming conditions on the properties of silk films for biomedical applications. Textile Research Journal 2015, 86, (3), 275-287.
80. Lee, J.; Song, D.; Park, Y. H.; Um, I., Effect of residual sericin on the structural characteristics and properties of regenerated silk films. International journal of biological macromolecules 2016, 89.
81. Sahoo, J. K.; Choi, J.; Hasturk, O.; Laubach, I.; Descoteaux, M. L.; Mosurkal, S.; Wang, B.; Zhang, N.; Kaplan, D. L., Silk degumming time controls horseradish peroxidase-catalyzed hydrogel properties. Biomaterials science 2020, 8, (15), 4176-4185.
82. Aramwit, P.; Damrongsakkul, S.; Kanokpanont, S.; Srichana, T., Properties and antityrosinase activity of sericin from various extraction methods. Biotechnol. Appl. Biochem. 2010, 55, (2), 91–98.
83. Kunz, R. I.; Brancalhao, R. M.; Ribeiro, L. F.; Natali, M. R., Silkworm sericin: Properties and biomedical applications. Biomed. Res. Int. 2016, 2016, 8175701.
84. Jusu, S. M.; Obayemi, J. D.; Salifu, A. A.; Nwazojie, C. C.; Uzonwanne, V.; Odusanya, O. S.; Soboyejo, W. O., Drug-encapsulated blend of PLGA-PEG microspheres: in vitro and in vivo study of the effects of localized/targeted drug delivery on the treatment of triple-negative breast cancer. Sci Rep 2020, 10, (1), 14188.
85. Dong, A.; Huang, P.; Caughey, W. S., Redox-dependent changes in ß-extended chain and turn structures of cytochrome c in water solution determined by second derivative amide I infrared spectra. Biochemistry 1992, 31, 182-189.
86. Narayanan, S.; Gokuldas, M., Influence of organic solvents on the structural and thermal characteristics of silk protein from the web of Orthaga exvinacea Hampson (Lepidoptera: Pyralidae). J Chem Biol 2016, 9, (4), 121-125.
87. Freddi, G.; Pessina, G.; Tsukada, M., Swelling and dissolution of silk fibroin (Bombyx mori) in N-methyl morpholine N-oxide. International journal of biological macromolecules 1999, 24, 251-263.
88. Ha, S.-W.; Tonelli, A. E.; Hudson, S. M., Structural studies of Bombyx mori silk fibroin during regeneration from solutions and wet fiber spinning. Biomacromolecules 2005, 6, 1722-1731.
89. Zhang, H.; Li, L.-l.; Dai, F.-y.; Zhang, H.-h.; Ni, B.; Zhou, W.; Yang, X.; Wu, Y.-z., Preparation and characterization of silk fibroin as a biomaterial with potential for drug delivery. Journal of Translational Medicine 2012, 10, 117-125.
90. Kamalh, E.; Zheng, Y.; Zeng, Y., Analysis of the secondary crystalline structure of regenerated Bombyx mori fibroin. Research & Reviews in BioSciences 2013, 7, (2), 76-83.
91. Horan, R. L.; Antle, K.; Collette, A. L.; Wang, Y.; Huang, J.; Moreau, J. E.; Volloch, V.; Kaplan, D. L.; Altman, G. H., In vitro degradation of silk fibroin. Biomaterials 2005, 26, (17), 3385-93.
92. Hu, X.; Kaplan, D.; Cebe, P., Determining beta-sheet crystallinity in fibrous proteins by thermal analysis and infrared spectroscopy. Macromolecules 2006, 39, 6161-6170.
93. Wray, L. S.; Hu, X.; Gallego, J.; Georgakoudi, I.; Omenetto, F. G.; Schmidt, D.; Kaplan, D. L., Effect of processing on silk-based biomaterials: Reproducibility and biocompatibility. J. Biomed. Mater. Res. B. Appl. Biomater. 2011, 99, (1), 89–101.
94. Sionkowska, A.; Lewandowska, K.; Michalska, M.; Walczak, M., Characterization of silk fibroin 3D composites modified by collagen. Journal of Molecular Liquids 2016, 215, 323-327.
95. Yazawa, K.; Ishida, K.; Masunaga, H.; Hikima, T.; Numata, K., Influence of water content on the beta-sheet formation, thermal stability, water removal, and mechanical properties of silk materials. Biomacromolecules 2016, 17, (3), 1057-66.
96. Laron, Z., Insulin-like growth factor 1 (IGF-1): a growth hormone. Mol. Path. 2001, 54, (5), 311–316.
97. Ohlsson, C.; Mohan, S.; Sjogren, K.; Tivesten, A.; Isgaard, J.; Isaksson, O.; Jansson, J. O.; Svensson, J., The role of liver-derived insulin-like growth factor-I. Endocr. Rev. 2009, 30, (5), 494–535.
98. Bright, G. M., Recombinant IGF-I: Past, present and future. Growth Horm. IGF Res. 2016, 28, 62–65.
99. Ando, Y.; Jensen, P. J., Epidermal growth factor and insulin-like growth factor I enhance keratinocyte migration. J. Invest. Dermatol. 1993, 100, (5), 633–639.
100. Haase, I.; Evans, R.; Pofahl, R.; Watt, F. M., Regulation of keratinocyte shape, migration and wound epithelialization by IGF-1- and EGF-dependent signalling pathways. J. Cell Sci. 2003, 116, (Pt 15), 3227–3238.
101. Delafontaine, P.; Song, Y. H.; Li, Y., Expression, regulation, and function of IGF-1, IGF-1R, and IGF-1 binding proteins in blood vessels. Arterioscler. Thromb. Vasc. Biol. 2004, 24, (3), 435–444.
102. Emmerson, E.; Campbell, L.; Davies, F. C.; Ross, N. L.; Ashcroft, G. S.; Krust, A.; Chambon, P.; Hardman, M. J., Insulin-like growth factor-1 promotes wound healing in estrogen-deprived mice: new insights into cutaneous IGF-1R/ERalpha cross talk. J. Invest. Dermatol. 2012, 132, (12), 2838–2848.
103. Ortved, K. F.; Begum, L.; Mohammed, H. O.; Nixon, A. J., Implantation of rAAV5-IGF-I transduced autologous chondrocytes improves cartilage repair in full-thickness defects in the equine model. Mol Ther 2015, 23, (2), 363-73.
104. Zhang, Z.; Li, L.; Yang, W.; Cao, Y.; Shi, Y.; Li, X.; Zhang, Q., The effects of different doses of IGF-1 on cartilage and subchondral bone during the repair of full-thickness articular cartilage defects in rabbits. Osteoarthritis Cartilage 2017, 25, (2), 309-320.
105. Meyer, N. A.; Barrow, R. E.; Herndon, D. N., Combined insulin-like growth factor-1 and growth hormone improves weight loss and wound healing in burned rats. J Trauma 1996, 41, (6), 1008-1012.
106. Dunaiski, V.; Belford, D. A., Contribution of circulating IGF-I to wound repair in GH-treated rats. Growth Hormone & IGF Research 2002, 12, (6), 381-387.
107. Botusan, I. R.; Zheng, X.; Narayanan, S.; Grunler, J.; Sunkari, V. G.; Calissendorff, F. S.; Ansurudeen, I.; Illies, C.; Svensson, J.; Jansson, J. O.; Ohlsson, C.; Brismar, K.; Catrina, S. B., Deficiency of liver-derived insulin-like growth factor-I (IGF-I) does not interfere with the skin wound healing rate. PLoS One 2018, 13, (3), e0193084.
108. Markeson, D.; Pleat, J. M.; Sharpe, J. R.; Harris, A. L.; Seifalian, A. M.; Watt, S. M., Scarring, stem cells, scaffolds and skin repair. J. Tissue Eng. Regen. Med. 2015, 9, (6), 649-68.
109. Yu, J. R.; Navarro, J.; Coburn, J. C.; Mahadik, B.; Molnar, J.; Holmes, J. H. t.; Nam, A. J.; Fisher, J. P., Current and future perspectives on skin tissue engineering: Key features of biomedical research, translational assessment, and clinical application. Adv. Healthc. Mater. 2019, 8, (5), e1801471.
110. Harding, K.; Queen, D., Chronic wounds and their management and prevention is a significant public health issue. Int. Wound J. 2010, 7, (3), 125-126.
111. Sood, A.; Granick, M. S.; Tomaselli, N. L., Wound dressings and comparative effectiveness data. Adv. Wound Care (New Rochelle) 2014, 3, (8), 511-529.
112. Peng, L. H.; Wei, W.; Qi, X. T.; Shan, Y. H.; Zhang, F. J.; Chen, X.; Zhu, Q. Y.; Yu, L.; Liang, W. Q.; Gao, J. Q., Epidermal stem cells manipulated by pDNA-VEGF165/CYD-PEI nanoparticles loaded gelatin/beta-TCP matrix as a therapeutic agent and gene delivery vehicle for wound healing. Mol. Pharm. 2013, 10, (8), 3090–102.
113. Lichtman, M. K.; Otero-Vinas, M.; Falanga, V., Transforming growth factor beta (TGF-beta) isoforms in wound healing and fibrosis. Wound Repair Regen. 2016, 24, (2), 215-22.
114. Choi, J. U.; Lee, S. W.; Pangeni, R.; Byun, Y.; Yoon, I. S.; Park, J. W., Preparation and in vivo evaluation of cationic elastic liposomes comprising highly skin-permeable growth factors combined with hyaluronic acid for enhanced diabetic wound-healing therapy. Acta Biomater. 2017, 57, 197-215.
115. Mitchell, A. C.; Briquez, P. S.; Hubbell, J. A.; Cochran, J. R., Engineering growth factors for regenerative medicine applications. Acta Biomater. 2016, 30, 1-12.
116. Zaman, R.; Islam, R. A.; Ibnat, N.; Othman, I.; Zaini, A.; Lee, C. Y.; Chowdhury, E. H., Current strategies in extending half-lives of therapeutic proteins. J. Control Release 2019, 301, 176-189.
117. Yildirimer, L.; Thanh, N. T.; Seifalian, A. M., Skin regeneration scaffolds: A multimodal bottom-up approach. Trends Biotechnol. 2012, 30, (12), 638-48.
118. Zhang, Y.; Chan, H. F.; Leong, K. W., Advanced materials and processing for drug delivery: The past and the future. Adv. Drug. Deliv. Rev. 2013, 65, (1), 104-20.
119. Wang, W.; Lu, K. J.; Yu, C. H.; Huang, Q. L.; Du, Y. Z., Nano-drug delivery systems in wound treatment and skin regeneration. J. Nanobiotechnology 2019, 17, (1), 82.
120. Lin, S.; Zhang, Q.; Shao, X.; Zhang, T.; Xue, C.; Shi, S.; Zhao, D.; Lin, Y., IGF-1 promotes angiogenesis in endothelial cells/adipose-derived stem cells co-culture system with activation of PI3K/Akt signal pathway. Cell Prolif 2017, 50, (6).
121. Bessa, P. C.; Balmayor, E. R.; Azevedo, H. S.; Nurnberger, S.; Casal, M.; van Griensven, M.; Reis, R. L.; Redl, H., Silk fibroin microparticles as carriers for delivery of human recombinant BMPs. Physical characterization and drug release. J. Tissue Eng. Regen. Med. 2010, 4, (5), 349-55.
122. Wang, Y.; Rudym, D. D.; Walsh, A.; Abrahamsen, L.; Kim, H. J.; Kim, H. S.; Kirker-Head, C.; Kaplan, D. L., In vivo degradation of three-dimensional silk fibroin scaffolds. Biomaterials 2008, 29, (24-25), 3415-28.
123. Siepmann, J.; Siepmann, F., Mathematical modeling of drug delivery. Int. J. Pharm. 2008, 364, (2), 328-43.
124. Uebersax, L.; Merkle, H. P.; Meinel, L., Insulin-like growth factor I releasing silk fibroin scaffolds induce chondrogenic differentiation of human mesenchymal stem cells. J. Control Release 2008, 127, (1), 12-21.
125. Nelson, D. M.; Baraniak, P. R.; Ma, Z.; Guan, J.; Mason, N. S.; Wagner, W. R., Controlled release of IGF-1 and HGF from a biodegradable polyurethane scaffold. Pharm Res 2011, 28, (6), 1282-93.
126. Song, Y. H.; Song, J. L.; Delafontaine, P.; Godard, M. P., The therapeutic potential of IGF-I in skeletal muscle repair. Trends Endocrinol Metab 2013, 24, (6), 310-9.
127. Sun, Y.; Han, X.; Wang, X.; Zhu, B.; Li, B.; Chen, Z.; Ma, G.; Wan, M., Sustained release of IGF-1 by 3D mesoporous scaffolds promoting cardiac stem cell migration and proliferation. Cell Physiol Biochem 2018, 49, (6), 2358-2370.
128. Lin, M.-J.; Lu, M.-C.; Chan, Y.-C.; Huang, Y.-F.; Chang, H.-Y., An Insulin-like Growth Factor-1 Conjugated Bombyx mori Silk Fibroin Film for Diabetic Wound Healing: Fabrication, Physicochemical Property Characterization, and Dosage Optimization In Vitro and In Vivo. Pharmaceutics 2021, 13, (9).
129. Lu, Q.; Hu, X.; Wang, X.; Kluge, J. A.; Lu, S.; Cebe, P.; Kaplan, D. L., Water-insoluble silk films with silk I structure. Acta Biomater. 2010, 6, (4), 1380-7.
130. Seib, F. P.; Kaplan, D. L., Doxorubicin-loaded silk films: Drug-silk interactions and in vivo performance in human orthotopic breast cancer. Biomaterials 2012, 33, (33), 8442–50.
131. L.Ritger, P.; Peppas, N. A., A simple equation for description of solute release II. Fickian and anomalous release from swellable devices. J. Controlled Release 1987, 5, (1), 37-42.
132. Lanel, B.; Barthès-Biesel, D.; Regnier, C.; Chauvé, T., Swelling of hydrocolloid dressings. Biorheology 1997, 34, (2), 139-53.
133. Guo, S.; Dipietro, L. A., Factors affecting wound healing. J. Dent. Res. 2010, 89, (3), 219-29.
134. Okonkwo, U. A.; DiPietro, L. A., Diabetes and wound angiogenesis. Int. J. Mol. Sci. 2017, 18, (7).
135. Lee, J. H.; Yeo, Y., Controlled drug release from pharmaceutical nanocarriers. Chem. Eng. Sci. 2015, 125, 75-84.
136. Saghazadeh, S.; Rinoldi, C.; Schot, M.; Kashaf, S. S.; Sharifi, F.; Jalilian, E.; Nuutila, K.; Giatsidis, G.; Mostafalu, P.; Derakhshandeh, H.; Yue, K.; Swieszkowski, W.; Memic, A.; Tamayol, A.; Khademhosseini, A., Drug delivery systems and materials for wound healing applications. Adv. Drug. Deliv. Rev. 2018, 127, 138-166.
137. Zhang, Y. Q.; Ma, Y.; Xia, Y. Y.; Shen, W. D.; Mao, J. P.; Xue, R. Y., Silk sericin-insulin bioconjugates: Synthesis, characterization and biological activity. J Control Release 2006, 115, (3), 307-15.
138. Wilza, A.; Pritchardb, E. M.; Lia, T.; Lana, J.-Q.; Kaplanb, D. L.; Boisona, D., Silk polymer based adenosine release: Therapeutic potential for epilepsy. Biomaterials 2008, 29, (26), 3609–3616.
139. He, S.; Shi, D.; Han, Z.; Dong, Z.; Xie, Y.; Zhang, F.; Zeng, W.; Yi, Q., Heparinized silk fibroin hydrogels loading FGF1 promote the wound healing in rats with full-thickness skin excision. Biomed. Eng. Online 2019, 18, (97), https://doi.org/10.1186/s12938-019-0716-4
140. Uebersax, L.; Mattotti, M.; Papaloizos, M.; Merkle, H. P.; Gander, B.; Meinel, L., Silk fibroin matrices for the controlled release of nerve growth factor (NGF). Biomaterials 2007, 28, (30), 4449–60.
141. Hu, X.; Shmelev, K.; Sun, L.; Gil, E. S.; Park, S. H.; Cebe, P.; Kaplan, D. L., Regulation of silk material structure by temperature-controlled water vapor annealing. Biomacromolecules 2011, 12, (5), 1686-96.
142. Rajkhowa, R.; Levin, B.; Redmond, S. L.; Li, L. H.; Wang, L.; Kanwar, J. R.; Atlas, M. D.; Wang, X., Structure and properties of biomedical films prepared from aqueous and acidic silk fibroin solutions. J Biomed Mater Res A 2011, 97, (1), 37-45.
143. Wittmer, C. R.; Hu, X.; Gauthier, P. C.; Weisman, S.; Kaplan, D. L.; Sutherland, T. D., Production, structure and in vitro degradation of electrospun honeybee silk nanofibers. Acta Biomater 2011, 7, (10), 3789-95.
144. Wang, X.; Kim, H. J.; Xu, P.; Matsumoto, A.; Kaplan, D. L., Biomaterial coatings by stepwise deposition of silk fibroin. Langmuir 2005, 21, (24), 11335-11341.
145. Wang, X.; Hu, X.; Daley, A.; Rabotyagova, O.; Cebe, P.; Kaplan, D. L., Nanolayer biomaterial coatings of silk fibroin for controlled release. J Control Release 2007, 121, (3), 190-9.
146. Gokhale, A., Achieving zero-order release kinetics using multi-step diffusion-based drug delivery. Pharm. Technol. Eur. 2014, 26, 38-42.
147. Bayraktar, O.; Malay, O.; Ozgarip, Y.; Batigun, A., Silk fibroin as a novel coating material for controlled release of theophylline. Eur. J. Pharm. Biopharm. 2005, 60, (3), 373-81.
148. Pritchard, E. M.; Szybala, C.; Boison, D.; Kaplan, D. L., Silk fibroin encapsulated powder reservoirs for sustained release of adenosine. J Control Release 2010, 144, (2), 159-67.
149. Khan, M. R.; Tsukada, M.; Gotoh, Y.; Morikawa, H.; Freddi, G.; Shiozaki, H., Physical properties and dyeability of silk fibers degummed with citric acid. Bioresour. Technol. 2010, 101, (21), 8439–8445.
150. Pei, Z.; Sun, Q.; Sun, X.; Wang, Y.; Zhao, P., Preparation and characterization of silver nanoparticles on silk fibroin/carboxymethylchitosan composite sponge as anti-bacterial wound dressing. Biomed Mater Eng 2015, 26 Suppl 1, S111-8.
151. Flintegaard, T. V.; Thygesen, P.; Rahbek-Nielsen, H.; Levery, S. B.; Kristensen, C.; Clausen, H.; Bolt, G., N-glycosylation increases the circulatory half-life of human growth hormone. Endocrinology 2010, 151, (11), 5326-36.
152. Krane, J. F.; Murphy, D. P.; Carter, D. M.; Krueger, J. G., Synergistic effects of epidermal growth factor (EGF) and insulin-like growth factor I/somatomedin C (IGF-I) on keratinocyte proliferation may be mediated by IGF-I transmodulation of the EGF receptor. J. Invest. Dermatol. 1991, 96, (4), 419-24.
153. Möckel, J. E.; Lippold, B. C., Zero-order drug release from hydrocolloid matrices. Pharm. Res. 1993, 10, (7), 1066–1070.
154. Chin, C. Y.; Ng, P. Y.; Ng, S. F., Moringa oleifera standardised aqueous leaf extract-loaded hydrocolloid film dressing: In vivo dermal safety and wound healing evaluation in STZ/HFD diabetic rat model. Drug Deliv. Transl. Res. 2019, 9, (2), 453-468.
155. Tan, W. S.; Arulselvan, P.; Ng, S. F.; Mat Taib, C. N.; Sarian, M. N.; Fakurazi, S., Improvement of diabetic wound healing by topical application of Vicenin-2 hydrocolloid film on Sprague Dawley rats. BMC Complement Altern Med 2019, 19, (1), 20.
156. Dumville, J. C.; Deshpande, S.; O'Meara, S.; Speak, K., Hydrocolloid dressings for healing diabetic foot ulcers. Cochrane Database Syst Rev 2013, (8), CD009099.
157. Cuschieri, L.; Debosz, J.; Miiller, P.; Celis, M., Autolytic debridement of a large, necrotic, fully occluded foot ulcer using a hydrocolloid dressing in a diabetic patient. Adv. Skin Wound Care 2013, 26, (7), 300-4.
158. Tsuboi, R.; Shi, C. M.; Sato, C.; Cox, G. N.; Ogawa, H., Co-administration of insulin-like growth factor (IGF)-I and IGF-binding protein-1 stimulates wound healing in animal models. J. Invest. Dermatol. 1995, 104, (2), 199-203.
159. Kim, D. W.; Hwang, H. S.; Kim, D. S.; Sheen, S. H.; Heo, D. H.; Hwang, G.; Kang, S. H.; Kweon, H.; Jo, Y. Y.; Kang, S. W.; Lee, K. G.; Park, K. W.; Han, K. H.; Park, J.; Eum, W. S.; Cho, Y. J.; Choi, H. C.; Choi, S. Y., Effect of silk fibroin peptide derived from silkworm Bombyx mori on the anti-inflammatory effect of Tat-SOD in a mice edema model. BMB Rep 2011, 44, (12), 787-92.
160. Wei, W.; Liu, J.; Peng, Z.; Liang, M.; Wang, Y.; Wang, X., Gellable silk fibroin-polyethylene sponge for hemostasis. Artif Cells Nanomed Biotechnol 2020, 48, (1), 28-36.

 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top

相關論文

1. 利用新式三維細胞培養系統研究癌症與組織工程中異種細胞間交互作用
2. 治療性anti-IgE單株抗體藥物在體外重組模式及體內基因轉殖鼠之藥理作用機制
3. 建構並鑑定創傷弧菌調控子LytR的突變株
4. 創傷弧菌YJ016中調控環狀雙鳥嘌呤單磷酸相關的 vva0325-36基因群功能分析
5. DTriP-22抑制腸病毒71型之機制探討
6. 細菌基因表現之調控: HptB磷酸根轉移系統與三磷酸腺苷水解功能必須之轉錄蛋白AcoK之功能分析
7. 比較分析綠膿桿菌兩個尿嘧啶雙磷酸葡萄糖去氫酶
8. 標的表現IgE的B淋巴細胞以調控IgE之生成
9. 克雷白氏肺炎桿菌第三型線毛主要單體蛋白MrkA—線毛組裝有關區域之搜尋以及於呈現系統發展之應用
10. 綠膿桿菌HptB訊息傳遞路徑-雜合感應子之分析及下游基因之搜尋
11. 克雷白氏肺炎桿菌磷酸酪胺酸激酶KpWzc對其下游酵素ManC, Gnd活性影響之分析與Ugd磷酸酪胺酸殘基鑑定與下游受質之搜尋
12. 克雷白氏肺炎桿菌第三型線毛主要單元體MrkA─參與線毛堆疊之重要胺基酸分析以及線毛的疫苗呈現系統之建構
13. Histidine-containing Phosphotransfer Protein-B (HptB) Regulates Swarming Motility through Partner-switching System in Pseudomonas aeruginosa PAO1 strain
14. 利用磁性粒子與光敏性水膠建構特殊細胞排列的組織
15. 創傷弧菌外毒素RtxA 高量甘氨酸-天門冬氨酸區域人源單鏈抗體之篩選以及此區域的細胞表面結合特性之研究
 
* *