帳號:guest(3.137.174.65)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):賴柏廷
作者(外文):Lai, Po-Ting
論文名稱(中文):氯硝柳胺抑制大腸直腸癌細胞TCF12–MALAT1誘導的Wnt–beta-Catenin訊號途徑與幹細胞特性
論文名稱(外文):Niclosamide Suppresses TCF12-MALAT1-Induced Wnt/beta-Catenin Signaling and Colorectal Cancer Cell Stemness
指導教授(中文):汪宏達
黃智興
指導教授(外文):Wang, Horng-Dar
Huang, Tze-Sing
口試委員(中文):謝淑貞
郭靜娟
姜安娜
口試委員(外文):Hsieh, Shu-Chen
Kuo, Ching-Chuan
Chiang, An-Na
學位類別:碩士
校院名稱:國立清華大學
系所名稱:生物科技研究所
學號:103080600
出版年(民國):106
畢業學年度:105
語文別:中文
論文頁數:65
中文關鍵詞:TCF12MALAT1氯硝柳胺Wnt/β-catenin信號途徑癌幹細胞特性
外文關鍵詞:TCF12MALAT1niclosamideWnt/β-catenin signaling pathwaycancer cell stemnes
相關次數:
  • 推薦推薦:0
  • 點閱點閱:17
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
摘要
TCF12蛋白是第一類螺旋-環-螺旋 (helix-loop-helix) 蛋白質家族的一個成員,會直接結合到下游基因的啟動子上之E-box序列來調控基因之表現。TCF12蛋白在28%大腸直腸癌患者之腫瘤組織中有過量表現的情形,並與這些病人發生轉移有關,最近我們實驗室進一步發現TCF12蛋白促使大腸癌細胞惡化可能是因其能誘發腫瘤細胞的幹細胞特性 (cell stemness)。氯硝柳胺 (niclosamide) 是一種使用超過50年的抗絛蟲藥,幾年前被篩選出具有抑制癌幹細胞的能力,可以抑制相關的信號途徑如Wntβ-catenin,但是否能抑制TCF12蛋白所誘導的癌幹細胞特性則還是未知的,因此我採用了實驗室所建立的過度或降低TCF12表現的大腸直腸癌細胞株來分析其對氯硝柳胺的感受性,結果發現TCF12表現量高的癌細胞對於傳統化療藥物5-FU有較高的抵抗力,但對氯硝柳胺則較為敏感;而對於降低TCF12表現的細胞則呈現相反的結果。TCF12過度表現的癌細胞中,CD133、CD326、CD44、ALDH1、ABCG2等與癌幹細胞特性有關的基因 mRNA表現也是明顯增加,CD133、CD326、CD44在細胞表面上的量,以及這些細胞在無血清及無附著條件下形成球狀體的能力亦都明顯提高,但當處理以氯硝柳胺,這些TCF12所誘導的癌幹細胞特性都被大幅地抑制。實驗室先前的研究已發現MALAT1會與TCF12結合,Metastasis-associated lung adenocarcinoma transcript 1 (MALAT1) 是一種長鏈非編碼RNA (long non-coding RNA, lnc RNA),在很多癌症中都會過量表現並且會導致腫瘤轉移與惡化。在我的RNA免疫共沉澱實驗中,氯硝柳胺的處理下卻能有效抑制TCF12與MALAT1的結合。另外,我的E-box pulldown實驗中,也發現在MALAT1啟動子的E-box上TCF12與另一轉錄因子Oct-4的互動可受到氯硝柳胺處理的干擾,這可以說明氯硝柳胺處理 24小時TCF12量沒有明顯改變但MALAT1卻表現量降低的現象。另外,也有研究指出MALAT1會藉由Wnt/β-catenin信號途徑誘導癌幹細胞特性。我發現在TCF12高表現的大腸癌細胞中,除了MALAT1的表現量較高,其細胞核內β-catenin及下游基因cyclin D1及c-Myc也都有較高表現,這些現象也能夠在投藥氯硝柳胺後被抑制。綜合結果指出TCF12的過量表現會明顯提高大腸直腸癌的癌幹細胞特性,並且TCF12可能藉由調控MALAT1使Wnt/β-catenin信號途徑也大量表現來誘導癌幹細胞特性,這些由TCF12誘導的作用則能夠被氯硝柳胺所抑制,這不僅闡明了部分TCF12MALAT1促進腫瘤惡化的機制,同時也提供了一個有潛力的治療目標。

關鍵字: TCF12、MALAT1、氯硝柳胺、Wnt/β-catenin信號途徑、癌幹細胞特性
Abstract
TCF12 is a class I member of helix-loop-helix protein family, regulates downstream genes via directly binding to E-box motifs, and contributes to cancer cell epithelial-to-mesenchymal transition and gain-of-stemness. Niclosamide is a reported inhibitor of cancer stem cells, which can suppress many cancer stemness-related signal cascades including the Wnt/β-catenin pathway. However, it remains to be defined whether niclosamide also has the activity to repress TCF12-mediated stemness in colorectal cancer (CRC). Using our established CRC cell clone with ectopic TCF12 expression, we observed that TCF12 overexpression increased CRC cell susceptibility to niclosamide even though it conferred ceullular resistance to the conventional chemotherapeutic agent 5-fluorouracil. Reciprocally, knockdown of TCF12 expression would reduce CRC cell sensitivity to niclosamide but elevate cell resistance to 5-fluorouracil. On the other hand, expressions of TCF12 and stemness markers CD133, CD326, CD44, ALDH1, and ABCG2 were significantly repressed in niclosamide-treated CRC cell lines by a concentration- and time-dependent manner. The cell-surface levels of CD133, CD326, and CD44 and the cell-spheroid formation levels were also consistently reduced. These results together suggested that TCF12-induced CRC cell stemness was sensitive to niclosamide. Metastasis-associated lung adenocarcinoma transcript 1 (MALAT1) is a TCF12-binding long non-coding RNA involved in activation of Wnt/β-catenin signaling pathway and promotion of cancer metastasis. Using RNA immunoprecipitation assay, an interruption of TCF12 binding with MALAT1 was observed in niclosamide-treated CRC cells. Additionally, an E-box pulldown assay revealed that association of TCF12 with Oct-4 on the E-box site of MALAT1 gene promoter was also repressed by niclosamide, which accounted for a reduction of MALAT1 expression but no TCF12 decrease at 24-h niclosamide treatment. In the CRC cells with higher TCF12 expression, the levels of MALAT1, nuclear β-catenin, and the downstream targets cyclin D1 and c-Myc were all increased. These up-regulated expressions were also abrogated after niclosamide treatment. Taken together, our results suggest a mechanism for CRC malignant progression, which also provides a potential therapeutic target.

Keywords: TCF12; MALAT1; niclosamide; Wnt/β-catenin signaling pathway; cancer cell stemnes
摘要 V
Abstract VII
第一章 緒論 1
一、 大腸直腸癌 1
二、 TCF12會導致癌細胞惡化與增加幹細胞性 2
三、 TCF12 與癌症幹細胞 3
四、 長鏈非編碼RNA MALAT1 5
五、 典型Wnt/β-catenin信號途徑 7
六、 Niclosamide具有抗癌幹細胞潛力 9
第二章 研究目標 11
第三章 實驗材料 12
一、 細胞培養 12
二、 藥物與試劑 12
三、 分子量標示物 14
四、 染劑 14
五、 免疫墨點法相關 14
六、 抗體 15
七、 DNA引子 16
八、 實驗儀器 17
第四章 實驗方法 20
一、 細胞培養 20
1. 培養基製備: 20
2. Phosphate-buffered saline與Trypsin-EDTA製備: 20
3. 細胞繼代培養 21
4. 細胞冷凍保存 21
5. TCF12 overexpression和TCF12 knockdown細胞 22
二、 細胞存活率分析 (MTT assay) 22
三、 反轉錄聚合酶連鎖反應 (RT-PCR; Reverse Transcription-Polymerase Chain Reaction): 22
1. 抽取total RNA 22
2. cDNA的製備 (reverse transcription) 23
3. 連鎖聚合反應 (polymerase chain reaction, PCR) 23
4. 瓊脂醣凝膠電泳 24
四、 細胞表面抗原分析 24
五、 細胞球體形成實驗 25
六、 蛋白質的萃取與濃度測定 25
1. 蛋白質的萃取 25
2. 細胞核蛋白與細胞質蛋白的萃取 26
3. 蛋白質濃度的測定 26
七、 免疫墨點法 27
1. SDS-PAGE 蛋白質膠體電泳 27
2. 濕式轉漬 28
八、 E-box pulldown assay 29
第五章 實驗結果 31
第六章 討論 40
第七章 結論 45
第八章 圖表 46
Figure 1: Cytotoxicities of niclosamide and salinomycin in CRC cell lines. 46
Figure 2: TCF12 expression levels determining differential susceptibilities to 5-flurouracil (5-FU), niclosamide, and salinomycin in CRC cells. 47
Figure 3: Suppression of TCF12-associated stemness marker gene expressions by niclosamide. 48
Figure 4: Reduction of TCF12-associated cell-surface stemness marker levels by niclosamide. 49
Figure 5: Inhibition of TCF12-associated cell-spheroid formation abilities by niclosamide. 50
Figure 6: Repression of MALAT1 expression and MALAT1–TCF12 interaction by niclosamide. 51
Figure 7: Disruption of TCF12–Oct-4 interaction by niclosamide on the E-box site of MALAT1 gene promoter. 52
Figure 8: Suppression of TCF12–MALAT1-mediated Wnt/-catenin pathway by niclosamide. 53
Figure 9: Schematic representation of the role of TCF12–MALAT1-mediated stemness. 54
第九章 引用文獻 55
第十章 附錄 62
附錄一、 TCF12 RNAIP定序比對的結果 62
附錄二、 LncRNA調控基因的機制 63
附錄三、 Wnt信號途徑 64
附錄四、 Wnt/β-catenin信號途徑 65

Abdul Khalek FJ, Gallicano GI, Mishra L. 2010. Colon cancer stem cells. Gastrointestinal cancer research : GCR. (Suppl 1):S16-23.
Abetov D, Mustapova Z, Saliev T, Bulanin D. 2015. Biomarkers and signaling pathways of colorectal cancer stem cells. Tumour Biol. 36(3):1339-1353.
Ahn SY, Kim NH, Lee K, Cha YH, Yang JH, Cha SY, Cho ES, Lee Y, Cha JS, Cho HS et al. 2017. Niclosamide is a potential therapeutic for familial adenomatosis polyposis by disrupting axin-gsk3 interaction. Oncotarget. 8(19):31842-31855.
Al-Hajj M, Clarke MF. 2004. Self-renewal and solid tumor stem cells. Oncogene. 23(43):7274-7282.
Aroeira LS, Aguilera A, Sanchez-Tomero JA, Bajo MA, del Peso G, Jimenez-Heffernan JA, Selgas R, Lopez-Cabrera M. 2007. Epithelial to mesenchymal transition and peritoneal membrane failure in peritoneal dialysis patients: Pathologic significance and potential therapeutic interventions. Journal of the American Society of Nephrology : JASN. 18(7):2004-2013.
Bai WD, Ye XM, Zhang MY, Zhu HY, Xi WJ, Huang X, Zhao J, Gu B, Zheng GX, Yang AG et al. 2014. Mir-200c suppresses tgf-beta signaling and counteracts trastuzumab resistance and metastasis by targeting znf217 and zeb1 in breast cancer. International journal of cancer. 135(6):1356-1368.
Barker N, Clevers H. 2006. Mining the wnt pathway for cancer therapeutics. Nature reviews Drug discovery. 5(12):997-1014.
Basu S, Haase G, Ben-Ze'ev A. 2016. Wnt signaling in cancer stem cells and colon cancer metastasis. F1000Research. 5.
Behrens J, Lustig B. 2004. The wnt connection to tumorigenesis. The International journal of developmental biology. 48(5-6):477-487.
Bernard D, Prasanth KV, Tripathi V, Colasse S, Nakamura T, Xuan Z, Zhang MQ, Sedel F, Jourdren L, Coulpier F et al. 2010. A long nuclear-retained non-coding rna regulates synaptogenesis by modulating gene expression. The EMBO journal. 29(18):3082-3093.
Brenner H, Kloor M, Pox CP. 2014. Colorectal cancer. Lancet (London, England). 383(9927):1490-1502.
Caruso S, Bazan V, Rolfo C, Insalaco L, Fanale D, Bronte G, Corsini LR, Rizzo S, Cicero G, Russo A. 2012. Micrornas in colorectal cancer stem cells: New regulators of cancer stemness? Oncogenesis. 1(11):e32-.
Chen JS, Hsu YM, Chen CC, Chen LL, Lee CC, Huang TS. 2010a. Secreted heat shock protein 90α induces colorectal cancer cell invasion through cd91/lrp-1 and nf-κb-mediated integrin α(v) expression. J Biol Chem. 285(33):25458-25466.
Chen M, Wang J, Lu J, Bond MC, Ren XR, Lyerly HK, Barak LS, Chen W. 2009. The anti-helminthic niclosamide inhibits wnt/frizzled1 signaling. Biochemistry. 48(43):10267-10274.
Chen W, Chen M, Barak LS. 2010b. Development of small molecules targeting the wnt pathway for the treatment of colon cancer: A high-throughput screening approach. Am J Physiol Gastrointest Liver Physiol. 299(2):G293-300.
Chen WS, Chen CC, Chen LL, Lee CC, Huang TS. 2013. Secreted heat shock protein 90α (hsp90α) induces nuclear factor-κb-mediated tcf12 protein expression to down-regulate e-cadherin and to enhance colorectal cancer cell migration and invasion. J Biol Chem. 288(13):9001-9010.
de Sousa e Melo F, Vermeulen L. 2016. Wnt signaling in cancer stem cell biology. Cancers (Basel). 8(7).
Ellis MJ, Ding L, Shen D, Luo J, Suman VJ, Wallis JW, Van Tine BA, Hoog J, Goiffon RJ, Goldstein TC et al. 2012. Whole-genome analysis informs breast cancer response to aromatase inhibition. Nature. 486(7403):353-360.
Engel I, Murre C. 2001. The function of e- and id proteins in lymphocyte development. Nature reviews Immunology. 1(3):193-199.
Guo F, Li Y, Liu Y, Wang J, Li Y, Li G. 2010. Inhibition of metastasis-associated lung adenocarcinoma transcript 1 in caski human cervical cancer cells suppresses cell proliferation and invasion. Acta biochimica et biophysica Sinica. 42(3):224-229.
Han Y, Liu Y, Nie L, Gui Y, Cai Z. 2013. Inducing cell proliferation inhibition, apoptosis, and motility reduction by silencing long noncoding ribonucleic acid metastasis-associated lung adenocarcinoma transcript 1 in urothelial carcinoma of the bladder. Urology. 81(1):209.e201-207.
Hayward P, Kalmar T, Arias AM. 2008. Wnt/notch signalling and information processing during development. Development. 135(3):411-424.
He TC, Sparks AB, Rago C, Hermeking H, Zawel L, da Costa LT, Morin PJ, Vogelstein B, Kinzler KW. 1998. Identification of c-myc as a target of the apc pathway. Science (New York, NY). 281(5382):1509-1512.
HEALTH PROMOTION ADMINISTRATION MINISTRY OF HEALTH AND WELFARE TAIWAN. CANCER REGISTRY ANNUAL REPORT, 2014 TAIWAN. DECEMBER 2016.
Hirata H, Hinoda Y, Shahryari V, Deng G, Nakajima K, Tabatabai ZL, Ishii N, Dahiya R. 2015. Long noncoding rna malat1 promotes aggressive renal cell carcinoma through ezh2 and interacts with mir-205. Cancer Res. 75(7):1322-1331.
Hu JS, Olson EN, Kingston RE. 1992. Heb, a helix-loop-helix protein related to e2a and itf2 that can modulate the DNA-binding ability of myogenic regulatory factors. Mol Cell Biol. 12(3):1031-1042.
Huelsken J, Behrens J. 2002. The wnt signalling pathway. J Cell Sci. 115(Pt 21):3977-3978.
Ji Q, Liu X, Fu X, Zhang L, Sui H, Zhou L, Sun J, Cai J, Qin J, Ren J et al. 2013. Resveratrol inhibits invasion and metastasis of colorectal cancer cells via malat1 mediated wnt/beta-catenin signal pathway. PLoS One. 8(11):e78700.
Jung HY, Jun S, Lee M, Kim HC, Wang X, Ji H, McCrea PD, Park JI. 2013. Paf and ezh2 induce wnt/beta-catenin signaling hyperactivation. Mol Cell. 52(2):193-205.
Kapranov P, Cheng J, Dike S, Nix DA, Duttagupta R, Willingham AT, Stadler PF, Hertel J, Hackermuller J, Hofacker IL et al. 2007. Rna maps reveal new rna classes and a possible function for pervasive transcription. Science (New York, NY). 316(5830):1484-1488.
Katoh M, Katoh M. 2007. Wnt signaling pathway and stem cell signaling network. Clin Cancer Res. 13(14):4042-4045.
Kwong KY, Zou Y, Day CP, Hung MC. 2002. The suppression of colon cancer cell growth in nude mice by targeting beta-catenin/tcf pathway. Oncogene. 21(54):8340-8346.
Lai MC, Yang Z, Zhou L, Zhu QQ, Xie HY, Zhang F, Wu LM, Chen LM, Zheng SS. 2012. Long non-coding rna malat-1 overexpression predicts tumor recurrence of hepatocellular carcinoma after liver transplantation. Medical oncology (Northwood, London, England). 29(3):1810-1816.
Lander ES, Linton LM, Birren B, Nusbaum C, Zody MC, Baldwin J, Devon K, Dewar K, Doyle M, FitzHugh W et al. 2001. Initial sequencing and analysis of the human genome. Nature. 409(6822):860-921.
Lee CC, Chen WS, Chen CC, Chen LL, Lin YS, Fan CS, Huang TS. 2012. Tcf12 protein functions as transcriptional repressor of e-cadherin, and its overexpression is correlated with metastasis of colorectal cancer. J Biol Chem. 287(4):2798-2809.
Li Y, Yang J, Luo JH, Dedhar S, Liu Y. 2007. Tubular epithelial cell dedifferentiation is driven by the helix-loop-helix transcriptional inhibitor id1. Journal of the American Society of Nephrology : JASN. 18(2):449-460.
Lie DC, Colamarino SA, Song HJ, Desire L, Mira H, Consiglio A, Lein ES, Jessberger S, Lansford H, Dearie AR et al. 2005. Wnt signalling regulates adult hippocampal neurogenesis. Nature. 437(7063):1370-1375.
Liu C, Lou W, Zhu Y, Nadiminty N, Schwartz CT, Evans CP, Gao AC. 2014. Niclosamide inhibits androgen receptor variants expression and overcomes enzalutamide resistance in castration-resistant prostate cancer. Clin Cancer Res. 20(12):3198-3210.
Liu J, Chen X, Ward T, Mao Y, Bockhorn J, Liu X, Wang G, Pegram M, Shen K. 2016. Niclosamide inhibits epithelial-mesenchymal transition and tumor growth in lapatinib-resistant human epidermal growth factor receptor 2-positive breast cancer. Int J Biochem Cell Biol. 71:12-23.
Londono-Joshi AI, Arend RC, Aristizabal L, Lu W, Samant RS, Metge BJ, Hidalgo B, Grizzle WE, Conner M, Forero-Torres A et al. 2014. Effect of niclosamide on basal-like breast cancers. Molecular cancer therapeutics. 13(4):800-811.
Lu H, Sun J, Wang F, Feng L, Ma Y, Shen Q, Jiang Z, Sun X, Wang X, Jin H. 2013. Enhancer of zeste homolog 2 activates wnt signaling through downregulating cxxc finger protein 4. Cell Death Dis. 4:e776.
Lu W, Lin C, Roberts MJ, Waud WR, Piazza GA, Li Y. 2011. Niclosamide suppresses cancer cell growth by inducing wnt co-receptor lrp6 degradation and inhibiting the wnt/beta-catenin pathway. PLoS One. 6(12):e29290.
Ma XY, Wang JH, Wang JL, Ma CX, Wang XC, Liu FS. 2015. Malat1 as an evolutionarily conserved lncrna, plays a positive role in regulating proliferation and maintaining undifferentiated status of early-stage hematopoietic cells. BMC Genomics. 16(1).
Mani SA, Guo W, Liao MJ, Eaton EN, Ayyanan A, Zhou AY, Brooks M, Reinhard F, Zhang CC, Shipitsin M et al. 2008. The epithelial-mesenchymal transition generates cells with properties of stem cells. Cell. 133(4):704-715.
Marusyk A, Polyak K. 2010. Tumor heterogeneity: Causes and consequences. Biochim Biophys Acta. 1805(1):105.
Massari ME, Murre C. 2000. Helix-loop-helix proteins: Regulators of transcription in eucaryotic organisms. Mol Cell Biol. 20(2):429-440.
McGuire S. 2016. World cancer report 2014. Geneva, switzerland: World health organization, international agency for research on cancer, who press, 2015. Advances in nutrition (Bethesda, Md). 7(2):418-419.
Mercer TR, Dinger ME, Mattick JS. 2009. Long non-coding rnas: Insights into functions. Nat Rev Genet. 10(3):155-159.
National Cancer Institute. Colon Cancer Treatment (PDQ®). 2014-05-12,29 June
Nguyen LV, Pellacani D, Lefort S, Kannan N, Osako T, Makarem M, Cox CL, Kennedy W, Beer P, Carles A et al. 2015. Barcoding reveals complex clonal dynamics of de novo transformed human mammary cells. Nature. 528(7581):267-271.
Nusse R, Varmus HE. 1992. Wnt genes. Cell. 69(7):1073-1087.
Nusslein-Volhard C, Wieschaus E. 1980. Mutations affecting segment number and polarity in drosophila. Nature. 287(5785):795-801.
Osada T. 2011. Anti-helminth compound niclosamide downregulates wnt signaling and elicits antitumor responses in tumors with activating apc mutations. 71(12):4172-4182.
Osada T, Chen M, Yang XY, Spasojevic I, Vandeusen JB, Hsu D, Clary BM, Clay TM, Chen W, Morse MA et al. 2011. Antihelminth compound niclosamide downregulates wnt signaling and elicits antitumor responses in tumors with activating apc mutations. Cancer Res. 71(12):4172-4182.
Papailiou J, Bramis KJ, Gazouli M, Theodoropoulos G. 2011. Stem cells in colon cancer. A new era in cancer theory begins. Int J Colorectal Dis. 26(1):1-11.
Peifer M, Polakis P. 2000. Wnt signaling in oncogenesis and embryogenesis--a look outside the nucleus. Science (New York, NY). 287(5458):1606-1609.
Ponting CP, Oliver PL, Reik W. 2009. Evolution and functions of long noncoding rnas. Cell. 136(4):629-641.
Sack U, Walther W, Scudiero D, Selby M, Kobelt D, Lemm M, Fichtner I, Schlag PM, Shoemaker RH, Stein U. 2011. Novel effect of antihelminthic niclosamide on s100a4-mediated metastatic progression in colon cancer. Journal of the National Cancer Institute. 103(13):1018-1036.
Sawada S, Littman DR. 1993. A heterodimer of heb and an e12-related protein interacts with the cd4 enhancer and regulates its activity in t-cell lines. Mol Cell Biol. 13(9):5620-5628.
Schmitt AM, Chang HY. 2016. Long noncoding rnas in cancer pathways. Cancer Cell. 29(4):452-463.
Siegel RL, Miller KD, Jemal A. 2017. Cancer statistics, 2017. CA: a cancer journal for clinicians. 67(1):7-30.
Steinestel K, Eder S, Schrader AJ, Steinestel J. 2014. Clinical significance of epithelial-mesenchymal transition. Clinical and translational medicine. 3:17.
Takebe N, Harris PJ, Warren RQ, Ivy SP. 2011. Targeting cancer stem cells by inhibiting wnt, notch, and hedgehog pathways. Nat Rev Clin Oncol. 8(2):97-106.
Takebe N, Miele L, Harris PJ, Jeong W, Bando H, Kahn M, Yang SX, Ivy SP. 2015. Targeting notch, hedgehog, and wnt pathways in cancer stem cells: Clinical update. Nat Rev Clin Oncol. 12(8):445-464.
Takemaru KI, Fischer V, Li FQ. 2009. Fine-tuning of nuclear β-catenin by chibby and 14-3-3. Cell cycle (Georgetown, Tex). 8(2):210-213.
Tetsu O, McCormick F. 1999. Beta-catenin regulates expression of cyclin d1 in colon carcinoma cells. Nature. 398(6726):422-426.
Wang D, Claus CL, Vaccarelli G, Braunstein M, Schmitt TM, Zuniga-Pflucker JC, Rothenberg EV, Anderson MK. 2006. The basic helix-loop-helix transcription factor hebalt is expressed in pro-t cells and enhances the generation of t cell precursors. Journal of immunology (Baltimore, Md : 1950). 177(1):109-119.
Wang KC, Chang HY. 2011. Molecular mechanisms of long noncoding rnas. Mol Cell. 43(6):904-914.
Wang YC, Chao TK, Chang CC, Yo YT, Yu MH, Lai HC. 2013. Drug screening identifies niclosamide as an inhibitor of breast cancer stem-like cells. PLoS One. 8(9):e74538.
Wilson BJ, Schatton T, Frank MH, Frank NY. 2011. Colorectal cancer stem cells: Biology and therapeutic implications. Current colorectal cancer reports. 7(2):128-135.
Wilusz JE, Freier SM, Spector DL. 2008. 3' end processing of a long nuclear-retained noncoding rna yields a trna-like cytoplasmic rna. Cell. 135(5):919-932.
Wilusz JE, Sunwoo H, Spector DL. 2009. Long noncoding rnas: Functional surprises from the rna world. Genes & development. 23(13):1494-1504.
Wu B, Crampton SP, Hughes CC. 2007. Wnt signaling induces matrix metalloproteinase expression and regulates t cell transmigration. Immunity. 26(2):227-239.
Wu KJ, Yang MH. 2011. Epithelial-mesenchymal transition and cancer stemness: The twist1-bmi1 connection. Bioscience reports. 31(6):449-455.
Wu XS, Wang XA, Wu WG, Hu YP, Li ML, Ding Q, Weng H, Shu YJ, Liu TY, Jiang L et al. 2014. Malat1 promotes the proliferation and metastasis of gallbladder cancer cells by activating the erk/mapk pathway. Cancer biology & therapy. 15(6):806-814.
Wu ZQ, Brabletz T, Fearon E, Willis AL, Hu CY, Li XY, Weiss SJ. 2012. Canonical wnt suppressor, axin2, promotes colon carcinoma oncogenic activity. Proc Natl Acad Sci U S A. 109(28):11312-11317.
Xu C, Yang M, Tian J, Wang X, Li Z. 2011. Malat-1: A long non-coding rna and its important 3' end functional motif in colorectal cancer metastasis. Int J Oncol. 39(1):169-175.
Yang G, Lu X, Yuan L. 2014. Lncrna: A link between rna and cancer. Biochim Biophys Acta. 1839(11):1097-1109.
Yin L, Gao Y, Zhang X, Wang J, Ding D, Zhang Y, Zhang J, Chen H. 2016. Niclosamide sensitizes triple-negative breast cancer cells to ionizing radiation in association with the inhibition of wnt/beta-catenin signaling. Oncotarget. 7(27):42126-42138.
Yook JI, Li XY, Ota I, Hu C, Kim HS, Kim NH, Cha SY, Ryu JK, Choi YJ, Kim J et al. 2006. A wnt-axin2-gsk3beta cascade regulates snail1 activity in breast cancer cells. Nature cell biology. 8(12):1398-1406.
Zeng X, Tamai K, Doble B, Li S, Huang H, Habas R, Okamura H, Woodgett J, He X. 2005. A dual-kinase mechanism for wnt co-receptor phosphorylation and activation. Nature. 438(7069):873-877.
Zhang Y, Babin J, Feldhaus AL, Singh H, Sharp PA, Bina M. 1991. Htf4: A new human helix-loop-helix protein. Nucleic acids research. 19(16):4555.
Zheng HT, Shi DB, Wang YW, Li XX, Xu Y, Tripathi P, Gu WL, Cai GX, Cai SJ. 2014. High expression of lncrna malat1 suggests a biomarker of poor prognosis in colorectal cancer. International journal of clinical and experimental pathology. 7(6):3174-3181.
(此全文未開放授權)
電子全文
中英文摘要
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *