|
1. Mudge, S.R., et al., Expression analysis suggests novel roles for members of the Pht1 family of phosphate transporters in Arabidopsis. The Plant Journal, 2002. 31(3): p. 341-353. 2. Gonzalez, E., et al., PHOSPHATE TRANSPORTER TRAFFIC FACILITATOR1 is a plant-specific SEC12-related protein that enables the endoplasmic reticulum exit of a high-affinity phosphate transporter in Arabidopsis. Plant Cell, 2005. 17(12): p. 3500-3512. 3. Hamburger, D., et al., Identification and characterization of the Arabidopsis PHO1 gene involved in phosphate loading to the xylem. Plant Cell, 2002. 14(4): p. 889-902. 4. Wang, Y., et al., Structure and expression profile of the Arabidopsis PHO1 gene family indicates a broad role in inorganic phosphate homeostasis. Plant Physiol, 2004. 135(1): p. 400-411. 5. Zhou, Z., et al., SPX proteins regulate Pi homeostasis and signaling in different subcellular level. Plant Signal Behav, 2015. 10(9): p. e1061163. 6. Chiou, T.J. and S.I. Lin, Signaling network in sensing phosphate availability in plants. Annu Rev Plant Biol, 2011. 62: p. 185-206. 7. Spain, B.H., et al., Truncated forms of a novel yeast protein suppress the lethality of a G protein alpha subunit deficiency by interacting with the beta subunit. J Biol Chem, 1995. 270(43): p. 25435-25444. 8. Nakafuku, M., et al., Occurrence in Saccharomyces cerevisiae of a gene homologous to the cDNA coding for the alpha subunit of mammalian G proteins. Proc Natl Acad Sci U S A, 1987. 84(8): p. 2140-2144. 9. Yoshida, K., N. Ogawa, and Y. Oshima, Function of the PHO regulatory genes for repressible acid phosphatase synthesis in Saccharomyces cerevisiae. Mol Gen Genet, 1989. 217(1): p. 40-46. 10. Battini, J.L., J.E. Rasko, and A.D. Miller, A human cell-surface receptor for xenotropic and polytropic murine leukemia viruses: possible role in G protein-coupled signal transduction. Proc Natl Acad Sci U S A, 1999. 96(4): p. 1385-1390. 11. Hardwick, K.G., et al., ERD1, a yeast gene required for the retention of luminal endoplasmic reticulum proteins, affects glycoprotein processing in the Golgi apparatus. The EMBO Journal, 1990. 9(3): p. 623-630. 12. Liu, T.Y., et al., PHO2-dependent degradation of PHO1 modulates phosphate homeostasis in Arabidopsis. Plant Cell, 2012. 24(5): p. 2168-2183. 13. Arpat, B.A., et al., Functional expression of PHO1 to the Golgi and trans‐Golgi network and its role in export of inorganic phosphate. The Plant Journal, 2012. 71(3): p. 479-491. 14. Wege, S., et al., The EXS Domain of PHO1 Participates in the Response of Shoots to Phosphate Deficiency via a Root-to-Shoot Signal. Plant Physiology, 2016. 170(1): p. 385-400. 15. Huang, T.-K., et al., Identification of Downstream Components of Ubiquitin-Conjugating Enzyme PHOSPHATE2 by Quantitative Membrane Proteomics in Arabidopsis Roots. The Plant Cell, 2013. 25(10): p. 4044-4060. 16. Aung, K., et al., pho2, a phosphate overaccumulator, is caused by a nonsense mutation in a microRNA399 target gene. Plant Physiol, 2006. 141(3): p. 1000-1011. 17. Bari, R., et al., PHO2, microRNA399, and PHR1 define a phosphate-signaling pathway in plants. Plant Physiol, 2006. 141(3): p. 988-999. 18. Kim, W., et al., The Role of the miR399-PHO2 Module in the Regulation of Flowering Time in Response to Different Ambient Temperatures in Arabidopsis thaliana. Molecules and Cells, 2011. 32(1): p. 83-88. 19. Dong, B., Z. Rengel, and E. Delhaize, Uptake and translocation of phosphate by pho2 mutant and wild-type seedlings of Arabidopsis thaliana. Planta, 1998. 205(2): p. 251-256. 20. Rao, V.S., et al., Protein-Protein Interaction Detection: Methods and Analysis. International Journal of Proteomics, 2014. 2014: p. 12. 21. Xing, S., et al., Techniques for the Analysis of Protein-Protein Interactions in Vivo. Plant Physiol, 2016. 171(2): p. 727-758. 22. Fields, S. and R. Sternglanz, The two-hybrid system: an assay for protein-protein interactions. Trends in Genetics, 1994. 10(8): p. 286-292. 23. Chien, C.T., et al., The two-hybrid system: a method to identify and clone genes for proteins that interact with a protein of interest. Proc Natl Acad Sci U S A, 1991. 88(21): p. 9578-9582. 24. Lee, H.-W., et al., Real-time single-molecule coimmunoprecipitation of weak protein-protein interactions. Nat. Protocols, 2013. 8(10): p. 2045-2060. 25. Ishikawa-Ankerhold, H.C., R. Ankerhold, and G.P.C. Drummen, Advanced Fluorescence Microscopy Techniques—FRAP, FLIP, FLAP, FRET and FLIM. Molecules, 2012. 17(4): p. 4047. 26. Remy, I. and S.W. Michnick, Application of protein-fragment complementation assays in cell biology. Biotechniques, 2007. 42(2): p. 137. 27. Hu, C.D., Y. Chinenov, and T.K. Kerppola, Visualization of interactions among bZIP and Rel family proteins in living cells using bimolecular fluorescence complementation. Mol Cell, 2002. 9(4): p. 789-798. 28. Cabantous, S., et al., A new protein-protein interaction sensor based on tripartite split-GFP association. Sci Rep, 2013. 3: p. 2854. 29. Hood, E.E., et al., NewAgrobacterium helper plasmids for gene transfer to plants. Transgenic Research, 1993. 2(4): p. 208-218. 30. Hellens, R., P. Mullineaux, and H. Klee, Technical Focus:A guide to Agrobacterium binary Ti vectors. Trends in Plant Science, 2000. 5(10): p. 446-451. 31. Christie, P.J. and J.E. Gordon, The Agrobacterium Ti Plasmids. Microbiol Spectr, 2014. 2(6). 32. Clemente, T., Nicotiana (Nicotiana tobaccum, Nicotiana benthamiana). Methods Mol Biol, 2006. 343: p. 143-154. 33. Sparkes, I.A., et al., Rapid, transient expression of fluorescent fusion proteins in tobacco plants and generation of stably transformed plants. Nat Protoc, 2006. 1(4): p. 2019-2025. 34. Kay, R., et al., Duplication of CaMV 35S promoter sequences creates a strong enhancer for plant genes. Science, 1987. 236(4806): p. 1299-1302. 35. Benfey, P.N. and N.-H. Chua, The cauliflower mosaic virus 35S promoter: combinatorial regulation of transcription in plants. Science, 1990. 250(4983): p. 959-966. 36. Vreugdenhil, D., et al., Ethanol-inducible gene expression: non-transformed plants also respond to ethanol. Trends in Plant Science, 2006. 11(1): p. 9-11. 37. Malnoy, M., et al., Activation of the Pathogen-Inducible Gst1 Promoter of Potato after Elicitation by Venturia inaequalis and Erwinia amylovora in Transgenic Apple (Malus × Domestica). Transgenic Research, 2006. 15(1): p. 83-93. 38. Schlucking, K., et al., A new beta-estradiol-inducible vector set that facilitates easy construction and efficient expression of transgenes reveals CBL3-dependent cytoplasm to tonoplast translocation of CIPK5. Mol Plant, 2013. 6(6): p. 1814-1829. 39. Zuo, J., Q.W. Niu, and N.H. Chua, Technical advance: An estrogen receptor-based transactivator XVE mediates highly inducible gene expression in transgenic plants. Plant J, 2000. 24(2): p. 265-273. 40. Ying, Y., et al., Two h-Type Thioredoxins Interact with the E2 Ubiquitin Conjugase PHO2 to Fine-Tune Phosphate Homeostasis in Rice. Plant Physiol, 2017. 173(1): p. 812-824. 41. Baldwin, T.C., et al., Identification and Characterization of GONST1, a Golgi-Localized GDP-Mannose Transporter in Arabidopsis. The Plant Cell, 2001. 13(10): p. 2283-2295. 42. Shao, S. and R.S. Hegde, Membrane protein insertion at the endoplasmic reticulum. Annu Rev Cell Dev Biol, 2011. 27: p. 25-56. 43. Munro, S., Organelle identity and the organization of membrane traffic. Nat Cell Biol, 2004. 6(6): p. 469-472. 44. Venditti, R., C. Wilson, and M.A. De Matteis, Exiting the ER: what we know and what we don't. Trends Cell Biol, 2014. 24(1): p. 9-18. 45. Seo, P.J., S.-G. Kim, and C.-M. Park, Membrane-bound transcription factors in plants. Trends in Plant Science, 2008. 13(10): p. 550-556.
|