|
1 Gradinaru, V., Mogri, M., Thompson, K. R., Henderson, J. M. & Deisseroth, K. Optical deconstruction of parkinsonian neural circuitry. Science 324, 354-359, doi:10.1126/science.1167093 (2009). 2 He, Z. et al. High frequency stimulation of subthalamic nucleus results in behavioral recovery by increasing striatal dopamine release in 6-hydroxydopamine lesioned rat. Behav Brain Res 263, 108-114, doi:10.1016/j.bbr.2014.01.014 (2014). 3 Bjorklund, A. & Dunnett, S. B. Dopamine neuron systems in the brain: an update. Trends Neurosci 30, 194-202, doi:10.1016/j.tins.2007.03.006 (2007). 4 Kim, S. W., Jang, Y. J., Chang, J. W. & Hwang, O. Degeneration of the nigrostriatal pathway and induction of motor deficit by tetrahydrobiopterin: an in vivo model relevant to Parkinson's disease. Neurobiol Dis 13, 167-176 (2003). 5 Jankovic, J. Parkinson's disease: clinical features and diagnosis. J Neurol Neurosurg Psychiatry 79, 368-376, doi:10.1136/jnnp.2007.131045 (2008). 6 Olanow, C. W. & Tatton, W. G. Etiology and pathogenesis of Parkinson's disease. Annu Rev Neurosci 22, 123-144, doi:10.1146/annurev.neuro.22.1.123 (1999). 7 Hauser, R. A., McDermott, M. P. & Messing, S. Factors associated with the development of motor fluctuations and dyskinesias in Parkinson disease. Arch Neurol 63, 1756-1760, doi:10.1001/archneur.63.12.1756 (2006). 8 Finlay, C. J., Duty, S. & Vernon, A. C. Brain morphometry and the neurobiology of levodopa-induced dyskinesias: current knowledge and future potential for translational pre-clinical neuroimaging studies. Front Neurol 5, 95, doi:10.3389/fneur.2014.00095 (2014). 9 Iravani, M. M. & Jenner, P. Mechanisms underlying the onset and expression of levodopa-induced dyskinesia and their pharmacological manipulation. J Neural Transm (Vienna) 118, 1661-1690, doi:10.1007/s00702-011-0698-2 (2011). 10 Benabid, A. L., Chabardes, S., Mitrofanis, J. & Pollak, P. Deep brain stimulation of the subthalamic nucleus for the treatment of Parkinson's disease. Lancet Neurol 8, 67-81, doi:10.1016/S1474-4422(08)70291-6 (2009). 11 Deuschl, G. et al. A randomized trial of deep-brain stimulation for Parkinson's disease. N Engl J Med 355, 896-908, doi:10.1056/NEJMoa060281 (2006). 12 Okun, M. S. & Foote, K. D. Parkinson's disease DBS: what, when, who and why? The time has come to tailor DBS targets. Expert Rev Neurother 10, 1847-1857 (2010). 13 Benabid, A. L. Deep brain stimulation for Parkinson's disease. Curr Opin Neurobiol 13, 696-706 (2003). 14 Rezai, A. R. et al. Surgery for movement disorders. Neurosurgery 62 Suppl 2, 809-838; discussion 838-809, doi:10.1227/01.neu.0000316285.52865.53 (2008). 15 Shehab, S., D'Souza, C., Ljubisavljevic, M. & Redgrave, P. High-frequency electrical stimulation of the subthalamic nucleus excites target structures in a model using c-fos immunohistochemistry. Neuroscience 270, 212-225, doi:10.1016/j.neuroscience.2014.04.016 (2014). 16 Limousin, P. et al. Electrical stimulation of the subthalamic nucleus in advanced Parkinson's disease. N Engl J Med 339, 1105-1111, doi:10.1056/NEJM199810153391603 (1998). 17 Okun, M. S. et al. Cognition and mood in Parkinson's disease in subthalamic nucleus versus globus pallidus interna deep brain stimulation: the COMPARE trial. Ann Neurol 65, 586-595, doi:10.1002/ana.21596 (2009). 18 Groenewegen, H. J. The basal ganglia and motor control. Neural Plast 10, 107-120, doi:10.1155/NP.2003.107 (2003). 19 Chakravarthy, V. S., Joseph, D. & Bapi, R. S. What do the basal ganglia do? A modeling perspective. Biol Cybern 103, 237-253, doi:10.1007/s00422-010-0401-y (2010). 20 Hamani, C., Saint-Cyr, J. A., Fraser, J., Kaplitt, M. & Lozano, A. M. The subthalamic nucleus in the context of movement disorders. Brain 127, 4-20, doi:10.1093/brain/awh029 (2004). 21 Qiu, M. H., Chen, M. C., Huang, Z. L. & Lu, J. Neuronal activity (c-Fos) delineating interactions of the cerebral cortex and basal ganglia. Front Neuroanat 8, 13, doi:10.3389/fnana.2014.00013 (2014). 22 Nambu, A., Takada, M., Inase, M. & Tokuno, H. Dual somatotopical representations in the primate subthalamic nucleus: evidence for ordered but reversed body-map transformations from the primary motor cortex and the supplementary motor area. J Neurosci 16, 2671-2683 (1996). 23 Nambu, A. et al. Excitatory cortical inputs to pallidal neurons via the subthalamic nucleus in the monkey. J Neurophysiol 84, 289-300 (2000). 24 Nambu, A., Tokuno, H. & Takada, M. Functional significance of the cortico-subthalamo-pallidal 'hyperdirect' pathway. Neurosci Res 43, 111-117 (2002). 25 Bosch, C., Mailly, P., Degos, B., Deniau, J. M. & Venance, L. Preservation of the hyperdirect pathway of basal ganglia in a rodent brain slice. Neuroscience 215, 31-41, doi:10.1016/j.neuroscience.2012.04.033 (2012). 26 Williams, D. et al. Dopamine-dependent changes in the functional connectivity between basal ganglia and cerebral cortex in humans. Brain 125, 1558-1569 (2002). 27 Fogelson, N. et al. Different functional loops between cerebral cortex and the subthalmic area in Parkinson's disease. Cereb Cortex 16, 64-75, doi:10.1093/cercor/bhi084 (2006). 28 Gaynor, L. M. et al. Suppression of beta oscillations in the subthalamic nucleus following cortical stimulation in humans. Eur J Neurosci 28, 1686-1695, doi:10.1111/j.1460-9568.2008.06363.x (2008). 29 Kuhn, A. A. et al. High-frequency stimulation of the subthalamic nucleus suppresses oscillatory beta activity in patients with Parkinson's disease in parallel with improvement in motor performance. J Neurosci 28, 6165-6173, doi:10.1523/JNEUROSCI.0282-08.2008 (2008). 30 de Solages, C., Hill, B. C., Koop, M. M., Henderson, J. M. & Bronte-Stewart, H. Bilateral symmetry and coherence of subthalamic nuclei beta band activity in Parkinson's disease. Exp Neurol 221, 260-266, doi:10.1016/j.expneurol.2009.11.012 (2010). 31 Giannicola, G. et al. The effects of levodopa and ongoing deep brain stimulation on subthalamic beta oscillations in Parkinson's disease. Exp Neurol 226, 120-127, doi:10.1016/j.expneurol.2010.08.011 (2010). 32 Litvak, V. et al. Movement-related changes in local and long-range synchronization in Parkinson's disease revealed by simultaneous magnetoencephalography and intracranial recordings. J Neurosci 32, 10541-10553, doi:10.1523/JNEUROSCI.0767-12.2012 (2012). 33 Litvak, V. et al. Resting oscillatory cortico-subthalamic connectivity in patients with Parkinson's disease. Brain 134, 359-374, doi:10.1093/brain/awq332 (2011). 34 Hirschmann, J. et al. Differential modulation of STN-cortical and cortico-muscular coherence by movement and levodopa in Parkinson's disease. Neuroimage 68, 203-213, doi:10.1016/j.neuroimage.2012.11.036 (2013). 35 Kato, K. et al. Bilateral coherence between motor cortices and subthalamic nuclei in patients with Parkinson's disease. Clin Neurophysiol 126, 1941-1950, doi:10.1016/j.clinph.2014.12.007 (2015). 36 Quinn, E. J. et al. Beta oscillations in freely moving Parkinson's subjects are attenuated during deep brain stimulation. Mov Disord 30, 1750-1758, doi:10.1002/mds.26376 (2015). 37 Weiss, D. et al. Subthalamic stimulation modulates cortical motor network activity and synchronization in Parkinson's disease. Brain 138, 679-693, doi:10.1093/brain/awu380 (2015). 38 Oswal, A. et al. Deep brain stimulation modulates synchrony within spatially and spectrally distinct resting state networks in Parkinson's disease. Brain 139, 1482-1496, doi:10.1093/brain/aww048 (2016). 39 Marsden, J. F., Limousin-Dowsey, P., Ashby, P., Pollak, P. & Brown, P. Subthalamic nucleus, sensorimotor cortex and muscle interrelationships in Parkinson's disease. Brain 124, 378-388 (2001). 40 Cassidy, M. et al. Movement-related changes in synchronization in the human basal ganglia. Brain 125, 1235-1246 (2002). 41 Lalo, E. et al. Patterns of bidirectional communication between cortex and basal ganglia during movement in patients with Parkinson disease. J Neurosci 28, 3008-3016, doi:10.1523/JNEUROSCI.5295-07.2008 (2008). 42 Garcia, L., D'Alessandro, G., Bioulac, B. & Hammond, C. High-frequency stimulation in Parkinson's disease: more or less? Trends Neurosci 28, 209-216, doi:10.1016/j.tins.2005.02.005 (2005). 43 Quiroga-Varela, A., Walters, J. R., Brazhnik, E., Marin, C. & Obeso, J. A. What basal ganglia changes underlie the parkinsonian state? The significance of neuronal oscillatory activity. Neurobiol Dis 58, 242-248, doi:10.1016/j.nbd.2013.05.010 (2013). 44 Weinberger, M. et al. Beta oscillatory activity in the subthalamic nucleus and its relation to dopaminergic response in Parkinson's disease. J Neurophysiol 96, 3248-3256, doi:10.1152/jn.00697.2006 (2006). 45 Kuhn, A. A. et al. Modulation of beta oscillations in the subthalamic area during motor imagery in Parkinson's disease. Brain 129, 695-706, doi:10.1093/brain/awh715 (2006). 46 Kuhn, A. A. et al. Pathological synchronisation in the subthalamic nucleus of patients with Parkinson's disease relates to both bradykinesia and rigidity. Exp Neurol 215, 380-387, doi:10.1016/j.expneurol.2008.11.008 (2009). 47 Ray, N. J. et al. Local field potential beta activity in the subthalamic nucleus of patients with Parkinson's disease is associated with improvements in bradykinesia after dopamine and deep brain stimulation. Exp Neurol 213, 108-113, doi:10.1016/j.expneurol.2008.05.008 (2008). 48 Eusebio, A. et al. Effects of low-frequency stimulation of the subthalamic nucleus on movement in Parkinson's disease. Exp Neurol 209, 125-130, doi:10.1016/j.expneurol.2007.09.007 (2008). 49 Chen, C. C. et al. Stimulation of the subthalamic region at 20 Hz slows the development of grip force in Parkinson's disease. Exp Neurol 231, 91-96, doi:10.1016/j.expneurol.2011.05.018 (2011). 50 Brown, P. Abnormal oscillatory synchronisation in the motor system leads to impaired movement. Curr Opin Neurobiol 17, 656-664, doi:10.1016/j.conb.2007.12.001 (2007). 51 Oswal, A., Brown, P. & Litvak, V. Synchronized neural oscillations and the pathophysiology of Parkinson's disease. Curr Opin Neurol 26, 662-670, doi:10.1097/WCO.0000000000000034 (2013). 52 Stein, E. & Bar-Gad, I. beta oscillations in the cortico-basal ganglia loop during parkinsonism. Exp Neurol 245, 52-59, doi:10.1016/j.expneurol.2012.07.023 (2013). 53 Little, S. et al. Adaptive deep brain stimulation in advanced Parkinson disease. Ann Neurol 74, 449-457, doi:10.1002/ana.23951 (2013). 54 Little, S. et al. Bilateral adaptive deep brain stimulation is effective in Parkinson's disease. J Neurol Neurosurg Psychiatry 87, 717-721, doi:10.1136/jnnp-2015-310972 (2016). 55 Priori, A., Foffani, G., Rossi, L. & Marceglia, S. Adaptive deep brain stimulation (aDBS) controlled by local field potential oscillations. Exp Neurol 245, 77-86, doi:10.1016/j.expneurol.2012.09.013 (2013). 56 Costa, R. M. et al. Rapid alterations in corticostriatal ensemble coordination during acute dopamine-dependent motor dysfunction. Neuron 52, 359-369, doi:10.1016/j.neuron.2006.07.030 (2006). 57 Dejean, C. et al. Power fluctuations in beta and gamma frequencies in rat globus pallidus: association with specific phases of slow oscillations and differential modulation by dopamine D1 and D2 receptors. J Neurosci 31, 6098-6107, doi:10.1523/JNEUROSCI.3311-09.2011 (2011). 58 Degos, B. et al. Neuroleptic-induced catalepsy: electrophysiological mechanisms of functional recovery induced by high-frequency stimulation of the subthalamic nucleus. J Neurosci 25, 7687-7696, doi:10.1523/JNEUROSCI.1056-05.2005 (2005). 59 Mallet, N. et al. Disrupted dopamine transmission and the emergence of exaggerated beta oscillations in subthalamic nucleus and cerebral cortex. J Neurosci 28, 4795-4806, doi:10.1523/JNEUROSCI.0123-08.2008 (2008). 60 Brazhnik, E., Novikov, N., McCoy, A. J., Cruz, A. V. & Walters, J. R. Functional correlates of exaggerated oscillatory activity in basal ganglia output in hemiparkinsonian rats. Exp Neurol 261, 563-577, doi:10.1016/j.expneurol.2014.07.010 (2014). 61 Delaville, C., McCoy, A. J., Gerber, C. M., Cruz, A. V. & Walters, J. R. Subthalamic nucleus activity in the awake hemiparkinsonian rat: relationships with motor and cognitive networks. J Neurosci 35, 6918-6930, doi:10.1523/JNEUROSCI.0587-15.2015 (2015). 62 Sacchettini, J. C. & Kelly, J. W. Therapeutic strategies for human amyloid diseases. Nat Rev Drug Discov 1, 267-275, doi:10.1038/nrd769 (2002). 63 Brettschneider, J., Del Tredici, K., Lee, V. M. & Trojanowski, J. Q. Spreading of pathology in neurodegenerative diseases: a focus on human studies. Nat Rev Neurosci 16, 109-120, doi:10.1038/nrn3887 (2015). 64 Jenner, P. Molecular mechanisms of L-DOPA-induced dyskinesia. Nat Rev Neurosci 9, 665-677, doi:10.1038/nrn2471 (2008). 65 Erny, D. et al. Host microbiota constantly control maturation and function of microglia in the CNS. Nat Neurosci 18, 965-977, doi:10.1038/nn.4030 (2015). 66 Matcovitch-Natan, O. et al. Microglia development follows a stepwise program to regulate brain homeostasis. Science 353, aad8670, doi:10.1126/science.aad8670 (2016). 67 Rooks, M. G. & Garrett, W. S. Gut microbiota, metabolites and host immunity. Nat Rev Immunol 16, 341-352, doi:10.1038/nri.2016.42 (2016). 68 Devos, D. et al. Colonic inflammation in Parkinson's disease. Neurobiol Dis 50, 42-48, doi:10.1016/j.nbd.2012.09.007 (2013). 69 Braak, H., Rub, U., Gai, W. P. & Del Tredici, K. Idiopathic Parkinson's disease: possible routes by which vulnerable neuronal types may be subject to neuroinvasion by an unknown pathogen. J Neural Transm (Vienna) 110, 517-536, doi:10.1007/s00702-002-0808-2 (2003). 70 Verbaan, D. et al. Patient-reported autonomic symptoms in Parkinson disease. Neurology 69, 333-341, doi:10.1212/01.wnl.0000266593.50534.e8 (2007). 71 Del Tredici, K. & Braak, H. A not entirely benign procedure: progression of Parkinson's disease. Acta Neuropathol 115, 379-384, doi:10.1007/s00401-008-0355-5 (2008). 72 Sampson, T. R. et al. Gut Microbiota Regulate Motor Deficits and Neuroinflammation in a Model of Parkinson's Disease. Cell 167, 1469-1480 e1412, doi:10.1016/j.cell.2016.11.018 (2016). 73 Zhou, L. & Foster, J. A. Psychobiotics and the gut-brain axis: in the pursuit of happiness. Neuropsychiatr Dis Treat 11, 715-723, doi:10.2147/NDT.S61997 (2015). 74 Dinan, T. G., Stanton, C. & Cryan, J. F. Psychobiotics: a novel class of psychotropic. Biol Psychiatry 74, 720-726, doi:10.1016/j.biopsych.2013.05.001 (2013). 75 Hsiao, E. Y. et al. Microbiota modulate behavioral and physiological abnormalities associated with neurodevelopmental disorders. Cell 155, 1451-1463, doi:10.1016/j.cell.2013.11.024 (2013). 76 Liu, Y. W. et al. Psychotropic effects of Lactobacillus plantarum PS128 in early life-stressed and naive adult mice. Brain Res 1631, 1-12, doi:10.1016/j.brainres.2015.11.018 (2016). 77 Liu, W. H. et al. Genome architecture of Lactobacillus plantarum PS128, a probiotic strain with potential immunomodulatory activity. Gut Pathog 7, 22, doi:10.1186/s13099-015-0068-y (2015). 78 Hariz, M. Twenty-five years of deep brain stimulation: celebrations and apprehensions. Mov Disord 27, 930-933, doi:10.1002/mds.25007 (2012). 79 Moro, E. et al. The impact on Parkinson's disease of electrical parameter settings in STN stimulation. Neurology 59, 706-713 (2002). 80 Reich, M. M. et al. Short pulse width widens the therapeutic window of subthalamic neurostimulation. Ann Clin Transl Neurol 2, 427-432, doi:10.1002/acn3.168 (2015). 81 Timmermann, L. et al. Multiple-source current steering in subthalamic nucleus deep brain stimulation for Parkinson's disease (the VANTAGE study): a non-randomised, prospective, multicentre, open-label study. Lancet Neurol 14, 693-701, doi:10.1016/S1474-4422(15)00087-3 (2015). 82 Abosch, A. et al. Long-term recordings of local field potentials from implanted deep brain stimulation electrodes. Neurosurgery 71, 804-814, doi:10.1227/NEU.0b013e3182676b91 (2012). 83 Little, S. & Brown, P. What brain signals are suitable for feedback control of deep brain stimulation in Parkinson's disease? Ann N Y Acad Sci 1265, 9-24, doi:10.1111/j.1749-6632.2012.06650.x (2012). 84 Rosa, M. et al. Adaptive deep brain stimulation in a freely moving Parkinsonian patient. Mov Disord 30, 1003-1005, doi:10.1002/mds.26241 (2015). 85 Little, S. et al. Adaptive deep brain stimulation for Parkinson's disease demonstrates reduced speech side effects compared to conventional stimulation in the acute setting. J Neurol Neurosurg Psychiatry 87, 1388-1389, doi:10.1136/jnnp-2016-313518 (2016). 86 Dejean, C. et al. Evolution of the dynamic properties of the cortex-basal ganglia network after dopaminergic depletion in rats. Neurobiol Dis 46, 402-413, doi:10.1016/j.nbd.2012.02.004 (2012). 87 Dejean, C., Gross, C. E., Bioulac, B. & Boraud, T. Synchronous high-voltage spindles in the cortex-basal ganglia network of awake and unrestrained rats. Eur J Neurosci 25, 772-784, doi:10.1111/j.1460-9568.2007.05305.x (2007). 88 Buzsaki, G. & Silva, F. L. High frequency oscillations in the intact brain. Prog Neurobiol 98, 241-249, doi:10.1016/j.pneurobio.2012.02.004 (2012). 89 Ge, S. et al. Dopamine depletion increases the power and coherence of high-voltage spindles in the globus pallidus and motor cortex of freely moving rats. Brain Res 1465, 66-79, doi:10.1016/j.brainres.2012.05.002 (2012). 90 Magill, P. J. et al. Coherent spike-wave oscillations in the cortex and subthalamic nucleus of the freely moving rat. Neuroscience 132, 659-664, doi:10.1016/j.neuroscience.2005.01.006 (2005). 91 Dejean, C., Gross, C. E., Bioulac, B. & Boraud, T. Dynamic changes in the cortex-basal ganglia network after dopamine depletion in the rat. J Neurophysiol 100, 385-396, doi:10.1152/jn.90466.2008 (2008). 92 Li, Q. et al. Therapeutic deep brain stimulation in Parkinsonian rats directly influences motor cortex. Neuron 76, 1030-1041, doi:10.1016/j.neuron.2012.09.032 (2012). 93 Yang, C. et al. High frequency stimulation of the STN restored the abnormal high-voltage spindles in the cortex and the globus pallidus of 6-OHDA lesioned rats. Neurosci Lett 595, 122-127, doi:10.1016/j.neulet.2015.04.011 (2015). 94 Shinko, A. et al. Spinal cord stimulation exerts neuroprotective effects against experimental Parkinson's disease. PLoS One 9, e101468, doi:10.1371/journal.pone.0101468 (2014). 95 Johnson, S. G. & Frigo, M. A modified split-radix FFT with fewer arithmetic operations. Ieee T Signal Proces 55, 111-119, doi:10.1109/Tsp.2006.882087 (2007). 96 Frigo, M. & Johnson, S. G. The design and implementation of FFTW3. P Ieee 93, 216-231, doi:10.1109/Jproc.2004.840301 (2005). 97 Sharott, A. et al. Dopamine depletion increases the power and coherence of beta-oscillations in the cerebral cortex and subthalamic nucleus of the awake rat. Eur J Neurosci 21, 1413-1422, doi:10.1111/j.1460-9568.2005.03973.x (2005). 98 Pan, M. K. et al. Neuronal firing patterns outweigh circuitry oscillations in parkinsonian motor control. J Clin Invest 126, 4516-4526, doi:10.1172/JCI88170 (2016).
|