帳號:guest(18.117.73.131)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):朱珮萱
作者(外文):Chu, Pei-Hsuan
論文名稱(中文):藉由果蠅模型探討Crag-RNAi在不同神經內之影響
論文名稱(外文):Influence of the Crag-RNAi explored via different neurons of Drosophila
指導教授(中文):張慧雲
指導教授(外文):Chang, Hui-Yun
口試委員(中文):桑自剛
范聖興
口試委員(外文):Sang, Tzu-Kang
Fan, Seng-Sheen
學位類別:碩士
校院名稱:國立清華大學
系所名稱:系統神經科學研究所
學號:103080545
出版年(民國):106
畢業學年度:105
語文別:英文
論文頁數:50
中文關鍵詞:阿茲海默症微管相關蛋白黑腹果蠅絲裂原活化蛋白激酶激活死亡域
外文關鍵詞:Alzheimer's diseasmicrotubule-associated proteinDrosophilaMAP kinase activating death domain
相關次數:
  • 推薦推薦:0
  • 點閱點閱:28
  • 評分評分:*****
  • 下載下載:8
  • 收藏收藏:0
阿茲海默症佔失智病狀中的多數,其伴隨的症狀為記憶力的喪失以及大腦內含有Tau蛋白累積與Aβ斑塊的形成。Tau為微管蛋白,主要表現於中樞神經系統內以穩定神經軸突。先前研究證實了在果蠅眼睛內同時表現Tau以及AD易感性基因會導致果蠅眼睛的受損。然而Tau的磷酸化與阿茲海默症易感受基因的相互關係尚未釐清。因此在本研究中使用果蠅作為生物實驗模型工具,探討阿茲海默症易感受基因與Tau。結合GAL4/UAS系統,探討Crag-RNAi與Tau共同表現於多巴胺神經元內以觀察其影響。此外,我們發現共同表現Crag-RNAi/Tau除了使多巴胺神經元內的磷酸化Tau表現量增加外,也會使粒線體的表現量增多。我們統整了在Crag表現量降低情況下,磷酸化Tau與粒線體當中有著某種關聯性。
Majority of patients with Alzheimer's disease (AD) suffer from dementia with symptoms of loss of memory and accumulation of Tau protein and Aβ plaques could be found in brains. Tau is a microtubule-associated protein (MAPT) that mainly expressed in the central nervous system to stabilize axons. Previous experiments had demonstrated that the expression of Tau and AD susceptibility genes in the eyes of Drosophila could lead to the impairing of eyes. However, the relationship between Tau hyperphosphorylation and AD susceptibility genes remains a mystery. Therefore, Drosophila was chosen as the model organism in this study to explore the relationship between AD susceptibility genes and Tau. With GAL4 / UAS system, the influences of co-expressing Crag-RNAi and Tau in the dopaminergic neurons could be investigated. Furthermore, we found that co-expression of Crag-RNAi/Tau increased the levels of phosphorylated Tau as well as mitochondria in the dopaminergic neurons. It could be concluded from this study that certain correlation between phosphorylated Tau and mitochondria in knockdown of Crag does exist
Introduction 1
Alzheimer’s disease and Parkinson's disease 1
Tau hypothesis 2
Dopaminergic neurons and Parkinson's disease 4
Glutamatergic neurons and Alzheimer’s disease 4
DENN/MADD 5
Mitochondria and Neurodegeneration 6
Drosophila melanogaster 7
Materials & Methods 9
Fly strains 9
Drosophila maintenance 9
Immunohistochemistry analysis 9
Results 11
AD susceptibility genes show interaction with tau. 11
Knockdown of Crag increased Tau-induced dopaminergic neurodegeneration in
1-week old and 3-week old flies. 12
Knockdown of Crag can enhance the level of phosphorylation Tau in dopaminergic neurons. 13
The level of mitochondria under co-expression of Tau/Crag-RNAi was more than
the control group during aging... 15
During aging, co-expression of Tau/Crag-RNAi could make mitochondria translocate to the axon... 16
The expression of Crag-RNAi could change the shape and number of glutamatergic neuron.. 17
The effects of Crag-RNAi expressed on glutamatergic neurons cause more damage
than DA neurons 18
Discussion 20
Knockdown of Crag and dopaminergic neurons. 21
Phosphorylated Tau and mitochondria under co-expression of Tau and
Crag RNAi. 22
Knockdown of Crag and glutamatergic neurons. 23
Tau and TNF1 signaling. 24
Over-expression of Crag in neurons. 25
Reference 27
Figures 33
Fig. 1 AD associated genes modify tau expression in fly eyes 34
Fig. 2 Expression of crag-RNAi enhanced Tau-induced neurodegeneration in dopaminergic neurons. 36
Fig. 3 Co-expression of Tau、Crag-RNAi in dopaminergic neurons show the level of phosphorylation Tau is more higher than only expression of Tau in week1 and week3. 38
Fig. 4 Co-expression of Crag-RNAi, Tau in dopaminergic neurons enhanced distribution of mitochondria during aging.. 40
Fig. 5 Co-expression of Tau, Crag-RNAi in dopaminergic neurons show that relationship between phosphorylation of Tau and mitochondria. 42
Fig. 6 Crag-RNAi expression induced loss of glutamatergic neurons 45
Fig. 7 The effect of Crag-RNAi expressed on different neurons in 1-week, 3-weeks, and 7-weeks old fly. 47
Fig. 8 AD associated MADD and possible affected mechanisms. 49
Arias-Carrión, Ó., Pöppel, E. (2007). Dopamine, learning, and reward-seeking behavior. Acta neurobiologiae experimentalis.
Babiychuk, E.B., Atanassoff, A.P., Monastyrskaya, K., Brandenberger, C., Studer, D., Allemann, C., Draeger, A. (2011). The targeting of plasmalemmal ceramide to mitochondria during apoptosis. PLoS One 6, e23706.
Billingsley, M. L., Kincaid, R. L. (1997). Regulated phosphorylation and dephosphorylation of tau protein: effects on microtubule interaction, intracellular trafficking and neurodegeneration. Biochemical Journal, 323(3), 577-591.
Brisch, R., Saniotis, A., Wolf, R., Bielau, H., Bernstein, H.G., Steiner, J., Bogerts, B., Braun, K., Jankowski, Z., Kumaratilake, J., et al. (2014). The role of dopamine in schizophrenia from a neurobiological and evolutionary perspective: old fashioned, but still in vogue. Front Psychiatry 5, 47.
Chou, Y. H., Spletter, M. L., Yaksi, E., Leong, J. C., Wilson, R. I., & Luo, L. (2010). Diversity and wiring variability of olfactory local interneurons in the Drosophila antennal lobe. Nature neuroscience, 13(4), 439-449.
Collins-Praino, L.E., Corrigan, F. (2017). Does neuroinflammation drive the relationship between tau hyperphosphorylation and dementia development following traumatic brain injury? Brain Behav Immun 60, 369-382.
Del Villar, K., Miller, C.A. (2004). Down-regulation of DENN/MADD, a TNF receptor binding protein, correlates with neuronal cell death in Alzheimer's disease brain and hippocampal neurons. Proc Natl Acad Sci U S A 101, 4210-4215.
Dourlen, P., Fernandez-Gomez, F.J., Dupont, C., Grenier-Boley, B., Bellenguez, C., Obriot, H., Caillierez, R., Sottejeau, Y., Chapuis, J., Bretteville, A., et al. (2016). Functional screening of Alzheimer risk loci identifies PTK2B as an in vivo modulator and early marker of Tau pathology. Mol Psychiatry.
Dunlop, B.W., Nemeroff, C.B. (2007). The role of dopamine in the pathophysiology of depression. Arch Gen Psychiatry 64, 327-337.
Eckert, A., Nisbet, R., Grimm, A., Götz, J. (2014). March separate, strike together—Role of phosphorylated TAU in mitochondrial dysfunction in Alzheimer's disease. Biochimica et Biophysica Acta (BBA)-Molecular Basis of Disease, 1842(8), 1258-1266.
Esposito, Z., Belli, L., Toniolo, S., Sancesario, G., Bianconi, C., Martorana, A. (2013). Amyloid beta, glutamate, excitotoxicity in Alzheimer's disease: are we on the right track? CNS Neurosci Ther 19, 549-555.
Francis, P. T. (2003). Glutamatergic systems in Alzheimer's disease. International journal of geriatric psychiatry, 18(S1), S15-S21.
Friggi‐Grelin, F., Coulom, H., Meller, M., Gomez, D., Hirsh, J., Birman, S. (2003). Targeted gene expression in Drosophila dopaminergic cells using regulatory sequences from tyrosine hydroxylase. Journal of neurobiology, 54(4), 618-627
Gibson, G. E., & Thakkar, A. (2017). Interactions of Mitochondria/Metabolism and Calcium Regulation in Alzheimer’s Disease: A Calcinist Point of View. Neurochemical Research, 42(6), 1636-1648.
Gendron, T. F., Petrucelli, L. (2009). The role of tau in neurodegeneration. Molecular neurodegeneration, 4(1), 1.
Goedert, M., Jakes, R.,Vanmechelen, E. (1995). Monoclonal antibody AT8 recognises tau protein phosphorylated at both serine 202 and threonine 205. Neuroscience letters, 189(3), 167-170.
Goudsmit, J. (2016). The incubation period of Alzheimer's disease and the timing of tau versus amyloid misfolding and spreading within the brain. Eur J Epidemiol 31, 99-105.
Iqbal, K., Alonso Adel, C., Chen, S., Chohan, M.O., El-Akkad, E., Gong, C.X., Khatoon, S., Li, B., Liu, F., Rahman, A., et al. (2005). Tau pathology in Alzheimer disease and other tauopathies. Biochim Biophys Acta 1739, 198-210.
Kalia, L.V., Lang, A.E. (2015). Parkinson's disease. The Lancet 386, 896-912.
Karthick, C., Periyasamy, S., Jayachandran, K.S., Anusuyadevi, M. (2016). Intrahippocampal Administration of Ibotenic Acid Induced Cholinergic Dysfunction via NR2A/NR2B Expression: Implications of Resveratrol against Alzheimer Disease Pathophysiology. Front Mol Neurosci 9, 28.
Lehmann, G., Ziv, T., Braten, O., Admon, A., Udasin, R. G., Ciechanover, A. (2016). Ubiquitination of specific mitochondrial matrix proteins. Biochemical and biophysical research communications, 475(1), 13-18.
Lenka, A., Arumugham, S.S., Christopher, R., Pal, P.K. (2016). Genetic substrates of psychosis in patients with Parkinson's disease: A critical review. J Neurol Sci 364, 33-41.
Mao, Z., Davis, R. L. (2009). Eight different types of dopaminergic neurons innervate the Drosophila mushroom body neuropil: anatomical and physiological heterogeneity. Frontiers in neural circuits, 3, 5.
Martorana, A., Esposito, Z., & Koch, G. (2010). Beyond the cholinergic hypothesis: do current drugs work in Alzheimer's disease?. CNS neuroscience & therapeutics, 16(4), 235-245.
Mastroeni, D., Delvaux, E., Nolz, J., Tan, Y., Grover, A., Oddo, S., Coleman, P.D. (2015). Aberrant intracellular localization of H3k4me3 demonstrates an early epigenetic phenomenon in Alzheimer's disease. Neurobiol Aging 36, 3121-3129.
Miyoshi, J., and Takai, Y. (2004). Dual role of DENN/MADD (Rab3GEP) in neurotransmission and neuroprotection. Trends Mol Med 10, 476-480.
Mo, Y., Williams, C., Miller, C.A. (2012). DENN/MADD/IG20 alternative splicing changes and cell death in Alzheimer's disease. J Mol Neurosci 48, 97-110.
Mudher, A., & Lovestone, S. (2002). Alzheimer's disease–do tauists and baptists finally shake hands. Trends in neurosciences, 25(1), 22-26.
Novak, P., Cente, M., Kosikova, N., Augustin, T., Kvetnansky, R., Novak, M., & Filipcik, P. (2017). Stress-Induced Alterations of Immune Profile in Animals Suffering by Tau Protein-Driven Neurodegeneration. Cellular and Molecular Neurobiology, 1-17.
Pastukhov, A., Krisanova, N., Maksymenko, V., and Borisova, T. (2016). Personalized approach in brain protection by hypothermia: individual changes in non-pathological and ischemia-related glutamate transport in brain nerve terminals. EPMA J 7, 26.
Pearson G, Robinson F, Beers Gibson T, Xu BE, Karandikar M, Berman K, Cobb MH (Apr 2001). "Mitogen-activated protein (MAP) kinase pathways: regulation and physiological functions". Endocrine Reviews. 22 (2): 153–83
Pellegrini, L., Wetzel, A., Granno, S., Heaton, G., Harvey, K. (2017). Back to the tubule: microtubule dynamics in Parkinson's disease. Cell Mol Life Sci 74, 409-434.
Perez, M.J., Vergara-Pulgar, K., Jara, C., Cabezas-Opazo, F., Quintanilla, R.A. (2017). Caspase-Cleaved Tau Impairs Mitochondrial Dynamics in Alzheimer's Disease. Mol Neurobiol.
Pocernich, C. B., Butterfield, D. A. (2003). Acrolein inhibits NADH-linked mitochondrial enzyme activity: implications for Alzheimer's disease. Neurotoxicity research, 5(7), 515-519.
Pourahmad, J., Faizi, M., Abarghuyi, S., Salimi, A., & Nasoohi, S. (2016). A Search for Mitochondrial Damage in Alzheimer’s Disease Using Isolated Rat Brain Mitochondria. Iranian Journal of Pharmaceutical Research, 15, 185-195.
Prymaczok, N.C., Riek, R., Gerez, J. (2016). More than a Rumor Spreads in Parkinson's Disease. Front Hum Neurosci 10, 608.
Rankin, C.A., Sun, Q., Gamblin, T.C. (2005). Pseudo-phosphorylation of tau at Ser202 and Thr205 affects tau filament formation. Brain Res Mol Brain Res 138, 84-93.
Reddy, P. H. (2011). Abnormal tau, mitochondrial dysfunction, impaired axonal transport of mitochondria, and synaptic deprivation in Alzheimer's disease. Brain research, 1415, 136-148.
Ribeiro, F.M., Vieira, L.B., Pires, R.G., Olmo, R.P., Ferguson, S.S. (2017). Metabotropic glutamate receptors and neurodegenerative diseases. Pharmacol Res 115, 179-191.
Rossi, D., Brambilla, L., Valori, C. F., Crugnola, A., Giaccone, G., Capobianco, R., ... & Volterra, A. (2005). Defective tumor necrosis factor-α-dependent control of astrocyte glutamate release in a transgenic mouse model of Alzheimer disease. Journal of Biological Chemistry, 280(51), 42088-42096.
Seelig, J. D., Jayaraman, V. (2013). Feature detection and orientation tuning in the Drosophila central complex. Nature, 503(7475), 262-266.
Shafi, O. (2016). Inverse relationship between Alzheimer's disease and cancer, and other factors contributing to Alzheimer's disease: a systematic review. BMC Neurol 16, 236.
Shi, J. Q., Shen, W., Chen, J., Wang, B. R., Zhong, L. L., Zhu, Y. W., ... & Xu, J. (2011). Anti-TNF-α reduces amyloid plaques and tau phosphorylation and induces CD11c-positive dendritic-like cell in the APP/PS1 transgenic mouse brains. Brain research, 1368, 239-247.
Stefanova, N. A., Muraleva, N. A., Maksimova, K. Y., Rudnitskaya, E. A., Kiseleva, E., Telegina, D. V., & Kolosova, N. (2016). An antioxidant specifically targeting mitochondria delays progression of Alzheimer's disease-like pathology. Aging (Albany NY), 8(11), 2713.
Thomas, M.H., Pelleieux, S., Vitale, N., and Olivier, J.L. (2016). Dietary arachidonic acid as a risk factor for age-associated neurodegenerative diseases: Potential mechanisms. Biochimie 130, 168-177.
Upadhyay, M., Agarwal, S., Bhadauriya, P., Ganesh, S. (2017). Loss of laforin or malin results in increased Drp1 level and concomitant mitochondrial fragmentation in Lafora disease mouse models. Neurobiol Dis 100, 39-51.
Wang, W. Y., Tan, M. S., Yu, J. T., & Tan, L. (2015). Role of pro-inflammatory cytokines released from microglia in Alzheimer’s disease. Annals of translational medicine, 3(10).
Wang, X., Su, B., Lee, H.G., Li, X., Perry, G., Smith, M.A., Zhu, X. (2009). Impaired balance of mitochondrial fission and fusion in Alzheimer's disease. J Neurosci 29, 9090-9103.
Yamaguchi, K., Tanaka, M., Mizoguchi, A., Hirata, Y., Ishizaki, H., Kaneko, K., Miyoshi, J., Takai, Y. (2002). A GDP/GTP exchange protein for the Rab3 small G protein family up-regulates a postdocking step of synaptic exocytosis in central synapses. Proc Natl Acad Sci U S A 99, 14536-14541.
Yang, Y.H, Chang, H.Y. (2016). Screening of Genetic Candidates of Alzheimer’s Disease and Parkinson’s Disease in Drosophila Compound Eyes. Institute of Systems Neuroscience, National Tsing Hua University
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *