帳號:guest(18.188.130.37)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):蔡伊葶
作者(外文):Tsai, Yi-Ting
論文名稱(中文):探討牛樟芝對瘦素缺乏型肥胖小鼠及C57BL/6小鼠的肥胖及代謝保護機制
論文名稱(外文):Study of the Mechanisms on Antrodia cinnamomea-induced Beneficial Effects in Leptin-deficient Obese Mice and C57BL/6 Mice
指導教授(中文):詹鴻霖
指導教授(外文):Chan, Hong-Lin
口試委員(中文):阮振維
高承源
周秀專
黃三元
口試委員(外文):Ruan, Jhen-Wei
Kao, Cheng-Yuan
Chou, Hsiu-Chuan
Huang, San-Yuan
學位類別:博士
校院名稱:國立清華大學
系所名稱:生物資訊與結構生物研究所
學號:103080518
出版年(民國):109
畢業學年度:109
語文別:英文
論文頁數:132
中文關鍵詞:牛樟芝蛋白質體學腸道菌叢瘦素缺乏肥胖小鼠腸道屏障抗肥胖
外文關鍵詞:Antrodia cinnamomeaProteomicsGut microbiotaLeptin-deficient (ob/ob) obese miceIntestinal barrierAnti-obesity
相關次數:
  • 推薦推薦:0
  • 點閱點閱:31
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
許多研究證實牛樟芝具有預防和減輕肝臟疾病、高血壓、糖尿病、發炎反應、致腫瘤性疾病與各種癌症之潛力,同時牛樟芝也可以預防高脂肪飲食引起的肥胖與其發展性脂肪肝,並具有調節腸道菌叢的功能。也有許多研究建議牛樟芝可作為日常補充的保健食品。然而,牛樟芝對於C57BL/6 (B6) 小鼠腸肝軸與腸道菌叢的影響尚不清楚,另外,牛樟芝是否具有抑制瘦素缺乏型小鼠 (Leptin-deficient (ob/ob) mice) 肥胖的能力並不瞭解。因此,本研究主題一為探討牛樟芝對B6小鼠的代謝功能作用機制,二為探討牛樟芝對瘦素缺乏型肥胖小鼠抗肥胖能力。本研究使用B6 小鼠來模擬健康人,而瘦素缺乏型小鼠則作為過度餵食誘導肥胖的動物模型。以牛樟芝餵食B6小鼠與瘦素缺乏型小鼠四週後,利用二維蛋白質電泳 (2D-DIGE) 及基質輔助雷射脫附離子化-飛行時間質譜儀(MALDI-TOF MS)與細菌鑑定質譜系統 (MALDI Biotyper) 等分析平台牛樟芝對於B6小鼠肝臟和腸道組織與腸道菌叢的影響。再以即時聚合酶鏈鎖反應 (Real-time PCR)和免疫印跡 (Immunoblotting) 等分析以闡明牛樟芝抗肥胖機制;另外,我們也利用人類結腸腺癌細胞 (Caco-2) 之單層膜模擬人類腸道上皮以了解牛樟芝與細菌代謝物對人類腸道通透性的影響。在探討牛樟芝對B6小鼠的代謝功能作用機制中,結果顯示B6小鼠的體重、葡萄糖耐受性試驗、每日食物與水分攝入量和糞便與尿液排出量皆不受餵食牛樟芝的影響。而牛樟芝能夠透過促進新陳代謝相關蛋白表現來降低肝脂肪的含量,並可能透過增加氧化還原調節、細胞骨架調節和代謝之蛋白表現來影響腸道通透性。同時牛樟芝,可以增加B6小鼠腸道菌叢中Alistipes shahii的豐富度。腸道菌叢主要是透過細菌分泌代謝物與腸肝軸相互作用,因此我們收集Alistipes shahii之細菌代謝物處理大腸直腸腺癌細胞株(SW480)和高轉移性大腸直腸腺癌細胞株(SW480-I5),發現Alistipes shahii的代謝物與的大腸直腸腺癌細胞存活力和遷移能力並無直接關聯性。而且,Caco-2之單層膜研究中發現,Alistipes shahii的代謝物可能會增加人類腸道的通透性。接著,在探討牛樟芝對瘦素缺乏型肥胖小鼠抗肥胖能力的研究中,亦發現牛樟芝可以藉由抑制瘦素缺乏型小鼠的肝臟脂肪生成和脂質攝取,並促進附睪白色脂肪組織中的脂肪分解和減少脂肪生成,從而防止脂質沉積在肝臟與脂肪組織中。同時牛樟芝還可以增強腸道屏障的完整性並降低人類腸道的通透性,可作為對瘦素缺乏型小鼠和人類腸道上皮單層膜細胞的預防性保護。本研究顯示,牛樟芝餵食B6小鼠四周之後,腸道菌叢及腸肝軸的蛋白質表現的改變。而在不影響食物攝取量的情況下,牛樟芝餵食因瘦素缺乏引發的肥胖症小鼠,可透過調節肝臟和附睪白色脂肪組織的脂肪代謝並恢復腸道屏障完整性達到有效減少體重的功能。本研究為牛樟芝作為營養保健品提供了全面的評估,試驗結果顯示牛樟芝可以有效地減少因瘦素缺乏引起的肥胖,因此具有作為治療肥胖的營養保健品之潛力。
Many studies suggest that Antrodia cinnamomea (AC) has the potential to prevent or alleviate liver diseases, hypertension, diabetes, inflammatory, tumorigenic diseases, and various cancers. Recently, AC has been shown to prevent metabolic disorders of diet-induced obesity and the development of fatty liver and regulate gut microbiota. Some studies suggest that AC could be a potential prospective nutraceutical in the treatment of obesity or as a daily remedy in the prevention of disease. However, the AC-induced effects on the gut-liver axis and the gut microbial regulation are mostly unknown; meanwhile, whether the AC protects or attenuates the inherited obesity in leptin-deficient (ob/ob) mice is also unclear. Therefore, the two aims of this study, the aim I was to investigate the AC-induced effect in C57BL/6 (B6) mice, and the aim II was to understand the anti-obesity effect of AC in ob/ob mice. In the present study, the B6 mice were used to mimic healthy human and ob/ob mice as an over-feeding animal model. The B6 mice and ob/ob mice were fed with or without AC for 4 weeks. First, the two-dimensional difference gel electrophoresis (2D-DIGE) with matrix-assisted laser desorption ionization time-of-flight mass spectrometry (MALDI-TOF MS) and MALDI Biotyper were used to investigate the comprehensive influence of AC in the gut-liver axis and gut microbiota of B6 mice. Next, the real-time PCR and immunoblotting analysis were performed to elaborate the anti-obesity mechanism of AC. Furthermore, we used Caco-2 cells as a human intestinal epithelial barrier model to examine the effect of AC and metabolite of bacteria on intestinal permeability. The results of AC-induced effects in B6 mice showed that the body weight, glucose tolerance test (GTT), daily food/water intake and fecal/urine weight were unaffected. Besides, AC supplementation might decrease hepatic lipid content by increasing metabolism and interacting intestinal permeability by increasing redox regulation, cytoskeleton regulation and metabolism in B6 mice. Meanwhile, AC treatment increased the abundance of Alistipes shahii (AS) in the gut microbiota of B6 mice. The gut microbiota might interact with the gut-liver axis mainly thought metabolites of bacteria, therefore, we utilized the metabolite of Alistipes shahii (MAS) to understand the effect on colorectal cancer cells SW480, high-invasive colorectal cancer cells SW480-I5 and Caco-2 cell barrier model. The results showed that MAS was not obviously correlated with cell viability and migration ability on SW480 and SW480-I5, and the MAS might increase intestinal permeability in Caco-2 cells. Next, the results of AC-induced anti-obesity ability in ob/ob mice indicated that AC supplementation suppressed hepatic lipogenesis and lipid uptake and facilitated lipolysis and reduces lipogenesis to prevent fat deposition in the epididymal white adipose tissue (EWAT). AC also reinforced intestinal barrier integrity and reduced intestinal permeability as preventive protection in ob/ob mice and the Caco-2 cell barrier model. Taken together, our study elaborated that AC-induced mechanisms on gut microbiota alteration and differential protein expression of the gut-liver axis in B6 mice. Simultaneously, AC supplementation effectively reduced leptin-deficiency-mediated obesity by regulating metabolism in the liver and EWAT and restoring the gut barrier integrity without any significant compromise on food intake. Thus, our study provides a comprehensive assessment for AC as the nutraceutical, and the AC extract effectively reduced obesity caused by leptin-deficiency and could potentially be used as a nutraceutical for treating obesity.
中文摘要-------------------------------------------------------------------------------------------------------------------------I
Abstract------------------------------------------------------------------------------------------------------------------------III
Acknowledgement-----------------------------------------------------------------------------------------------------------------V
Table of Contents---------------------------------------------------------------------------------------------------------------VI
List of Figures-----------------------------------------------------------------------------------------------------------------X
List of Tables------------------------------------------------------------------------------------------------------------------XII
Abbreviations-------------------------------------------------------------------------------------------------------------------XIII
Chapter 1 Introduction-------------------------------------------------------------------------------------------------------1
1.1 Overview of Antrodia cinnamomea------------------------------------------------------------------------------------------1
1.2 Overview of gut-liver axis-----------------------------------------------------------------------------------------------3
1.3 Overview of gut microbiota-----------------------------------------------------------------------------------------------5
1.4 C57BL/6 mice-------------------------------------------------------------------------------------------------------------7
1.5 Overview of obesity------------------------------------------------------------------------------------------------------8
1.6 Leptin-deficient obese mice----------------------------------------------------------------------------------------------9
1.7 Aim of this study--------------------------------------------------------------------------------------------------------10
Chapter 2 Materials and Methods----------------------------------------------------------------------------------------------11
2.1 The scheme of experiment-------------------------------------------------------------------------------------------------11
2.2 Chemicals and reagent----------------------------------------------------------------------------------------------------13
2.3 Mice---------------------------------------------------------------------------------------------------------------------14
2.4 Glucose tolerance test (GTT)---------------------------------------------------------------------------------------------15
2.5 Sample collection and histological observation---------------------------------------------------------------------------15
2.6 Immunohistochemistry (IHC)-----------------------------------------------------------------------------------------------15
2.7 2D-DIGE and gel image analysis-------------------------------------------------------------------------------------------16
2.8 Protein staining---------------------------------------------------------------------------------------------------------18
2.9 In-gel digestion---------------------------------------------------------------------------------------------------------18
2.10 MALDI-TOF MS analysis---------------------------------------------------------------------------------------------------19
2.11 Microbial identification of MALDI-TOF MS and microbial quantification---------------------------------------------------20
2.12 Fecal DNA extraction and real time PCR----------------------------------------------------------------------------------22
2.13 RNA extraction and real time PCR----------------------------------------------------------------------------------------24
2.14 Metabolite of Alistipes shahii (MAS) collection-------------------------------------------------------------------------26
2.15 Transwell migration assay-----------------------------------------------------------------------------------------------26
2.16 Immunoblotting----------------------------------------------------------------------------------------------------------27
2.17 Cell culture------------------------------------------------------------------------------------------------------------28
2.18 Ethanol extraction of Antrodia cinnamomea (EEAC)------------------------------------------------------------------------29
2.19 Cell viability----------------------------------------------------------------------------------------------------------29
2.20 Transepithelial electrical resistance (TEER)----------------------------------------------------------------------------30
2.21 Immunofluorescence------------------------------------------------------------------------------------------------------30
2.22 Statistical analysis----------------------------------------------------------------------------------------------------30
Chapter 3 Results------------------------------------------------------------------------------------------------------------32
3.1 Proteomic and Microbial Assessments on the Effect of Antrodia cinnamomea in C57BL/6 Mice---------------------------------32
3.1.1 AC reduces the liver weight without changed bodyweight and GTT in B6 mice----------------------------------------------32
3.1.2 AC may reduce hepatic lipid content and not change intestinal morphology in B6 mice------------------------------------36
3.1.3 2D-DIGE and MALDI-TOF MS analyze AC-induced proteomic alterations of the liver tissues in B6 mice----------------------39
3.1.4 2D-DIGE and MALDI-TOF MS analyze AC-induced proteomic alterations of the intestine tissue in B6 mice-------------------45
3.1.5 AC increases the abundance of Alistipes shahii (AS) in the gut microbiota of B6 mice-----------------------------------51
3.1.6 Metabolite of Alistipes shahii (MAS) may not affect cell viability and migration ability of colorectal cancer cells----55
3.1.7 Metabolite of Alistipes shahii (MAS) may increase intestinal permeability in Caco-2 barrier model----------------------58
3.2 Antrodia cinnamomea Confers Obesity Resistance and Restores Intestinal Barrier Integrity in Leptin-deficient Obese Mice--60
3.2.1 AC has an anti-obesity effect in ob/ob mice----------------------------------------------------------------------------60
3.2.2 AC reduces hepatic lipid accumulation and lipid deposition in EWAT in ob+/+ and ob/ob mice-----------------------------62
3.2.3 AC downregulates fatty acid uptake and lipogenesis-related genes and proteins in the liver of ob+/+ and ob/ob mice-----65
3.2.4 AC reduced hepatic inflammation in ob/ob mice--------------------------------------------------------------------------68
3.2.5 AC facilitates lipolysis-related protein expression in EWAT of ob/ob mice----------------------------------------------69
3.2.6 AC may restore the intestinal barrier in ob/ob mice--------------------------------------------------------------------71
3.2.7 Ethanol extracts of A. cinnamomea decrease intestinal permeability in Caco-2 cells-------------------------------------74
3.2.8 The potential mechanism of AC reduced obesity on the liver and EWAT in ob/ob mice--------------------------------------76
Chapter 4 Discussion---------------------------------------------------------------------------------------------------------78
Chapter 5 Conclusion---------------------------------------------------------------------------------------------------------86
Chapter 6 Reference----------------------------------------------------------------------------------------------------------87
Appendix------------------------------------------------------------------------------------------------------------------------100
Peer Reviewed Publications------------------------------------------------------------------------------------------------------130

1 Geethangili, M. & Tzeng, Y. M. Review of pharmacological effects of Antrodia camphorata and Its bioactive compounds. Evidence-based Complementary and Alternative Medicine 2011, 212641, doi:10.1093/ecam/nep108 (2011).
2 Chen, C. H., Yang, S. W. & Shen, Y. C. New steroid acids from Antrodia cinnamomea, a fungal parasite of Cinnamomum micranthum. Journal of natural products 58, 1655-1661, doi:10.1021/np50125a002 (1995).
3 Chang, C. Y., Lee, C. L. & Pan, T. M. Statistical optimization of medium components for the production of Antrodia cinnamomea AC0623 in submerged cultures. Applied Microbiology and Biotechnology 72, 654-661, doi:10.1007/s00253-006-0325-6 (2006).
4 Zhang, B. B., Guan, Y. Y., Hu, P. F., Chen, L., Xu, G. R., Liu, L. & Cheung, P. C. K. Production of bioactive metabolites by submerged fermentation of the medicinal mushroom Antrodia cinnamomea: recent advances and future development. Critical Reviews in Biotechnology 39, 541-554, doi:10.1080/07388551.2019.1577798 (2019).
5 Ganesan, N., Baskaran, R., Velmurugan, B. K. & Thanh, N. C. Antrodia cinnamomea-An updated minireview of its bioactive components and biological activity. Journal of Food Biochemistry 43, e12936, doi:10.1111/jfbc.12936 (2019).
6 Liu, Y. W., Lu, K. H., Ho, C. T. & Sheen, L. Y. Protective effects of Antrodia cinnamomea against liver injury. Journal of Traditional and Complementary Medicine 2, 284-294 (2012).
7 Chen, S. C., Lu, M. K., Cheng, J. J. & Wang, D. L. Antiangiogenic activities of polysaccharides isolated from medicinal fungi. FEMS Microbiology Letters 249, 247-254, doi:10.1016/j.femsle.2005.06.033 (2005).
8 Han, H. F., Nakamura, N., Zuo, F., Hirakawa, A., Yokozawa, T. & Hattori, M. Protective effects of a neutral polysaccharide isolated from the mycelium of Antrodia cinnamomea on Propionibacterium acnes and lipopolysaccharide induced hepatic injury in mice. Chemical & Pharmaceutical Bulletin 54, 496-500, doi:10.1248/cpb.54.496 (2006).
9 Hsu, Y. L., Kuo, P. L., Cho, C. Y., Ni, W. C., Tzeng, T. F., Ng, L. T., Kuo, Y. H. & Lin, C. C. Antrodia cinnamomea fruiting bodies extract suppresses the invasive potential of human liver cancer cell line PLC/PRF/5 through inhibition of nuclear factor kappaB pathway. Food and Chemical Toxicology : an International Journal Published for the British Industrial Biological Research Association 45, 1249-1257, doi:10.1016/j.fct.2007.01.005 (2007).
10 Kuo, P. L., Hsu, Y. L., Cho, C. Y., Ng, L. T., Kuo, Y. H. & Lin, C. C. Apoptotic effects of Antrodia cinnamomea fruiting bodies extract are mediated through calcium and calpain-dependent pathways in Hep 3B cells. Food and Chemical Toxicology 44, 1316-1326, doi:10.1016/j.fct.2006.02.009 (2006).
11 Chen, J. F., Tsai, Y. T., Lai, Y. H., Lin, C. C., Chou, H. C., Kuo, W. H., Ko, M. L., Wei, Y. S., Wang, Y. S., Lin, M. W., Chen, Y. J., Lee, Y. R. & Chan, H. L. Proteomic analysis of Antrodia Cinnamomea-induced ER stress in liver cancer cells. Journal of Pharmaceutical and Biomedical Analysis 187, 113142, doi:10.1016/j.jpba.2020.113142 (2020).
12 Wen, C. L., Chang, C. C., Huang, S. S., Kuo, C. L., Hsu, S. L., Deng, J. S. & Huang, G. J. Anti-inflammatory effects of methanol extract of Antrodia cinnamomea mycelia both in vitro and in vivo. Journal of Ethnopharmacology 137, 575-584, doi:10.1016/j.jep.2011.06.009 (2011).
13 Peng, C. H., Yang, M. Y., Yang, Y. S., Yu, C. C. & Wang, C. J. Antrodia cinnamomea prevents obesity, dyslipidemia, and the derived fatty liver via regulating AMPK and SREBP signaling. American Journal of Chinese Medicine 45, 67-83, doi:10.1142/S0192415X17500069 (2017).
14 Chang, C. J., Lu, C. C., Lin, C. S., Martel, J., Ko, Y. F., Ojcius, D. M., Wu, T. R., Tsai, Y. H., Yeh, T. S., Lu, J. J., Lai, H. C. & Young, J. D. Antrodia cinnamomea reduces obesity and modulates the gut microbiota in high-fat diet-fed mice. International Journal of Obesity 42, 231-243, doi:10.1038/ijo.2017.149 (2018).
15 Lin, C. H., Kuo, Y. H. & Shih, C. C. Eburicoic acid, a triterpenoid compound from Antrodia camphorata, displays antidiabetic and antihyperlipidemic effects in palmitate-treated C2C12 myotubes and in high-fat diet-fed mice. International Journal of Molecular Sciences 18, doi:10.3390/ijms18112314 (2017).
16 Wang, C. L., Huang, W. C., Chou, C. J., Lu, M. K., Huang, C. J., Tsai, J. & Tsai, P. J. Aqueous extract of Antrodia cinnamomea reduced high-fat diet-induced obesity in mice and suppressed adipogenesis in 3T3-L1 cells. J Funct Foods 35, 185-196, doi:10.1016/j.jff.2017.05.041 (2017).
17 Chelakkot, C., Ghim, J. & Ryu, S. H. Mechanisms regulating intestinal barrier integrity and its pathological implications. Experimental & Molecular Medicine 50, 103, doi:10.1038/s12276-018-0126-x (2018).
18 Petruzzelli, M., Lo Sasso, G., Portincasa, P., Palasciano, G. & Moschetta, A. Targeting the liver in the metabolic syndrome: evidence from animal models. Current Pharmaceutical Design 13, 2199-2207, doi:10.2174/138161207781039625 (2007).
19 Grant, D. M. Detoxification pathways in the liver. Journal of Inherited Metabolic Disease 14, 421-430, doi:10.1007/BF01797915 (1991).
20 Albillos, A., de Gottardi, A. & Rescigno, M. The gut-liver axis in liver disease: Pathophysiological basis for therapy. Journal of Hepatology 72, 558-577, doi:10.1016/j.jhep.2019.10.003 (2020).
21 Ohtani, N. & Kawada, N. Role of the Gut-Liver Axis in Liver Inflammation, Fibrosis, and Cancer: A Special Focus on the Gut Microbiota Relationship. Hepatology Communications 3, 456-470, doi:10.1002/hep4.1331 (2019).
22 Bengmark, S. Ecological control of the gastrointestinal tract. The role of probiotic flora. Gut 42, 2-7, doi:10.1136/gut.42.1.2 (1998).
23 Backhed, F., Ley, R. E., Sonnenburg, J. L., Peterson, D. A. & Gordon, J. I. Host-bacterial mutualism in the human intestine. Science 307, 1915-1920, doi:10.1126/science.1104816 (2005).
24 Neish, A. S. Microbes in gastrointestinal health and disease. Gastroenterology 136, 65-80, doi:10.1053/j.gastro.2008.10.080 (2009).
25 Sender, R., Fuchs, S. & Milo, R. Revised estimates for the number of human and bacteria cells in the body. PLoS Biology 14, e1002533, doi:10.1371/journal.pbio.1002533 (2016).
26 Natividad, J. M. & Verdu, E. F. Modulation of intestinal barrier by intestinal microbiota: pathological and therapeutic implications. Pharmacological Research 69, 42-51, doi:10.1016/j.phrs.2012.10.007 (2013).
27 Gensollen, T., Iyer, S. S., Kasper, D. L. & Blumberg, R. S. How colonization by microbiota in early life shapes the immune system. Science 352, 539-544, doi:10.1126/science.aad9378 (2016).
28 den Besten, G., van Eunen, K., Groen, A. K., Venema, K., Reijngoud, D. J. & Bakker, B. M. The role of short-chain fatty acids in the interplay between diet, gut microbiota, and host energy metabolism. Journal of Lipid Research 54, 2325-2340, doi:10.1194/jlr.R036012 (2013).
29 Chang, C. S. & Kao, C. Y. Current understanding of the gut microbiota shaping mechanisms. Journal of Biomedical Science 26, 59, doi:10.1186/s12929-019-0554-5 (2019).
30 Pickard, J. M., Zeng, M. Y., Caruso, R. & Nunez, G. Gut microbiota: Role in pathogen colonization, immune responses, and inflammatory disease. Immunological Reviews 279, 70-89, doi:10.1111/imr.12567 (2017).
31 Bischoff, S. C., Barbara, G., Buurman, W., Ockhuizen, T., Schulzke, J. D., Serino, M., Tilg, H., Watson, A. & Wells, J. M. Intestinal permeability--a new target for disease prevention and therapy. BMC Gastroenterology 14, 189, doi:10.1186/s12876-014-0189-7 (2014).
32 Proceedings of the international symposium on energy metabolism and oxidative stress in liver pathophysiology. December 16-17, 2005. Tokyo, Japan. Journal of Gastroenterology and Hepatology 22 Suppl 1, S1-111, doi:10.1111/j.1440-1746.2006.04637.x (2007).
33 Marchix, J., Goddard, G. & Helmrath, M. A. Host-Gut Microbiota Crosstalk in Intestinal Adaptation. Cellular and Molecular Gastroenterology and Hepatology 6, 149-162, doi:10.1016/j.jcmgh.2018.01.024 (2018).
34 Song, H. K. & Hwang, D. Y. Use of C57BL/6N mice on the variety of immunological researches. Laboratory Animal Research 33, 119-123, doi:10.5625/lar.2017.33.2.119 (2017).
35 Lang, P., Hasselwander, S., Li, H. & Xia, N. Effects of different diets used in diet-induced obesity models on insulin resistance and vascular dysfunction in C57BL/6 mice. Scientific Reports 9, 19556, doi:10.1038/s41598-019-55987-x (2019).
36 Eisfeld, A. J., Gasper, D. J., Suresh, M. & Kawaoka, Y. C57BL/6J and C57BL/6NJ mice are differentially susceptible to inflammation-associated disease caused by influenza A virus. Frontiers in Microbiology 9, 3307, doi:10.3389/fmicb.2018.03307 (2018).
37 Surwit, R. S., Kuhn, C. M., Cochrane, C., McCubbin, J. A. & Feinglos, M. N. Diet-induced type II diabetes in C57BL/6J mice. Diabetes 37, 1163-1167, doi:10.2337/diab.37.9.1163 (1988).
38 Mahoney, L. B., Denny, C. A. & Seyfried, T. N. Caloric restriction in C57BL/6J mice mimics therapeutic fasting in humans. Lipids in Health and Disease 5, 13, doi:10.1186/1476-511X-5-13 (2006).
39 Friedrich, M. J. Global obesity epidemic worsening. Journal of the American Medical Association 318, 603, doi:10.1001/jama.2017.10693 (2017).
40 Kyrou, I., Randeva, H. S., Tsigos, C., Kaltsas, G. & Weickert, M. O. in Endotext (eds K. R. Feingold et al.) (2000).
41 Drel, V. R., Mashtalir, N., Ilnytska, O., Shin, J., Li, F., Lyzogubov, V. V. & Obrosova, I. G. The leptin-deficient (ob/ob) mouse: a new animal model of peripheral neuropathy of type 2 diabetes and obesity. Diabetes 55, 3335-3343, doi:10.2337/db06-0885 (2006).
42 Takenaka, A., Nakamura, S., Mitsunaga, F., Inoue-Murayama, M., Udono, T. & Suryobroto, B. Human-specific SNP in obesity genes, adrenergic receptor beta2 (ADRB2), Beta3 (ADRB3), and PPAR gamma2 (PPARG), during primate evolution. PloS One 7, e43461, doi:10.1371/journal.pone.0043461 (2012).
43 Liu, X., Rossmeisl, M., McClaine, J., Riachi, M., Harper, M. E. & Kozak, L. P. Paradoxical resistance to diet-induced obesity in UCP1-deficient mice. The Journal of Clinical Investigation 111, 399-407, doi:10.1172/JCI15737 (2003).
44 Ozdemir, A. C., Wynn, G. M., Vester, A., Weitzmann, M. N., Neigh, G. N., Srinivasan, S. & Rudd, M. K. GNB3 overexpression causes obesity and metabolic syndrome. PloS One 12, e0188763, doi:10.1371/journal.pone.0188763 (2017).
45 Lutz, T. A. & Woods, S. C. Overview of animal models of obesity. Current Protocols in Pharmacology Chapter 5, Unit5 61, doi:10.1002/0471141755.ph0561s58 (2012).
46 Trayhurn, P. & Bing, C. Appetite and energy balance signals from adipocytes. Philosophical Transactions of the Royal Society B: Biological Sciences 361, 1237-1249, doi:10.1098/rstb.2006.1859 (2006).
47 Zhou, Y. & Rui, L. Leptin signaling and leptin resistance. Frontiers in Medicine 7, 207-222, doi:10.1007/s11684-013-0263-5 (2013).
48 Hao, Z., Munzberg, H., Rezai-Zadeh, K., Keenan, M., Coulon, D., Lu, H., Berthoud, H. R. & Ye, J. Leptin deficient ob/ob mice and diet-induced obese mice responded differently to Roux-en-Y bypass surgery. International Journal of Obesity 39, 798-805, doi:10.1038/ijo.2014.189 (2015).
49 Shetty, G. K., Matarese, G., Magkos, F., Moon, H. S., Liu, X., Brennan, A. M., Mylvaganam, G., Sykoutri, D., Depaoli, A. M. & Mantzoros, C. S. Leptin administration to overweight and obese subjects for 6 months increases free leptin concentrations but does not alter circulating hormones of the thyroid and IGF axes during weight loss induced by a mild hypocaloric diet. European Journal of Endocrinology 165, 249-254, doi:10.1530/EJE-11-0252 (2011).
50 Skowronski, A. A., Ravussin, Y., Leibel, R. L. & LeDuc, C. A. Energy homeostasis in leptin deficient Lepob/ob mice. PLoS One 12, e0189784, doi:10.1371/journal.pone.0189784 (2017).
51 Klebanov, S., Astle, C. M., DeSimone, O., Ablamunits, V. & Harrison, D. E. Adipose tissue transplantation protects ob/ob mice from obesity, normalizes insulin sensitivity and restores fertility. Journal of Endocrinology 186, 203-211, doi:10.1677/joe.1.06150 (2005).
52 Chan, J. L., Lutz, K., Cochran, E., Huang, W., Peters, Y., Weyer, C. & Gorden, P. Clinical effects of long-term metreleptin treatment in patients with lipodystrophy. Endocrine Practice 17, 922-932, doi:10.4158/EP11229.OR (2011).
53 Koch, C. E., Lowe, C., Pretz, D., Steger, J., Williams, L. M. & Tups, A. High-fat diet induces leptin resistance in leptin-deficient mice. Journal of Neuroendocrinology 26, 58-67, doi:10.1111/jne.12131 (2014).
54 Barrett, P., Mercer, J. G. & Morgan, P. J. Preclinical models for obesity research. Disease Models & Mechanisms 9, 1245-1255, doi:10.1242/dmm.026443 (2016).
55 Coleman, D. L. & Hummel, K. P. The influence of genetic background on the expression of the obese (Ob) gene in the mouse. Diabetologia 9, 287-293, doi:10.1007/bf01221856 (1973).
56 Wang, Y. Y., Hsieh, Y. H., Kumar, K. J. S., Hsieh, H. W., Lin, C. C. & Wang, S. Y. The regulatory effects of a formulation of Cinnamomum Osmophloeum Kaneh and Taiwanofungus camphoratus on metabolic syndrome and the gut microbiome. Plants (Basel) 9, doi:10.3390/plants9030383 (2020).
57 Chang, J. B., Wu, M. F., Lu, H. F., Chou, J., Au, M. K., Liao, N. C., Chang, C. H., Huang, Y. P., Wu, C. T. & Chung, J. G. Toxicological evaluation of Antrodia cinnamomea in BALB/c mice. In Vivo 27, 739-745 (2013).
58 Ruan, J. W., Statt, S., Huang, C. T., Tsai, Y. T., Kuo, C. C., Chan, H. L., Liao, Y. C., Tan, T. H. & Kao, C. Y. Dual-specificity phosphatase 6 deficiency regulates gut microbiome and transcriptome response against diet-induced obesity in mice. Nature Microbiology 2, 16220, doi:10.1038/nmicrobiol.2016.220 (2016).
59 Everard, A., Lazarevic, V., Derrien, M., Girard, M., Muccioli, G. G., Neyrinck, A. M., Possemiers, S., Van Holle, A., Francois, P., de Vos, W. M., Delzenne, N. M., Schrenzel, J. & Cani, P. D. Responses of gut microbiota and glucose and lipid metabolism to prebiotics in genetic obese and diet-induced leptin-resistant mice. Diabetes 60, 2775-2786, doi:10.2337/db11-0227 (2011).
60 Ayala, J. E., Samuel, V. T., Morton, G. J., Obici, S., Croniger, C. M., Shulman, G. I., Wasserman, D. H., McGuinness, O. P. & Consortium, N. I. H. M. M. P. C. Standard operating procedures for describing and performing metabolic tests of glucose homeostasis in mice. Disease Models & Mechanisms 3, 525-534, doi:10.1242/dmm.006239 (2010).
61 Liao, Y. C., Ruan, J. W., Lua, I., Li, M. H., Chen, W. L., Wang, J. R., Kao, R. H. & Chen, J. H. Overexpressed hPTTG1 promotes breast cancer cell invasion and metastasis by regulating GEF-H1/RhoA signalling. Oncogene 31, 3086-3097, doi:10.1038/onc.2011.476 (2012).
62 Liu, Y. N., Liu, Y., Lee, H. J., Hsu, Y. H. & Chen, J. H. Activated androgen receptor downregulates E-cadherin gene expression and promotes tumor metastasis. Molecular and Cellular Biology 28, 7096-7108, doi:10.1128/MCB.00449-08 (2008).
63 Chen, H. Y., Chou, H. C., Chang, S. J., Liao, E. C., Tsai, Y. T., Wei, Y. S., Li, J. M., Lin, L. H., Lin, M. W., Chen, Y. J., Chen, Y. S., Lin, C. C., Wang, Y. S., Ko, M. L. & Chan, H. L. Proteomic analysis of various rat ocular tissues after ischemia-reperfusion injury and possible relevance to acute glaucoma. International Journal of Molecular Sciences 18, doi:10.3390/ijms18020334 (2017).
64 Yu, H. I., Chou, H. C., Su, Y. C., Lin, L. H., Lu, C. H., Chuang, H. H., Tsai, Y. T., Liao, E. C., Wei, Y. S., Yang, Y. T., Lee, Y. R. & Chan, H. L. Proteomic analysis of evodiamine-induced cytotoxicity in thyroid cancer cells. Journal of Pharmaceutical and Biomedical Analysis 160, 344-350, doi:10.1016/j.jpba.2018.08.008 (2018).
65 Chou, H. C., Lu, C. H., Su, Y. C., Lin, L. H., Yu, H. I., Chuang, H. H., Tsai, Y. T., Liao, E. C., Wei, Y. S., Yang, Y. T., Chien, Y. A., Yu, X. R., Lee, Y. R. & Chan, H. L. Proteomic analysis of honokiol-induced cytotoxicity in thyroid cancer cells. Life Sciences 207, 184-204, doi:10.1016/j.lfs.2018.06.002 (2018).
66 Wei, Y. S., Hsiao, Y. C., Su, G. W., Chang, Y. R., Lin, H. P., Wang, Y. S., Tsai, Y. T., Liao, E. C., Chen, H. Y., Chou, H. C., Ko, M. L., Kuo, W. H., Chang, S. J., Cheng, W. C. & Chan, H. L. Identification of hyperglycemia-associated microbiota alterations in saliva and gingival sulcus. Archives of Biochemistry and Biophysics 682, 108278, doi:10.1016/j.abb.2020.108278 (2020).
67 Barman, M., Unold, D., Shifley, K., Amir, E., Hung, K., Bos, N. & Salzman, N. Enteric salmonellosis disrupts the microbial ecology of the murine gastrointestinal tract. Infection and Immunity 76, 907-915, doi:10.1128/IAI.01432-07 (2008).
68 Snel, J., Heinen, P. P., Blok, H. J., Carman, R. J., Duncan, A. J., Allen, P. C. & Collins, M. D. Comparison of 16S rRNA sequences of segmented filamentous bacteria isolated from mice, rats, and chickens and proposal of "Candidatus Arthromitus". International Journal of Systematic Bacteriology 45, 780-782, doi:10.1099/00207713-45-4-780 (1995).
69 Salzman, N. H., de Jong, H., Paterson, Y., Harmsen, H. J. M., Welling, G. W. & Bos, N. A. Analysis of 16S libraries of mouse gastrointestinal microflora reveals a large new group of mouse intestinal bacteria. Microbiology 148, 3651-3660, doi:10.1099/00221287-148-11-3651 (2002).
70 Underwood, M. A., Kalanetra, K. M., Bokulich, N. A., Lewis, Z. T., Mirmiran, M., Tancredi, D. J. & Mills, D. A. A comparison of two probiotic strains of bifidobacteria in premature infants. The Journal of Pediatrics 163, 1585-1591 e1589, doi:10.1016/j.jpeds.2013.07.017 (2013).
71 Malinen, E., Krogius-Kurikka, L., Lyra, A., Nikkila, J., Jaaskelainen, A., Rinttila, T., Vilpponen-Salmela, T., von Wright, A. J. & Palva, A. Association of symptoms with gastrointestinal microbiota in irritable bowel syndrome. World Journal of Gastroenterology 16, 4532-4540, doi:10.3748/wjg.v16.i36.4532 (2010).
72 Nishiyama, K., Seto, Y., Yoshioka, K., Kakuda, T., Takai, S., Yamamoto, Y. & Mukai, T. Lactobacillus gasseri SBT2055 reduces infection by and colonization of Campylobacter jejuni. PloS One 9, e108827, doi:10.1371/journal.pone.0108827 (2014).
73 Chomczynski, P. A reagent for the single-step simultaneous isolation of RNA, DNA and proteins from cell and tissue samples. BioTechniques 15, 532-534, 536-537 (1993).
74 Rho, H. W., Lee, B. C., Choi, E. S., Choi, I. J., Lee, Y. S. & Goh, S. H. Identification of valid reference genes for gene expression studies of human stomach cancer by reverse transcription-qPCR. BMC Cancer 10, 240, doi:10.1186/1471-2407-10-240 (2010).
75 Wang, F., Wang, J., Liu, D. & Su, Y. Normalizing genes for real-time polymerase chain reaction in epithelial and nonepithelial cells of mouse small intestine. Analytical Biochemistry 399, 211-217, doi:10.1016/j.ab.2009.12.029 (2010).
76 Carrel, L., Hunt, P. A. & Willard, H. F. Tissue and lineage-specific variation in inactive X chromosome expression of the murine Smcx gene. Human Molecular Genetics 5, 1361-1366, doi:10.1093/hmg/5.9.1361 (1996).
77 Jais, A., Einwallner, E., Sharif, O., Gossens, K., Lu, T. T., Soyal, S. M., Medgyesi, D., Neureiter, D., Paier-Pourani, J., Dalgaard, K., Duvigneau, J. C., Lindroos-Christensen, J., Zapf, T. C., Amann, S., Saluzzo, S., Jantscher, F., Stiedl, P., Todoric, J., Martins, R., Oberkofler, H., Muller, S., Hauser-Kronberger, C., Kenner, L., Casanova, E., Sutterluty-Fall, H., Bilban, M., Miller, K., Kozlov, A. V., Krempler, F., Knapp, S., Lumeng, C. N., Patsch, W., Wagner, O., Pospisilik, J. A. & Esterbauer, H. Heme oxygenase-1 drives metaflammation and insulin resistance in mouse and man. Cell 158, 25-40, doi:10.1016/j.cell.2014.04.043 (2014).
78 Galmozzi, A., Sonne, S. B., Altshuler-Keylin, S., Hasegawa, Y., Shinoda, K., Luijten, I. H. N., Chang, J. W., Sharp, L. Z., Cravatt, B. F., Saez, E. & Kajimura, S. ThermoMouse: an in vivo model to identify modulators of UCP1 expression in brown adipose tissue. Cell Reports 9, 1584-1593, doi:10.1016/j.celrep.2014.10.066 (2014).
79 Kim, M. S. & Kim, J. Y. Ginger attenuates inflammation in a mouse model of dextran sulfate sodium-induced colitis. Food Science and Biotechnology 27, 1493-1501, doi:10.1007/s10068-018-0438-6 (2018).
80 Hubner, M., Hinske, C. L., Effinger, D., Wu, T., Thon, N., Kreth, F. W. & Kreth, S. Intronic miR-744 inhibits glioblastoma migration by functionally antagonizing its host gene MAP2K4. Cancers (Basel) 10, doi:10.3390/cancers10110400 (2018).
81 Lv, J. W., Wen, W., Jiang, C., Fu, Q. B., Gu, Y. J., Lv, T. T., Li, Z. D. & Xue, W. Inhibition of microRNA-214 promotes epithelial-mesenchymal transition process and induces interstitial cystitis in postmenopausal women by upregulating Mfn2. Experimental & Molecular Medicine 49, e357, doi:10.1038/emm.2017.98 (2017).
82 Anderson, R. C., Cookson, A. L., McNabb, W. C., Park, Z., McCann, M. J., Kelly, W. J. & Roy, N. C. Lactobacillus plantarum MB452 enhances the function of the intestinal barrier by increasing the expression levels of genes involved in tight junction formation. BMC Microbiology 10, 316, doi:10.1186/1471-2180-10-316 (2010).
83 Knarr, M., Nagaraj, A. B., Kwiatkowski, L. J. & DiFeo, A. miR-181a modulates circadian rhythm in immortalized bone marrow and adipose derived stromal cells and promotes differentiation through the regulation of PER3. Scientific Reports 9, 307, doi:10.1038/s41598-018-36425-w (2019).
84 Li, J. M., Tseng, C. W., Lin, C. C., Law, C. H., Chien, Y. A., Kuo, W. H., Chou, H. C., Wang, W. C. & Chan, H. L. Upregulation of LGALS1 is associated with oral cancer metastasis. Therapeutic Advances in Medical Oncology 10, 1758835918794622, doi:10.1177/1758835918794622 (2018).
85 Chen, Y. Y., Chou, P. Y., Chien, Y. C., Wu, C. H., Wu, T. S. & Sheu, M. J. Ethanol extracts of fruiting bodies of Antrodia cinnamomea exhibit anti-migration action in human adenocarcinoma CL1-0 cells through the MAPK and PI3K/AKT signaling pathways. Phytomedicine : International Journal of Phytotherapy and Phytopharmacology 19, 768-778, doi:10.1016/j.phymed.2012.02.016 (2012).
86 Srinivasan, B., Kolli, A. R., Esch, M. B., Abaci, H. E., Shuler, M. L. & Hickman, J. J. TEER measurement techniques for in vitro barrier model systems. Journal of Laboratory Automation 20, 107-126, doi:10.1177/2211068214561025 (2015).
87 Li, Y. D., He, K. X. & Zhu, W. F. Correlation between invasive microbiota in margin-surrounding mucosa and anastomotic healing in patients with colorectal cancer. World Journal of Gastrointestinal Oncology 11, 717-728, doi:10.4251/wjgo.v11.i9.717 (2019).
88 Feng, B., Dong, T. T., Wang, L. L., Zhou, H. M., Zhao, H. C., Dong, F. & Zheng, M. H. Colorectal cancer migration and invasion initiated by microRNA-106a. PloS One 7, e43452, doi:10.1371/journal.pone.0043452 (2012).
89 Thurlby, P. L. & Trayhurn, P. The development of obesity in preweaning obob mice. British Journal of Nutrition 39, 397-402 (1978).
90 Alves-Bezerra, M. & Cohen, D. E. Triglyceride metabolism in the liver. Comprehensive Physiology 8, 1-8, doi:10.1002/cphy.c170012 (2017).
91 Luo, L. & Liu, M. Adipose tissue in control of metabolism. Journal of Endocrinology 231, R77-R99, doi:10.1530/JOE-16-0211 (2016).
92 Parameswaran, N. & Patial, S. Tumor necrosis factor-alpha signaling in macrophages. Critical Reviews in Eukaryotic Gene Expression 20, 87-103 (2010).
93 Longo, M., Zatterale, F., Naderi, J., Parrillo, L., Formisano, P., Raciti, G. A., Beguinot, F. & Miele, C. Adipose tissue dysfunction as determinant of obesity-associated metabolic complications. The International Journal of Molecular Sciences 20, doi:10.3390/ijms20092358 (2019).
94 Nagpal, R., Newman, T. M., Wang, S., Jain, S., Lovato, J. F. & Yadav, H. Obesity-linked gut microbiome dysbiosis associated with derangements in gut permeability and intestinal cellular homeostasis independent of diet. Journal of Diabetes Research 2018, 3462092, doi:10.1155/2018/3462092 (2018).
95 Cifarelli, V., Ivanov, S., Xie, Y., Son, N. H., Saunders, B. T., Pietka, T. A., Shew, T. M., Yoshino, J., Sundaresan, S., Davidson, N. O., Goldberg, I. J., Gelman, A. E., Zinselmeyer, B. H., Randolph, G. J. & Abumrad, N. A. CD36 deficiency impairs the small intestinal barrier and induces subclinical inflammation in mice. Cellular and Molecular Gastroenterology and Hepatology 3, 82-98, doi:10.1016/j.jcmgh.2016.09.001 (2017).
96 Timms, J. F. & Cramer, R. Difference gel electrophoresis. Proteomics 8, 4886-4897, doi:10.1002/pmic.200800298 (2008).
97 Lee, S. A., Yang, K. J. Z., Brun, P. J., Silvaroli, J. A., Yuen, J. J., Shmarakov, I., Jiang, H., Feranil, J. B., Li, X., Lackey, A. I., Krezel, W., Leibel, R. L., Libien, J., Storch, J., Golczak, M. & Blaner, W. S. Retinol-binding protein 2 (RBP2) binds monoacylglycerols and modulates gut endocrine signaling and body weight. Science Advances 6, eaay8937, doi:10.1126/sciadv.aay8937 (2020).
98 Wang, D., Naydenov, N. G., Feygin, A., Baranwal, S., Kuemmerle, J. F. & Ivanov, A. I. Actin-Depolymerizing factor and cofilin-1 have unique and overlapping functions in Regulating intestinal epithelial junctions and mucosal inflammation. American Journal of Pathology 186, 844-858, doi:10.1016/j.ajpath.2015.11.023 (2016).
99 Quigley, E. M. Gut bacteria in health and disease. Gastroenterology and Hepatology 9, 560-569 (2013).
100 Motro, Y. & Moran-Gilad, J. Next-generation sequencing applications in clinical bacteriology. Biomolecular Detection and Quantification 14, 1-6, doi:10.1016/j.bdq.2017.10.002 (2017).
101 Treven, P., Mahnic, A., Rupnik, M., Golob, M., Pirs, T., Matijasic, B. B. & Lorbeg, P. M. Evaluation of Human Milk Microbiota by 16S rRNA Gene Next-Generation Sequencing (NGS) and Cultivation/MALDI-TOF Mass Spectrometry Identification. Frontiers in Microbiology 10, 2612, doi:10.3389/fmicb.2019.02612 (2019).
102 Song, Y., Kononen, E., Rautio, M., Liu, C., Bryk, A., Eerola, E. & Finegold, S. M. Alistipes onderdonkii sp. nov. and Alistipes shahii sp. nov., of human origin. International Journal of Systematic and Evolutionary Microbiology 56, 1985-1990, doi:10.1099/ijs.0.64318-0 (2006).
103 Damman, C. J., Brittnacher, M. J., Westerhoff, M., Hayden, H. S., Radey, M., Hager, K. R., Marquis, S. R., Miller, S. I. & Zisman, T. L. Low level engraftment and improvement following a single colonoscopic administration of fecal microbiota to patients with ulcerative colitis. PLoS One 10, e0133925, doi:10.1371/journal.pone.0133925 (2015).
104 Iida, N., Dzutsev, A., Stewart, C. A., Smith, L., Bouladoux, N., Weingarten, R. A., Molina, D. A., Salcedo, R., Back, T., Cramer, S., Dai, R. M., Kiu, H., Cardone, M., Naik, S., Patri, A. K., Wang, E., Marincola, F. M., Frank, K. M., Belkaid, Y., Trinchieri, G. & Goldszmid, R. S. Commensal bacteria control cancer response to therapy by modulating the tumor microenvironment. Science 342, 967-970, doi:10.1126/science.1240527 (2013).
105 Li, J., Sung, C. Y., Lee, N., Ni, Y., Pihlajamaki, J., Panagiotou, G. & El-Nezami, H. Probiotics modulated gut microbiota suppresses hepatocellular carcinoma growth in mice. Proceedings of the National Academy of Sciences of the United States of America 113, E1306-1315, doi:10.1073/pnas.1518189113 (2016).
106 Walker, A., Pfitzner, B., Harir, M., Schaubeck, M., Calasan, J., Heinzmann, S. S., Turaev, D., Rattei, T., Endesfelder, D., Castell, W. Z., Haller, D., Schmid, M., Hartmann, A. & Schmitt-Kopplin, P. Sulfonolipids as novel metabolite markers of Alistipes and Odoribacter affected by high-fat diets. Scientific Reports 7, 11047, doi:10.1038/s41598-017-10369-z (2017).
107 Chen, Y. Y., Liu, F. C., Wu, T. S. & Sheu, M. J. Antrodia cinnamomea inhibits migration in human hepatocellular carcinoma cells: the role of ERp57 and PGK-1. American Journal of Chinese Medicine 43, 1671-1696, doi:10.1142/S0192415X15500950 (2015).
108 Yoon, E., Babar, A., Choudhary, M., Kutner, M. & Pyrsopoulos, N. Acetaminophen-induced hepatotoxicity: a comprehensive update. Journal of Clinical and Translational Hepatology 4, 131-142, doi:10.14218/JCTH.2015.00052 (2016).
109 Sinha, R. A., Rajak, S., Singh, B. K. & Yen, P. M. Hepatic Lipid Catabolism via PPARalpha-Lysosomal Crosstalk. International Journal of Molecular Sciences 21, doi:10.3390/ijms21072391 (2020).
110 Prima, V., Wang, A., Molina, G., Wang, K. K. & Svetlov, S. I. Inhibition of LPS toxicity by hepatic argininosuccinate synthase (ASS): novel roles for ASS in innate immune responses to bacterial infection. International Immunopharmacology 11, 1180-1188, doi:10.1016/j.intimp.2011.03.016 (2011).
111 Knebel, B., Goeddeke, S., Poschmann, G., Markgraf, D. F., Jacob, S., Nitzgen, U., Passlack, W., Preuss, C., Dicken, H. D., Stuhler, K., Hartwig, S., Lehr, S. & Kotzka, J. Novel insights into the adipokinome of obese and obese/diabetic mouse models. International Journal of Molecular Sciences 18, doi:10.3390/ijms18091928 (2017).
112 Kelesidis, T., Kelesidis, I., Chou, S. & Mantzoros, C. S. Narrative review: the role of leptin in human physiology: emerging clinical applications. Annals of Internal Medicine 152, 93-100, doi:10.7326/0003-4819-152-2-201001190-00008 (2010).
113 Perfield, J. W., 2nd, Ortinau, L. C., Pickering, R. T., Ruebel, M. L., Meers, G. M. & Rector, R. S. Altered hepatic lipid metabolism contributes to nonalcoholic fatty liver disease in leptin-deficient Ob/Ob mice. Journal of Obesity 2013, 296537, doi:10.1155/2013/296537 (2013).
114 Karasawa, H., Nagata-Goto, S., Takaishi, K. & Kumagae, Y. A novel model of type 2 diabetes mellitus based on obesity induced by high-fat diet in BDF1 mice. Metabolism 58, 296-303, doi:10.1016/j.metabol.2008.09.028 (2009).
115 Zhang, W., Sun, Q., Zhong, W., Sun, X. & Zhou, Z. Hepatic peroxisome proliferator-activated receptor gamma signaling contributes to alcohol-induced hepatic steatosis and inflammation in mice. Alcoholism: Clinical and Experimental Research 40, 988-999, doi:10.1111/acer.13049 (2016).
116 Pepino, M. Y., Kuda, O., Samovski, D. & Abumrad, N. A. Structure-function of CD36 and importance of fatty acid signal transduction in fat metabolism. Annual Review of Nutrition 34, 281-303, doi:10.1146/annurev-nutr-071812-161220 (2014).
117 Sampath, H., Miyazaki, M., Dobrzyn, A. & Ntambi, J. M. Stearoyl-CoA desaturase-1 mediates the pro-lipogenic effects of dietary saturated fat. Journal of Biological Chemistry 282, 2483-2493, doi:10.1074/jbc.M610158200 (2007).
118 Postic, C. & Girard, J. Contribution of de novo fatty acid synthesis to hepatic steatosis and insulin resistance: lessons from genetically engineered mice. Journal of Clinical Investigation 118, 829-838, doi:10.1172/JCI34275 (2008).
119 Min, H. K., Kapoor, A., Fuchs, M., Mirshahi, F., Zhou, H., Maher, J., Kellum, J., Warnick, R., Contos, M. J. & Sanyal, A. J. Increased hepatic synthesis and dysregulation of cholesterol metabolism is associated with the severity of nonalcoholic fatty liver disease. Cell Metabolism 15, 665-674, doi:10.1016/j.cmet.2012.04.004 (2012).
120 Lee, K., Kerner, J. & Hoppel, C. L. Mitochondrial carnitine palmitoyltransferase 1a (CPT1a) is part of an outer membrane fatty acid transfer complex. Journal of Biological Chemistry 286, 25655-25662, doi:10.1074/jbc.M111.228692 (2011).
121 Yan, S., Yang, X. F., Liu, H. L., Fu, N., Ouyang, Y. & Qing, K. Long-chain acyl-CoA synthetase in fatty acid metabolism involved in liver and other diseases: an update. World Journal of Gastroenterology 21, 3492-3498, doi:10.3748/wjg.v21.i12.3492 (2015).
122 Rui, L. Energy metabolism in the liver. Comprehensive Physiology 4, 177-197, doi:10.1002/cphy.c130024 (2014).
123 Cifarelli, V. & Abumrad, N. A. Intestinal CD36 and other key proteins of lipid utilization: role in absorption and gut homeostasis. Comprehensive Physiology 8, 493-507, doi:10.1002/cphy.c170026 (2018).
124 De Lisle, R. C. Disrupted tight junctions in the small intestine of cystic fibrosis mice. Cell and Tissue Research 355, 131-142, doi:10.1007/s00441-013-1734-3 (2014).
125 Fukui, H. Increased intestinal permeability and decreased barrier function: does it really influence the risk of inflammation? Inflammatory Intestinal Diseases 1, 135-145, doi:10.1159/000447252 (2016).

 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top

相關論文

1. 藉由蛋白質體學分析牛樟芝對肝癌的醫療效益
2. Secretome-based identification of tumorigenic and metastatic breast cancer biomarkers
3. Part I:藉由二維差異電泳分析乳癌細胞的蛋白質體找出有潛力的生物標誌分子 Part II:藉由二維差異電泳分析羊水中男性與女性胎兒細胞其蛋白質體的差異
4. Part I:藉由蛋白質體分析黃蓮素誘導乳癌細胞中之毒殺性機制 Part II:糖尿病 II-I:利用蛋白質體找出第一型糖尿病血漿生物標誌分子:發現 hemopexin為第一型糖尿病患者腎病血漿中新穎性生物標誌分子 II- II:藉由蛋白質體找出第二型糖尿病患者腎病血漿中生物標誌分子
5. PART Ι. 藉由離氨酸及半胱氨酸標定的二維差異電泳分析紫外光照射所引起之蛋白質體的表現量變化及巰基變化 PART Π. 透明質酸在鹼傷害的角膜細胞中所扮演的保護作用
6. PROJECT I 藉由離胺酸及半胱胺酸標定的二維差異電泳儀鑑定出在高糖環境下所引起之蛋白質體及分泌蛋白質體的表現量變化和巰基變化 PROJECT II 藉由離氨酸標定的二維差異電泳分析懷有正常胎兒以及唐氏症胎兒的母體胎盤的蛋白質體的表現量變化從中發現新穎性生物標誌
7. 藉由離氨酸及半胱氨酸標定的二維差異電泳分析人類肺癌細胞中穀胱甘肽還原酶的角色
8. 探討ADP核糖基化因子於類鐸受體9之免疫訊息的功能
9. Part I. 分析移型性膀胱癌病人血清蛋白之氧化還原質體變化 PART II. 5-甲氧基色氨酸在缺血再灌流損傷中所扮演的保護作用
10. 藉由蛋白質體學分析人類肺腺癌細胞中對艾瑞莎的抗藥性
11. 藉由蛋白質體學分析大黃酸所誘導乳癌細胞 之毒殺機制
12. 一、藉由蛋白質體學分析高糖環境下人類肝臟細胞內蛋白質體變化及其參與糖尿病誘導肝臟疾病之相關機制 二、藉由蛋白質體學分析具有pemetrexed抗藥性之人類肺腺癌細胞內蛋白質體變化及參與之相關機制
13. 幽門桿菌Lon蛋白酶減緩抗生素咪唑尼達活化
14. 藉由蛋白質體學分析口腔癌中轉移相關機制及生物標記
15. 一、利用蛋白質體學探討氧化壓力、抑制Src激酶和榭黃素對大鼠心肌細胞的影響:建立心臟缺血再灌流以及治療的細胞模組 二、利用蛋白質體學分析可利用於疾病中的生物標記蛋白
 
* *