帳號:guest(3.145.16.81)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):徐素雅
作者(外文):Hsu, Su-Ya
論文名稱(中文):新穎的CXCL8類似物於癌症治療之應用
論文名稱(外文):A Novel CXCL8 Analogue in Cancer Therapy
指導教授(中文):程家維
指導教授(外文):Cheng, Jya-Wei
口試委員(中文):陳金榜
龍鳳娣
周裕珽
王翊青
口試委員(外文):Chen, Chin-Pan
Lung, Feng-Di
Chou, Yu-Ting
Wang, I-Ching
學位類別:博士
校院名稱:國立清華大學
系所名稱:生物科技研究所
學號:103080514
出版年(民國):108
畢業學年度:107
語文別:英文
論文頁數:63
中文關鍵詞:細胞介白素8類似物非小型細胞肺癌胰腺癌藥物抗性艾瑞莎健擇
外文關鍵詞:IL-8 analogueNSCLCpancreatic cancerdrug resistancegefitinibgemcitabine
相關次數:
  • 推薦推薦:0
  • 點閱點閱:176
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
細胞介白素8(或稱CXCL8, IL-8)是CXC家族趨化激素之一,它可經由其受體CXCR1/2路徑促進腫瘤發展及刺激癌細胞生長、移動、侵入、上皮細胞間質轉化。結合上述IL-8在腫瘤發展所扮演的重要性,我們發展了細胞介白素8類似物-RP4,希望藉其對於CXCR1/2較高的結合親和力,而去抑制腫瘤的進程。在本研究中會針對臨床上較惡性、藥物發展也發生限制的非小型細胞肺癌及胰腺癌。肺腺癌及胰腺癌雖在臨床上皆有一線標準用藥,如艾瑞莎(Gefitinib)及健擇(Gemcitabine),但在短暫的有效治療後皆相繼產生抗藥性,近期有許多文獻證實,細胞介白素8的分泌和市售藥物產生抗藥性具相關性。因此,在癌症的進程及發展上,針對細胞介白素8及其受體CXCR1/2被認為是具潛力的治療策略。在本研究中,用細胞介白素8類似物-RP4針對具艾瑞莎抗性之非小型細胞肺癌及具健擇抗性之胰腺癌研究抗癌效力。在初期的結果上,我們發現在懸浮的狀態下,RP4發揮更好的削弱癌細胞特性的效果。接著,在具艾瑞莎抗性之非小型細胞肺癌及具健擇抗性之胰腺癌的兩類細胞株上,我們發現RP4不僅抑制癌細胞的生長、移動、侵入同時也使細胞介白素8及其受體CXCR1/2的基因表現降低。RP4的抑癌效果在動物實驗的生存率及腫瘤大小上也表現得十分顯著。綜合上述結果,我們相信細胞介白素8類似物-RP4可發展為一個具潛力的候選藥物。
IL-8 (CXCL8, interleukin-8), a CXC family chemokine, can stimulate the tumor progression and trigger cancer cell growth, migration, invasion, and Epithelial-Mesenchymal Transition (EMT) via its receptors CXCR1/2 (IL-8R) pathway. As stated above, IL-8 plays a crucial role in tumor progression, so we design an IL-8 analogue-RP4, hoping to inhibit tumor development by its high binding affinity with CXCR1/2. In this study, we focus on non-small cell lung cancer (NSCLC) and pancreatic cancer (PDAC) which is malignant and limited drug application in clinical. Although NSCLC and PDAC have standard first-line medicines, e.g. Gefitinib and Gemcitabine, drug resistance occurs after treating few months. Many literatures had demonstrated that commercial drug resistance in NSCLC and pancreatic cancer PDAC is associated with IL-8 secretion recently. Therefore, targeting IL-8 and IL-8R in cancer progression and development is regarded as a potent therapeutic strategy. Herein, we used the IL-8 analogue, RP4, and investigated the anti-cancer activity in Gefitinib-resistant NSCLC cell lines and Gemcitabine-resistant pancreatic cancer cell lines. In initial results, we find RP4 can attenuate the characteristics of cancer cells much more effective in suspended condition. Furthermore, we found it not only inhibits cells’ growth, migration, and invasion but decreases the IL-8/IL-8R mRNA expression in drug-resistant NSCLC cell lines and pancreatic cell lines. The anti-tumor activity of RP4 also shows marvelous results in survival rate and tumor size in vivo. According to above findings, we believe this IL-8 analogue, RP4, can be developed as a potential drug candidate.
摘要................................................................................................................................ I
Abstract ........................................................................................................................ II
Content ....................................................................................................................... III
Figure list ................................................................................................................... V
Table list ..................................................................................................................... VII
Chapter 1 Introduction................................................................................................ 1
1.1 The role of interleukin 8 (IL-8) in tumor progression .......................................... 1
1.2 Non-small cell lung cancer (NSCLC) .................................................................. 1
1.3 Pancreatic cancer (PDAC) ................................................................................... 3
1.4 Gefitinib (Iressa®) drug resistant .......................................................................... 4
1.5 Gemcitabine (Gemzar®) drug resistant ................................................................ 5
1.6 Design of IL-8 analogue ....................................................................................... 6
Chapter 2 Material and Methods ............................................................................... 8
2.1 Cell lines ............................................................................................................... 8
2.2 Wound-healing assay ......................................................................................... 10
2.3 Intercellular junction and attachment of HUVEC .............................................. 10
2.4 Cell viability assay by MTT ............................................................................... 11
2.5 Quantitative real-time reverse transcriptase-polymerase chain reaction (RT-PCR)
.................................................................................................................................. 12
2.6 Human IL-8 enzyme-linked immunosorbent assay (ELISA) ............................ 12
2.7 Doubling-time assays of suspended cells ........................................................... 13
2.8 Cell proliferation assay by CCK-8 reagent ........................................................ 13
2.9 Colony formation assay ...................................................................................... 14
2.10 Boyden chamber invasion assay ...................................................................... 14
2.11 Flow cytometry in analysis of cell cycle .......................................................... 15
2.12 Analysis in human lung cancer data sets .......................................................... 15
2.13 Mouse tumor xenograft models ........................................................................ 16
2.14 Statistical analysis ............................................................................................ 17
Chapter 3 Results ....................................................................................................... 18
3.1 RP4 application in lung cancer. .......................................................................... 18
3.1.1 RP4 affects lung cancer cell lines in high IL-8/IL-8R expressed-suspended
condition. .................................................................................................................. 18
3.1.2 HUVEC cell-junction can be protected and recovered from IL-8 by RP4. .... 19
3.1.3 RP4 attenuates lung cancer characteristics in vitro. ........................................ 20
3.1.4 RP4 inhibit anoikis-resistant and anchorage-independent growth by G1 phase
arrest. ........................................................................................................................ 21
3.1.5 Anti-tumor effects of RP4 in vivo LL/2 C57BL/6 mouse model. .................. 22
3.2 RP4 and Gefitinib combined use in Gefitinib-resistant NSCLC cell lines. ....... 23
3.2.1 High expression IL-8/IL-8R of NSCLC are reduced by RP4 combined with
Gefitinib in suspended condition.............................................................................. 23
3.2.2 RP4 reduces Gefitinib-resistant NSCLC cells anchorage - independent growth
by cell cycle G1 phase arrest. ................................................................................... 25
3.2.3 RP4 also reduces Gefitinib-resistant NSCLC cells invasion in vitro. ............. 25
3.2.4 Combined usage of Gefitinib and RP4 inhibits lung tumor growth and prolongs
lifespan in vivo. ........................................................................................................ 26
3.3 RP4 and Gemcitabine combined use in Gemcitabine-resistant PDAC cell lines.
.................................................................................................................................. 26
3.3.1 Gemcitabine-resistant PDAC cell lines show high gene expression of IL-8/IL-
8R, but reduced by RP4. ........................................................................................... 27
3.3.2 RP4 can reduce Gemcitabine-resistant PDAC cells invasion ability in vitro. 27
3.3.3 Combined usage of Gemcitabine and RP4 inhibits pancreatic tumor growth and
reduces death in vivo. ............................................................................................... 28
Chapter 4 Discussion and Conclusion ...................................................................... 29
References ................................................................................................................... 58
1. Lin, W.W. and M. Karin, A cytokine-mediated link between innate immunity, inflammation, and cancer. Journal of Clinical Investigation, 2007. 117(5): p. 1175-1183.
2. Sarvaiya, P.J., et al., Chemokines in tumor progression and metastasis. Oncotarget, 2013. 4(12): p. 2171-85.
3. Ha, H., B. Debnath, and N. Neamati, Role of the CXCL8-CXCR1/2 Axis in Cancer and Inflammatory Diseases. Theranostics, 2017. 7: p. 1543-1588.
4. Huang, S.Y., et al., Fully humanized neutralizing antibodies to interleukin-8 (ABX-IL8) inhibit angiogenesis, tumor growth, and metastasis of human melanoma. American Journal of Pathology, 2002. 161(1): p. 125-134.
5. Luca, M., et al., Expression of interleukin-8 by human melanoma cells up-regulates MMP-2 activity and increases tumor growth and metastasis. American Journal of Pathology, 1997. 151(4): p. 1105-1113.
6. Wang, Y., et al., Interleukin-8 secretion by ovarian cancer cells increases anchorage-independent growth, proliferation, angiogenic potential, adhesion and invasion. Cytokine, 2012. 59(1): p. 145-55.
7. Keane, M.P., et al., Depletion of CXCR2 inhibits tumor growth and angiogenesis in a murine model of lung cancer. J Immunol, 2004. 172(5): p. 2853-60.
8. Steele, C.W., et al., CXCR2 Inhibition Profoundly Suppresses Metastases and Augments Immunotherapy in Pancreatic Ductal Adenocarcinoma. Cancer Cell, 2016. 29(6): p. 832-845.
9. Chen, L.Y., et al., The IL-8/CXCR1 axis is associated with cancer stem cell-like properties and correlates with clinical prognosis in human pancreatic cancer cases. Scientific Reports, 2014. 4.
10. Highfill, S.L., et al., Disruption of CXCR2-Mediated MDSC Tumor Trafficking Enhances Anti-PD1 Efficacy. Science Translational Medicine, 2014. 6(237).
11. Liu, Y.N., et al., IL-8 confers resistance to EGFR inhibitors by inducing stem cell properties in lung cancer. Oncotarget, 2015. 6(12): p. 10415-10431.
12. Cui, J., et al., Role of Wnt/beta-catenin signaling in drug resistance of pancreatic cancer. Curr Pharm Des, 2012. 18(17): p. 2464-71.
13. Bray, F., et al., Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin, 2018. 68(6): p. 394-424.
14. Sharma, S.V., et al., Epidermal growth factor receptor mutations in lung cancer. Nat Rev Cancer, 2007. 7(3): p. 169-81.
15. Li, Y., et al., First-line gemcitabine plus cisplatin in nonsmall cell lung cancer patients. Dis Markers, 2014. 2014: p. 960458.
16. Morgillo, F., et al., Mechanisms of resistance to EGFR-targeted drugs: lung cancer. ESMO Open, 2016. 1(3): p. e000060.
17. Min, H.Y. and H.Y. Lee, Oncogene-Driven Metabolic Alterations in Cancer. Biomol Ther (Seoul), 2018. 26(1): p. 45-56.
18. Uramoto, H., et al., Resistance to gefitinib. Int J Clin Oncol, 2006. 11(6): p. 487-91.
19. Liao, B.C., C.C. Lin, and J.C. Yang, Second and third-generation epidermal growth factor receptor tyrosine kinase inhibitors in advanced nonsmall cell lung cancer. Curr Opin Oncol, 2015. 27(2): p. 94-101.
20. Sullivan, I. and D. Planchard, Next-Generation EGFR Tyrosine Kinase Inhibitors for Treating EGFR-Mutant Lung Cancer beyond First Line. Front Med (Lausanne), 2016. 3: p. 76.
21. Yang, Z., et al., Investigating Novel Resistance Mechanisms to Third-Generation EGFR Tyrosine Kinase Inhibitor Osimertinib in Non-Small Cell Lung Cancer Patients. Clin Cancer Res, 2018. 24(13): p. 3097-3107.
22. Maron, R., et al., Inhibition of pancreatic carcinoma by homo- and heterocombinations of antibodies against EGF-receptor and its kin HER2/ErbB-2. Proc Natl Acad Sci U S A, 2013. 110(38): p. 15389-94.
23. Xie, K.P., Interleukin-8 and human cancer biology. Cytokine & Growth Factor Reviews, 2001. 12(4): p. 375-391.
24. Adamska, A., A. Domenichini, and M. Falasca, Pancreatic Ductal Adenocarcinoma: Current and Evolving Therapies. Int J Mol Sci, 2017. 18(7).
25. Karakas, Y., S. Lacin, and S. Yalcin, Recent advances in the management of pancreatic adenocarcinoma. Expert Rev Anticancer Ther, 2018. 18(1): p. 51-62.
26. Kanai, M., et al., A phase I/II study of gemcitabine-based chemotherapy plus curcumin for patients with gemcitabine-resistant pancreatic cancer. Cancer Chemother Pharmacol, 2011. 68(1): p. 157-64.
27. Ohashi, K., et al., Epidermal growth factor receptor tyrosine kinase inhibitor-resistant disease. J Clin Oncol, 2013. 31(8): p. 1070-80.
28. Liu, Y.N., et al., IL-8 confers resistance to EGFR inhibitors by inducing stem cell properties in lung cancer. Oncotarget, 2015. 6(12): p. 10415-31.
29. Forsythe, B. and K. Faulkner, Overview of the tolerability of gefitinib (IRESSA) monotherapy : clinical experience in non-small-cell lung cancer. Drug Saf, 2004. 27(14): p. 1081-92.
30. Huang, L.H. and L.W. Fu, Mechanisms of resistance to EGFR tyrosine kinase inhibitors. Acta Pharmaceutica Sinica B, 2015. 5(5): p. 390-401.
31. Fernando, R.I., et al., IL-8 signaling is involved in resistance of lung carcinoma cells to erlotinib. Oncotarget, 2016. 7(27): p. 42031-42044.
32. Liu, Y.N., et al., IL-8 confers resistance to EGFR inhibitors by inducing stem cell properties in lung cancer. Oncotarget, 2015. 6.
33. Burris, H.A., et al., Improvements in survival and clinical benefit with gemcitabine as first-line therapy for patients with advanced pancreas cancer: A randomized trial. Journal of Clinical Oncology, 1997. 15(6): p. 2403-2413.
34. Plunkett, W., et al., Gemcitabine: metabolism, mechanisms of action, and self-potentiation. Semin Oncol, 1995. 22(4 Suppl 11): p. 3-10.
35. Carmichael, J., The role of gemcitabine in the treatment of other tumours. Br J Cancer, 1998. 78 Suppl 3: p. 21-5.
36. Neoptolemos, J.P., et al., Adjuvant therapy in pancreatic cancer: historical and current perspectives. Ann Oncol, 2003. 14(5): p. 675-92.
37. Rothenberg, M.L., et al., A phase II trial of gemcitabine in patients with 5-FU-refractory pancreas cancer. Ann Oncol, 1996. 7(4): p. 347-53.
38. Yin, T., et al., Bmi1 inhibition enhances the sensitivity of pancreatic cancer cells to gemcitabine. Oncotarget, 2016. 7(24): p. 37192-37204.
39. Rasheed, Z.A. and W. Matsui, Biological and clinical relevance of stem cells in pancreatic adenocarcinoma. J Gastroenterol Hepatol, 2012. 27 Suppl 2: p. 15-8.
40. Mueller, M.T., et al., Combined targeted treatment to eliminate tumorigenic cancer stem cells in human pancreatic cancer. Gastroenterology, 2009. 137(3): p. 1102-13.
41. Le, X., et al., Molecular regulation of constitutive expression of interleukin-8 in human pancreatic adenocarcinoma. J Interferon Cytokine Res, 2000. 20(11): p. 935-46.
42. Masckauchan, T.N., et al., Wnt/beta-catenin signaling induces proliferation, survival and interleukin-8 in human endothelial cells. Angiogenesis, 2005. 8(1): p. 43-51.
43. Pan, M.R., et al., The histone methyltransferase G9a as a therapeutic target to override gemcitabine resistance in pancreatic cancer. Oncotarget, 2016. 7(38): p. 61136-61151.
44. Li, F., X.B. Zhang, and J.R. Gordon, CXCL8((3-73))K11R/G31P antagonizes ligand binding to the neutrophil CXCR1 and CXCR2 receptors and cellular responses to CXCL8/IL-8. Biochemical and Biophysical Research Communications, 2002. 293(3): p. 939-944.
45. Li, L.Y., et al., G31P, CXCR1/2 inhibitor, with cisplatin inhibits the growth of mice hepatocellular carcinoma and mitigates high-dose cisplatin-induced nephrotoxicity. Oncology Reports, 2015. 33(2): p. 751-757.
46. Li, F. and J.R. Gordon, IL-8((3-73))K11R is a high affinity agonist of the neutrophil CXCR1 and CXCR2. Biochemical and Biophysical Research Communications, 2001. 286(3): p. 595-600.
47. Cheng, H.T., et al., Effects of K11R and G31P Mutations on the Structure and Biological Activities of CXCL8: Solution Structure of Human CXCL8(3-72)K11R/G31P. Molecules, 2017. 22: p. 1229.
48. Chen, Z., et al., A novel CXCL8-IP10 hybrid protein is effective in blocking pulmonary pathology in a mouse model of Klebsiella pneumoniae infection. Intl. Immunopharmacol, 2018. 62: p. 40-45.
49. Bertram, J.S. and P. Janik, Establishment of a cloned line of Lewis Lung Carcinoma cells adapted to cell culture. Cancer Lett, 1980. 11(1): p. 63-73.
50. Strober, W., Trypan blue exclusion test of cell viability. Curr Protoc Immunol, 2001. Appendix 3: p. Appendix 3B.
51. Rho, J.K., et al., Epithelial to mesenchymal transition derived from repeated exposure to gefitinib determines the sensitivity to EGFR inhibitors in A549, a non-small cell lung cancer cell line. Lung Cancer, 2009. 63(2): p. 219-26.
52. Yu, J., et al., MicroRNA miR-17-5p is overexpressed in pancreatic cancer, associated with a poor prognosis and involved in cancer cell proliferation and invasion. Cancer Biology & Therapy, 2010. 10(8): p. 748-757.
53. Khan, M.N., et al., CXCR1/2 antagonism with CXCL8/Interleukin-8 analogue CXCL8(3-72)K11R/G31P restricts lung cancer growth by inhibiting tumor cell proliferation and suppressing angiogenesis. Oncotarget, 2015. 6(25): p. 21315-27.
54. Chen, J.J., et al., Up-regulation of tumor interleukin-8 expression by infiltrating macrophages: its correlation with tumor angiogenesis and patient survival in non-small cell lung cancer. Clin Cancer Res, 2003. 9(2): p. 729-37.
55. Yao, P.L., et al., Autocrine and paracrine regulation of interleukin-8 expression in lung cancer cells. Am J Respir Cell Mol Biol, 2005. 32(6): p. 540-7.
56. Gomez-Casal, R., et al., Non-small cell lung cancer cells survived ionizing radiation treatment display cancer stem cell and epithelial-mesenchymal transition phenotypes. Mol Cancer, 2013. 12(1): p. 94.
57. Fernando, R.I., et al., IL-8 signaling plays a critical role in the epithelial-mesenchymal transition of human carcinoma cells. Cancer Res, 2011. 71(15): p. 5296-306.
58. Inumaru, J., et al., Molecular mechanisms regulating dissociation of cell-cell junction of epithelial cells by oxidative stress. Genes Cells, 2009. 14(6): p. 703-16.
59. Alarcon, C.R. and S.F. Tavazoie, Cancer: Endothelial-cell killing promotes metastasis. Nature, 2016. 536(7615): p. 154-5.
60. Wegener, J., C.R. Keese, and I. Giaever, Electric cell-substrate impedance sensing (ECIS) as a noninvasive means to monitor the kinetics of cell spreading to artificial surfaces. Experimental Cell Research, 2000. 259(1): p. 158-166.
61. Giaever, I. and C.R. Keese, Micromotion of mammalian cells measured electrically. Proc Natl Acad Sci U S A, 1991. 88(17): p. 7896-900.
62. Schoenhals, J.E., et al., Uncovering the immune tumor microenvironment in non-small cell lung cancer to understand response rates to checkpoint blockade and radiation. Translational Lung Cancer Research, 2017. 6(2): p. 148-158.
63. Weeratna, R.D., et al., Combination of a new TLR9 agonist immunomodulator (CpG 7909) and paclitaxel for treatment of metastatic Lewis Lung Carcinoma (LLC). Journal of Clinical Oncology, 2004. 22(14): p. 702s-702s.
64. Giannoni, E., M. Parri, and P. Chiarugi, EMT and oxidative stress: a bidirectional interplay affecting tumor malignancy. Antioxid Redox Signal, 2012. 16(11): p. 1248-63.
65. Zhu, Y.M., et al., Interleukin-8/CXCL8 is a growth factor for human lung cancer cells. British Journal of Cancer, 2004. 91(11): p. 1970-1976.
66. Chambers, A.F., A.C. Groom, and I.C. MacDonald, Dissemination and growth of cancer cells in metastatic sites. Nat Rev Cancer, 2002. 2(8): p. 563-72.
67. Liu, Q., et al., The CXCL8-CXCR1/2 pathways in cancer. Cytokine Growth Factor Rev, 2016. 31: p. 61-71.
68. Chikara, S., et al., Enterolactone Induces G1-phase Cell Cycle Arrest in Nonsmall Cell Lung Cancer Cells by Downregulating Cyclins and Cyclin-dependent Kinases. Nutr Cancer, 2017. 69(4): p. 652-662.
69. el-Deiry, W.S., et al., WAF1/CIP1 is induced in p53-mediated G1 arrest and apoptosis. Cancer Res, 1994. 54(5): p. 1169-74.
70. Song, X.L., et al., Casticin induces apoptosis and G0/G1 cell cycle arrest in gallbladder cancer cells. Cancer Cell Int, 2017. 17: p. 9.
71. Tarasov, V., et al., Differential regulation of microRNAs by p53 revealed by massively parallel sequencing: miR-34a is a p53 target that induces apoptosis and G1-arrest. Cell Cycle, 2007. 6(13): p. 1586-93.
72. Khan, M.N., et al., CXCR1/2 antagonism with CXCL8/Interleukin-8 analogue CXCL8(3-72)K11R/G31P restricts lung cancer growth by inhibiting tumor cell proliferation and suppressing angiogenesis. Oncotarget, 2015. 6: p. 21315-21327.
73. Riely, G.J., et al., Clinical course of patients with non-small cell lung cancer and epidermal growth factor receptor exon 19 and exon 21 mutations treated with gefitinib or erlotinib. Clin Cancer Res, 2006. 12(3 Pt 1): p. 839-44.
74. Imai, H., et al., Evaluation of gefitinib efficacy according to body mass index, body surface area, and body weight in patients with EGFR-mutated advanced non-small cell lung cancer. Cancer Chemother Pharmacol, 2017. 79(3): p. 497-505.
75. Long, X., et al., IL-8, a novel messenger to cross-link inflammation and tumor EMT via autocrine and paracrine pathways (Review). Int J Oncol, 2016. 48(1): p. 5-12.
76. Guo, Y., et al., IL8 promotes proliferation and inhibition of apoptosis via STAT3/AKT/NFkappaB pathway in prostate cancer. Mol Med Rep, 2017. 16(6): p. 9035-9042.
77. Waugh, D.J. and C. Wilson, The interleukin-8 pathway in cancer. Clin Cancer Res, 2008. 14(21): p. 6735-41.
78. Abraham, R.T., Chemokine to the rescue: interleukin-8 mediates resistance to PI3K-pathway-targeted therapy in breast cancer. Cancer Cell, 2012. 22(6): p. 703-5.
(此全文未開放授權)
電子全文
中英文摘要
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *