|
1. Lin, W.W. and M. Karin, A cytokine-mediated link between innate immunity, inflammation, and cancer. Journal of Clinical Investigation, 2007. 117(5): p. 1175-1183. 2. Sarvaiya, P.J., et al., Chemokines in tumor progression and metastasis. Oncotarget, 2013. 4(12): p. 2171-85. 3. Ha, H., B. Debnath, and N. Neamati, Role of the CXCL8-CXCR1/2 Axis in Cancer and Inflammatory Diseases. Theranostics, 2017. 7: p. 1543-1588. 4. Huang, S.Y., et al., Fully humanized neutralizing antibodies to interleukin-8 (ABX-IL8) inhibit angiogenesis, tumor growth, and metastasis of human melanoma. American Journal of Pathology, 2002. 161(1): p. 125-134. 5. Luca, M., et al., Expression of interleukin-8 by human melanoma cells up-regulates MMP-2 activity and increases tumor growth and metastasis. American Journal of Pathology, 1997. 151(4): p. 1105-1113. 6. Wang, Y., et al., Interleukin-8 secretion by ovarian cancer cells increases anchorage-independent growth, proliferation, angiogenic potential, adhesion and invasion. Cytokine, 2012. 59(1): p. 145-55. 7. Keane, M.P., et al., Depletion of CXCR2 inhibits tumor growth and angiogenesis in a murine model of lung cancer. J Immunol, 2004. 172(5): p. 2853-60. 8. Steele, C.W., et al., CXCR2 Inhibition Profoundly Suppresses Metastases and Augments Immunotherapy in Pancreatic Ductal Adenocarcinoma. Cancer Cell, 2016. 29(6): p. 832-845. 9. Chen, L.Y., et al., The IL-8/CXCR1 axis is associated with cancer stem cell-like properties and correlates with clinical prognosis in human pancreatic cancer cases. Scientific Reports, 2014. 4. 10. Highfill, S.L., et al., Disruption of CXCR2-Mediated MDSC Tumor Trafficking Enhances Anti-PD1 Efficacy. Science Translational Medicine, 2014. 6(237). 11. Liu, Y.N., et al., IL-8 confers resistance to EGFR inhibitors by inducing stem cell properties in lung cancer. Oncotarget, 2015. 6(12): p. 10415-10431. 12. Cui, J., et al., Role of Wnt/beta-catenin signaling in drug resistance of pancreatic cancer. Curr Pharm Des, 2012. 18(17): p. 2464-71. 13. Bray, F., et al., Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin, 2018. 68(6): p. 394-424. 14. Sharma, S.V., et al., Epidermal growth factor receptor mutations in lung cancer. Nat Rev Cancer, 2007. 7(3): p. 169-81. 15. Li, Y., et al., First-line gemcitabine plus cisplatin in nonsmall cell lung cancer patients. Dis Markers, 2014. 2014: p. 960458. 16. Morgillo, F., et al., Mechanisms of resistance to EGFR-targeted drugs: lung cancer. ESMO Open, 2016. 1(3): p. e000060. 17. Min, H.Y. and H.Y. Lee, Oncogene-Driven Metabolic Alterations in Cancer. Biomol Ther (Seoul), 2018. 26(1): p. 45-56. 18. Uramoto, H., et al., Resistance to gefitinib. Int J Clin Oncol, 2006. 11(6): p. 487-91. 19. Liao, B.C., C.C. Lin, and J.C. Yang, Second and third-generation epidermal growth factor receptor tyrosine kinase inhibitors in advanced nonsmall cell lung cancer. Curr Opin Oncol, 2015. 27(2): p. 94-101. 20. Sullivan, I. and D. Planchard, Next-Generation EGFR Tyrosine Kinase Inhibitors for Treating EGFR-Mutant Lung Cancer beyond First Line. Front Med (Lausanne), 2016. 3: p. 76. 21. Yang, Z., et al., Investigating Novel Resistance Mechanisms to Third-Generation EGFR Tyrosine Kinase Inhibitor Osimertinib in Non-Small Cell Lung Cancer Patients. Clin Cancer Res, 2018. 24(13): p. 3097-3107. 22. Maron, R., et al., Inhibition of pancreatic carcinoma by homo- and heterocombinations of antibodies against EGF-receptor and its kin HER2/ErbB-2. Proc Natl Acad Sci U S A, 2013. 110(38): p. 15389-94. 23. Xie, K.P., Interleukin-8 and human cancer biology. Cytokine & Growth Factor Reviews, 2001. 12(4): p. 375-391. 24. Adamska, A., A. Domenichini, and M. Falasca, Pancreatic Ductal Adenocarcinoma: Current and Evolving Therapies. Int J Mol Sci, 2017. 18(7). 25. Karakas, Y., S. Lacin, and S. Yalcin, Recent advances in the management of pancreatic adenocarcinoma. Expert Rev Anticancer Ther, 2018. 18(1): p. 51-62. 26. Kanai, M., et al., A phase I/II study of gemcitabine-based chemotherapy plus curcumin for patients with gemcitabine-resistant pancreatic cancer. Cancer Chemother Pharmacol, 2011. 68(1): p. 157-64. 27. Ohashi, K., et al., Epidermal growth factor receptor tyrosine kinase inhibitor-resistant disease. J Clin Oncol, 2013. 31(8): p. 1070-80. 28. Liu, Y.N., et al., IL-8 confers resistance to EGFR inhibitors by inducing stem cell properties in lung cancer. Oncotarget, 2015. 6(12): p. 10415-31. 29. Forsythe, B. and K. Faulkner, Overview of the tolerability of gefitinib (IRESSA) monotherapy : clinical experience in non-small-cell lung cancer. Drug Saf, 2004. 27(14): p. 1081-92. 30. Huang, L.H. and L.W. Fu, Mechanisms of resistance to EGFR tyrosine kinase inhibitors. Acta Pharmaceutica Sinica B, 2015. 5(5): p. 390-401. 31. Fernando, R.I., et al., IL-8 signaling is involved in resistance of lung carcinoma cells to erlotinib. Oncotarget, 2016. 7(27): p. 42031-42044. 32. Liu, Y.N., et al., IL-8 confers resistance to EGFR inhibitors by inducing stem cell properties in lung cancer. Oncotarget, 2015. 6. 33. Burris, H.A., et al., Improvements in survival and clinical benefit with gemcitabine as first-line therapy for patients with advanced pancreas cancer: A randomized trial. Journal of Clinical Oncology, 1997. 15(6): p. 2403-2413. 34. Plunkett, W., et al., Gemcitabine: metabolism, mechanisms of action, and self-potentiation. Semin Oncol, 1995. 22(4 Suppl 11): p. 3-10. 35. Carmichael, J., The role of gemcitabine in the treatment of other tumours. Br J Cancer, 1998. 78 Suppl 3: p. 21-5. 36. Neoptolemos, J.P., et al., Adjuvant therapy in pancreatic cancer: historical and current perspectives. Ann Oncol, 2003. 14(5): p. 675-92. 37. Rothenberg, M.L., et al., A phase II trial of gemcitabine in patients with 5-FU-refractory pancreas cancer. Ann Oncol, 1996. 7(4): p. 347-53. 38. Yin, T., et al., Bmi1 inhibition enhances the sensitivity of pancreatic cancer cells to gemcitabine. Oncotarget, 2016. 7(24): p. 37192-37204. 39. Rasheed, Z.A. and W. Matsui, Biological and clinical relevance of stem cells in pancreatic adenocarcinoma. J Gastroenterol Hepatol, 2012. 27 Suppl 2: p. 15-8. 40. Mueller, M.T., et al., Combined targeted treatment to eliminate tumorigenic cancer stem cells in human pancreatic cancer. Gastroenterology, 2009. 137(3): p. 1102-13. 41. Le, X., et al., Molecular regulation of constitutive expression of interleukin-8 in human pancreatic adenocarcinoma. J Interferon Cytokine Res, 2000. 20(11): p. 935-46. 42. Masckauchan, T.N., et al., Wnt/beta-catenin signaling induces proliferation, survival and interleukin-8 in human endothelial cells. Angiogenesis, 2005. 8(1): p. 43-51. 43. Pan, M.R., et al., The histone methyltransferase G9a as a therapeutic target to override gemcitabine resistance in pancreatic cancer. Oncotarget, 2016. 7(38): p. 61136-61151. 44. Li, F., X.B. Zhang, and J.R. Gordon, CXCL8((3-73))K11R/G31P antagonizes ligand binding to the neutrophil CXCR1 and CXCR2 receptors and cellular responses to CXCL8/IL-8. Biochemical and Biophysical Research Communications, 2002. 293(3): p. 939-944. 45. Li, L.Y., et al., G31P, CXCR1/2 inhibitor, with cisplatin inhibits the growth of mice hepatocellular carcinoma and mitigates high-dose cisplatin-induced nephrotoxicity. Oncology Reports, 2015. 33(2): p. 751-757. 46. Li, F. and J.R. Gordon, IL-8((3-73))K11R is a high affinity agonist of the neutrophil CXCR1 and CXCR2. Biochemical and Biophysical Research Communications, 2001. 286(3): p. 595-600. 47. Cheng, H.T., et al., Effects of K11R and G31P Mutations on the Structure and Biological Activities of CXCL8: Solution Structure of Human CXCL8(3-72)K11R/G31P. Molecules, 2017. 22: p. 1229. 48. Chen, Z., et al., A novel CXCL8-IP10 hybrid protein is effective in blocking pulmonary pathology in a mouse model of Klebsiella pneumoniae infection. Intl. Immunopharmacol, 2018. 62: p. 40-45. 49. Bertram, J.S. and P. Janik, Establishment of a cloned line of Lewis Lung Carcinoma cells adapted to cell culture. Cancer Lett, 1980. 11(1): p. 63-73. 50. Strober, W., Trypan blue exclusion test of cell viability. Curr Protoc Immunol, 2001. Appendix 3: p. Appendix 3B. 51. Rho, J.K., et al., Epithelial to mesenchymal transition derived from repeated exposure to gefitinib determines the sensitivity to EGFR inhibitors in A549, a non-small cell lung cancer cell line. Lung Cancer, 2009. 63(2): p. 219-26. 52. Yu, J., et al., MicroRNA miR-17-5p is overexpressed in pancreatic cancer, associated with a poor prognosis and involved in cancer cell proliferation and invasion. Cancer Biology & Therapy, 2010. 10(8): p. 748-757. 53. Khan, M.N., et al., CXCR1/2 antagonism with CXCL8/Interleukin-8 analogue CXCL8(3-72)K11R/G31P restricts lung cancer growth by inhibiting tumor cell proliferation and suppressing angiogenesis. Oncotarget, 2015. 6(25): p. 21315-27. 54. Chen, J.J., et al., Up-regulation of tumor interleukin-8 expression by infiltrating macrophages: its correlation with tumor angiogenesis and patient survival in non-small cell lung cancer. Clin Cancer Res, 2003. 9(2): p. 729-37. 55. Yao, P.L., et al., Autocrine and paracrine regulation of interleukin-8 expression in lung cancer cells. Am J Respir Cell Mol Biol, 2005. 32(6): p. 540-7. 56. Gomez-Casal, R., et al., Non-small cell lung cancer cells survived ionizing radiation treatment display cancer stem cell and epithelial-mesenchymal transition phenotypes. Mol Cancer, 2013. 12(1): p. 94. 57. Fernando, R.I., et al., IL-8 signaling plays a critical role in the epithelial-mesenchymal transition of human carcinoma cells. Cancer Res, 2011. 71(15): p. 5296-306. 58. Inumaru, J., et al., Molecular mechanisms regulating dissociation of cell-cell junction of epithelial cells by oxidative stress. Genes Cells, 2009. 14(6): p. 703-16. 59. Alarcon, C.R. and S.F. Tavazoie, Cancer: Endothelial-cell killing promotes metastasis. Nature, 2016. 536(7615): p. 154-5. 60. Wegener, J., C.R. Keese, and I. Giaever, Electric cell-substrate impedance sensing (ECIS) as a noninvasive means to monitor the kinetics of cell spreading to artificial surfaces. Experimental Cell Research, 2000. 259(1): p. 158-166. 61. Giaever, I. and C.R. Keese, Micromotion of mammalian cells measured electrically. Proc Natl Acad Sci U S A, 1991. 88(17): p. 7896-900. 62. Schoenhals, J.E., et al., Uncovering the immune tumor microenvironment in non-small cell lung cancer to understand response rates to checkpoint blockade and radiation. Translational Lung Cancer Research, 2017. 6(2): p. 148-158. 63. Weeratna, R.D., et al., Combination of a new TLR9 agonist immunomodulator (CpG 7909) and paclitaxel for treatment of metastatic Lewis Lung Carcinoma (LLC). Journal of Clinical Oncology, 2004. 22(14): p. 702s-702s. 64. Giannoni, E., M. Parri, and P. Chiarugi, EMT and oxidative stress: a bidirectional interplay affecting tumor malignancy. Antioxid Redox Signal, 2012. 16(11): p. 1248-63. 65. Zhu, Y.M., et al., Interleukin-8/CXCL8 is a growth factor for human lung cancer cells. British Journal of Cancer, 2004. 91(11): p. 1970-1976. 66. Chambers, A.F., A.C. Groom, and I.C. MacDonald, Dissemination and growth of cancer cells in metastatic sites. Nat Rev Cancer, 2002. 2(8): p. 563-72. 67. Liu, Q., et al., The CXCL8-CXCR1/2 pathways in cancer. Cytokine Growth Factor Rev, 2016. 31: p. 61-71. 68. Chikara, S., et al., Enterolactone Induces G1-phase Cell Cycle Arrest in Nonsmall Cell Lung Cancer Cells by Downregulating Cyclins and Cyclin-dependent Kinases. Nutr Cancer, 2017. 69(4): p. 652-662. 69. el-Deiry, W.S., et al., WAF1/CIP1 is induced in p53-mediated G1 arrest and apoptosis. Cancer Res, 1994. 54(5): p. 1169-74. 70. Song, X.L., et al., Casticin induces apoptosis and G0/G1 cell cycle arrest in gallbladder cancer cells. Cancer Cell Int, 2017. 17: p. 9. 71. Tarasov, V., et al., Differential regulation of microRNAs by p53 revealed by massively parallel sequencing: miR-34a is a p53 target that induces apoptosis and G1-arrest. Cell Cycle, 2007. 6(13): p. 1586-93. 72. Khan, M.N., et al., CXCR1/2 antagonism with CXCL8/Interleukin-8 analogue CXCL8(3-72)K11R/G31P restricts lung cancer growth by inhibiting tumor cell proliferation and suppressing angiogenesis. Oncotarget, 2015. 6: p. 21315-21327. 73. Riely, G.J., et al., Clinical course of patients with non-small cell lung cancer and epidermal growth factor receptor exon 19 and exon 21 mutations treated with gefitinib or erlotinib. Clin Cancer Res, 2006. 12(3 Pt 1): p. 839-44. 74. Imai, H., et al., Evaluation of gefitinib efficacy according to body mass index, body surface area, and body weight in patients with EGFR-mutated advanced non-small cell lung cancer. Cancer Chemother Pharmacol, 2017. 79(3): p. 497-505. 75. Long, X., et al., IL-8, a novel messenger to cross-link inflammation and tumor EMT via autocrine and paracrine pathways (Review). Int J Oncol, 2016. 48(1): p. 5-12. 76. Guo, Y., et al., IL8 promotes proliferation and inhibition of apoptosis via STAT3/AKT/NFkappaB pathway in prostate cancer. Mol Med Rep, 2017. 16(6): p. 9035-9042. 77. Waugh, D.J. and C. Wilson, The interleukin-8 pathway in cancer. Clin Cancer Res, 2008. 14(21): p. 6735-41. 78. Abraham, R.T., Chemokine to the rescue: interleukin-8 mediates resistance to PI3K-pathway-targeted therapy in breast cancer. Cancer Cell, 2012. 22(6): p. 703-5. |