帳號:guest(3.137.219.237)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):曾琳蘆
作者(外文):Tseng, Lin-Lu
論文名稱(中文):胃癌治療標靶:由PHF8調控之PKCα-Src-PTEN訊號軸
論文名稱(外文):Targeting the histone demethylase PHF8-mediated PKCα-Src-PTEN axis in gastric cancer
指導教授(中文):王雯靜
指導教授(外文):Wang, Wen-Ching
口試委員(中文):陳佩君
龔行健
葉大森
陳瑞華
蔡亭芬
喻秋華
口試委員(外文):Chen, Pei-Jiun
Kung, Hsing-Jien
Yeh, Ta-Sen
Chen, Ruey-Hwa
Tsai, Ting-Fen
Yuh, Chiou-Hwa
學位類別:博士
校院名稱:國立清華大學
系所名稱:分子與細胞生物研究所
學號:103080511
出版年(民國):109
畢業學年度:109
語文別:英文
論文頁數:97
中文關鍵詞:胃癌組蛋白賴胺酸去甲基酵素PHF8PKCαPTEN
外文關鍵詞:Gastric cancerHistone lysine demethylasePHF8PKCαPTEN
相關次數:
  • 推薦推薦:0
  • 點閱點閱:47
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
針對進行胃癌(advanced gastric cancer)的標靶治療是需要的。在這項研究中,我們專注於探討組蛋白賴胺酸去甲基酶(KDM)的在胃癌疾病進程的角色,該酶的功能為從組蛋白上已有甲基的賴胺酸中除去甲基,進而重塑染色質之構型。從OncomineTM數據庫分析顯示,在胃癌組織中組蛋白賴胺酸去甲基酶7B(KDM7B即PHF8)表現量相對於正常組織有明顯升高的情形,此外我們也從Kaplan-Meier Plotter的分析中發現,胃癌患者若有高表現的PHF8,則其總體存活率與疾病首次進程的表現都是較差的。PHF8的剔減顯著降低了胃癌細胞株和動物疾病模型的癌症進展。從基因微陣列分析結果中,我們發現PHF8主要調控的基因群大多屬於細胞遷移/移動的的類別,值得注意的是,PHF8會在PRKCA(PKCα蛋白的基因)啟動子上與轉錄因子c-Jun相互作用共同調控該基因的表現,而PHF8或PKCα的剔減會大幅度提升PTEN表達,而這個現象可以透過異位表達PKCα表達載體或激活的Src來回復,這也清楚的表明,PTEN表現量的調控是透過PKCα–Src影響。在針對胃癌患者的回溯性的免疫組織化學染色分析也發現PHF8、PKCα和PTEN之間存在顯著相關性:PHF8和PKCα間呈正相關;而PHF8與PTEN之間以及PKCα與PTEN間呈負相關,並且,PHF8的表現量與腫瘤分期呈顯著正相關。使用PKCα抑制劑Midostaurin (2017獲FDA批准)和Src抑制劑Bosutinib (2017年獲FDA批准)會導致PTEN表現量升高,並呈劑量相關性,可顯著抑制腫瘤在斑馬魚模型中侵襲轉移與在小鼠模型中生長。
綜上所述,我們的研究為晚期胃癌中仰賴PHF8的訊號途徑提供了新穎的見解,並對該患者的治療方針產生了潛在影響。
There is an urgent need for targeted treatments of advanced gastric cancer (GC). In this study, we focus on histone lysine demethylases that removes the methyl moiety from methyl-lysyl histones and thus engaging in chromatin remodeling. The OncomineTM database for GC patients has revealed an elevated level of PHD finger protein 8 (PHF8/KDM7B) expression in the tumor as compared to the normal tissue. In addition, through the Kaplan–Meier Plotter analyses, PHF8 is associated with a worse overall survival and first progression. In both in vitro and in vivo models, there is a significant reduction in the cancer progression by depleting PHF8. Based on microarray analysis, PHF8 was found to regulate genes that are involved in cell migration/motility. Noteworthily, PHF8 endogenously interacts with c-Jun on PRKCA promoter region and hence regulates of PKCα protein expression. Both the depletion of PHF8 or PKCα significantly upregulated PTEN expression, and this can be rescued by either the ectopic expression of PKCα or an active Src. These findings suggest that PTEN is destabilized via the PKCα–Src axis. IHC analysis of GC subjects showed that there was a significant correlation between PHF8, PKCα and PTEN: positive correlation between PHF8 and PKCα; negative correlation between PHF8 and PTEN and that between PKCα and PTEN. Additionally, PHF8 abundance was positively correlated with tumor stage. Moreover, the use of midostaurin, a PKCα inhibitor (FDA-approved since 2017), and bosutinib, a Src inhibitor (FDA-approved since 2017) led to an elevated level of PTEN in a dose-dependent manner in vitro and significantly curb tumor progression in zebrafish and murine models.
Altogether, our studies provide novel insights into the PHF8-mediated pathway in GC progression and show significant impacts in translational medicine in advanced GC patients.
致謝 i
中文摘要 iii
Abstract iv
Abbreviation v
List of Figures xi
List of Tables xiii
Chapter 1. Introduction 1
1.1 Epidemiology and risk factors of gastric cancer 1
1.2 Current treatments in gastric cancer 3
1.3 Classification of gastric cancer 5
1.4 Molecular characterization and genetic regulation of gastric cancer 7
1.5 Epigenetic regulation of gastric cancer 8
1.7 Protein Kinase C signaling 12
1.6 The objective of this study 14
Chapter 2. Material and methods 16
2.1 Antibodies, inhibitors and plasmids. 16
2.2 Cell culture 16
2.3 Establishment of stable cells 17
2.4 Immunoblotting and Immunoprecipitation assay 17
2.5 Cell proliferation assay and Trans-well migration assay 18
2.6 Microarray 19
2.7 RNA collection and quantitative real-time PCR (qRT-PCR) 19
2.8 Chromatin immunoprecipitation assay 20
2.9 Luciferase activity assay 21
2.10 Micro-western array 21
2.11 Mice xenograft and inhibitory experiment 22
2.12 Migration assay and chemoresponse assay in zebrafish 22
2.13 IHC and IHC scoring 23
2.14 Statistical evaluation 24
Chapter 3. Results 26
3.1 Elevated expression of PHF8 is associated with worse clinical outcomes in GC 26
3.2 Biological role of PHF8 in advanced GC cells in vitro and in vivo 26
3.3 PHF8 directly regulates PKCα and ICAM-1 in promoting GC progression 28
3.4 PHF8 binds to c-Jun and they are co-recruited to the promoter region of PRKCA 29
3.5 PHF8 promotes PTEN destabilization via PKCα-Src 31
3.6 Inhibition the PKCα-Src pathway in advanced GC 32
3.7 Characterization of PHF8, PKCα, and PTEN in human GC samples 33
Chapter 4. Conclusion and Discussion 35
4.1 PHF8-dependent epigenetic landscape in gastric cancer 35
4.2 PTEN deficiency in gastric cancer 38
4.3 Targeting PHF8-mediated PKCα-Src pathway in gastric cancer 39
4.4 PHF8-PKCα as prognostic biomarker in gastric cancer 41
4.5 Concluding remarks 42
References 43
Figures and Tables 60

1. Marshall, B.J. and J.R. Warren, Unidentified curved bacilli in the stomach of patients with gastritis and peptic ulceration. Lancet, 1984. 1(8390): p. 1311-5.
2. Wang, F., et al., Helicobacter pylori-induced gastric inflammation and gastric cancer. Cancer Lett, 2014. 345(2): p. 196-202.
3. Brandt, S., et al., NF-kappaB activation and potentiation of proinflammatory responses by the Helicobacter pylori CagA protein. Proc Natl Acad Sci U S A, 2005. 102(26): p. 9300-5.
4. Faghihloo, E., et al., Prevalence and characteristics of Epstein-Barr virus-associated gastric cancer in Iran. Arch Iran Med, 2014. 17(11): p. 767-70.
5. Murphy, G., et al., Meta-analysis shows that prevalence of Epstein-Barr virus-positive gastric cancer differs based on sex and anatomic location. Gastroenterology, 2009. 137(3): p. 824-33.
6. Wu, M.S., et al., Epstein-Barr virus-associated gastric carcinomas: relation to H. pylori infection and genetic alterations. Gastroenterology, 2000. 118(6): p. 1031-8.
7. Giudice, A., et al., Role of Viral miRNAs and Epigenetic Modifications in Epstein-Barr Virus-Associated Gastric Carcinogenesis. Oxid Med Cell Longev, 2016. 2016: p. 6021934.
8. Oliveira, C., et al., Familial gastric cancer: genetic susceptibility, pathology, and implications for management. Lancet Oncol, 2015. 16(2): p. e60-70.
9. Malkin, D., et al., Germ line p53 mutations in a familial syndrome of breast cancer, sarcomas, and other neoplasms. Science, 1990. 250(4985): p. 1233-8.
10. Ligtenberg, M.J., et al., Heritable somatic methylation and inactivation of MSH2 in families with Lynch syndrome due to deletion of the 3' exons of TACSTD1. Nat Genet, 2009. 41(1): p. 112-7.
11. Hampel, H., et al., Screening for Lynch syndrome (hereditary nonpolyposis colorectal cancer) among endometrial cancer patients. Cancer Res, 2006. 66(15): p. 7810-7.
12. Hampel, H., et al., Comment on: Screening for Lynch Syndrome (Hereditary Nonpolyposis Colorectal Cancer) among Endometrial Cancer Patients. Cancer Res, 2007. 67(19): p. 9603.
13. Groden, J., et al., Identification and characterization of the familial adenomatous polyposis coli gene. Cell, 1991. 66(3): p. 589-600.
14. Howe, J.R., et al., The prevalence of MADH4 and BMPR1A mutations in juvenile polyposis and absence of BMPR2, BMPR1B, and ACVR1 mutations. J Med Genet, 2004. 41(7): p. 484-91.
15. Jenne, D.E., et al., Peutz-Jeghers syndrome is caused by mutations in a novel serine threonine kinase. Nat Genet, 1998. 18(1): p. 38-43.
16. Lunet, N., et al., Fruit and vegetable consumption and gastric cancer by location and histological type: case-control and meta-analysis. Eur J Cancer Prev, 2007. 16(4): p. 312-27.
17. Ladeiras-Lopes, R., et al., Smoking and gastric cancer: systematic review and meta-analysis of cohort studies. Cancer Causes Control, 2008. 19(7): p. 689-701.
18. Yang, P., et al., Overweight, obesity and gastric cancer risk: results from a meta-analysis of cohort studies. Eur J Cancer, 2009. 45(16): p. 2867-73.
19. Fang, X., et al., Landscape of dietary factors associated with risk of gastric cancer: A systematic review and dose-response meta-analysis of prospective cohort studies. Eur J Cancer, 2015. 51(18): p. 2820-32.
20. Waddell, T., et al., Gastric cancer: ESMO-ESSO-ESTRO Clinical Practice Guidelines for diagnosis, treatment and follow-up. Radiother Oncol, 2014. 110(1): p. 189-94.
21. Van Cutsem, E., et al., Gastric cancer. Lancet, 2016. 388(10060): p. 2654-2664.
22. Charalampakis, N., et al., Medical management of gastric cancer: a 2017 update. Cancer Med, 2017.
23. Ford, H.E., et al., Docetaxel versus active symptom control for refractory oesophagogastric adenocarcinoma (COUGAR-02): an open-label, phase 3 randomised controlled trial. Lancet Oncol, 2014. 15(1): p. 78-86.
24. Wagner, A.D., et al., Chemotherapy for advanced gastric cancer. Cochrane Database Syst Rev, 2017. 8: p. CD004064.
25. MacDonald, J.S., et al., 5-Fluorouracil, doxorubicin, and mitomycin (FAM) combination chemotherapy for advanced gastric cancer. Ann Intern Med, 1980. 93(4): p. 533-6.
26. Wils, J.A., et al., Sequential high-dose methotrexate and fluorouracil combined with doxorubicin--a step ahead in the treatment of advanced gastric cancer: a trial of the European Organization for Research and Treatment of Cancer Gastrointestinal Tract Cooperative Group. J Clin Oncol, 1991. 9(5): p. 827-31.
27. Webb, A., et al., Randomized trial comparing epirubicin, cisplatin, and fluorouracil versus fluorouracil, doxorubicin, and methotrexate in advanced esophagogastric cancer. J Clin Oncol, 1997. 15(1): p. 261-7.
28. Cunningham, D., et al., Capecitabine and oxaliplatin for advanced esophagogastric cancer. N Engl J Med, 2008. 358(1): p. 36-46.
29. Wagner, A.D., et al., Chemotherapy for advanced gastric cancer. Cochrane Database Syst Rev, 2010(3): p. CD004064.
30. Bernards, N., et al., No improvement in median survival for patients with metastatic gastric cancer despite increased use of chemotherapy. Ann Oncol, 2013. 24(12): p. 3056-60.
31. Bang, Y.J., et al., Trastuzumab in combination with chemotherapy versus chemotherapy alone for treatment of HER2-positive advanced gastric or gastro-oesophageal junction cancer (ToGA): a phase 3, open-label, randomised controlled trial. Lancet, 2010. 376(9742): p. 687-97.
32. Van Cutsem, E., et al., HER2 screening data from ToGA: targeting HER2 in gastric and gastroesophageal junction cancer. Gastric Cancer, 2015. 18(3): p. 476-84.
33. Fuchs, C.S., et al., Ramucirumab monotherapy for previously treated advanced gastric or gastro-oesophageal junction adenocarcinoma (REGARD): an international, randomised, multicentre, placebo-controlled, phase 3 trial. Lancet, 2014. 383(9911): p. 31-39.
34. Wilke, H., et al., Ramucirumab plus paclitaxel versus placebo plus paclitaxel in patients with previously treated advanced gastric or gastro-oesophageal junction adenocarcinoma (RAINBOW): a double-blind, randomised phase 3 trial. Lancet Oncol, 2014. 15(11): p. 1224-35.
35. Gravalos, C. and A. Jimeno, HER2 in gastric cancer: a new prognostic factor and a novel therapeutic target. Ann Oncol, 2008. 19(9): p. 1523-9.
36. Ruschoff, J., et al., HER2 diagnostics in gastric cancer-guideline validation and development of standardized immunohistochemical testing. Virchows Arch, 2010. 457(3): p. 299-307.
37. Begnami, M.D., et al., Prognostic implications of altered human epidermal growth factor receptors (HERs) in gastric carcinomas: HER2 and HER3 are predictors of poor outcome. J Clin Oncol, 2011. 29(22): p. 3030-6.
38. Yoon, H.H., et al., Association of HER2/ErbB2 expression and gene amplification with pathologic features and prognosis in esophageal adenocarcinomas. Clin Cancer Res, 2012. 18(2): p. 546-54.
39. Lauren, P., The Two Histological Main Types of Gastric Carcinoma: Diffuse and So-Called Intestinal-Type Carcinoma. An Attempt at a Histo-Clinical Classification. Acta Pathol Microbiol Scand, 1965. 64: p. 31-49.
40. Bosman, F.T., World Health Organization., and International Agency for Research on Cancer., WHO classification of tumours of the digestive system. 4th ed. World Health Organization classification of tumours. 2010, Lyon: International Agency for Research on Cancer. 417 p.
41. Ferro, A., et al., Worldwide trends in gastric cancer mortality (1980-2011), with predictions to 2015, and incidence by subtype. Eur J Cancer, 2014. 50(7): p. 1330-44.
42. Siewert, J.R. and H.J. Stein, Classification of adenocarcinoma of the oesophagogastric junction. Br J Surg, 1998. 85(11): p. 1457-9.
43. Demicco, E.G., et al., The dichotomy in carcinogenesis of the distal esophagus and esophagogastric junction: intestinal-type vs cardiac-type mucosa-associated adenocarcinoma. Mod Pathol, 2011. 24(9): p. 1177-90.
44. Bertero, L., et al., Eighth Edition of the UICC Classification of Malignant Tumours: an overview of the changes in the pathological TNM classification criteria-What has changed and why? Virchows Arch, 2017.
45. Cancer Genome Atlas Research, N., Comprehensive molecular characterization of gastric adenocarcinoma. Nature, 2014. 513(7517): p. 202-9.
46. Cristescu, R., et al., Molecular analysis of gastric cancer identifies subtypes associated with distinct clinical outcomes. Nat Med, 2015. 21(5): p. 449-56.
47. Jaenisch, R. and A. Bird, Epigenetic regulation of gene expression: how the genome integrates intrinsic and environmental signals. Nat Genet, 2003. 33 Suppl: p. 245-54.
48. Mikata, R., et al., BCL2L10 is frequently silenced by promoter hypermethylation in gastric cancer. Oncol Rep, 2010. 23(6): p. 1701-8.
49. Xu, J.D., et al., BCL2L10 protein regulates apoptosis/proliferation through differential pathways in gastric cancer cells. J Pathol, 2011. 223(3): p. 400-9.
50. Flavahan, W.A., E. Gaskell, and B.E. Bernstein, Epigenetic plasticity and the hallmarks of cancer. Science, 2017. 357(6348).
51. Feinberg, A.P., M.A. Koldobskiy, and A. Gondor, Epigenetic modulators, modifiers and mediators in cancer aetiology and progression. Nat Rev Genet, 2016. 17(5): p. 284-99.
52. Kaminska, K., et al., Prognostic and Predictive Epigenetic Biomarkers in Oncology. Mol Diagn Ther, 2018.
53. Varier, R.A. and H.T. Timmers, Histone lysine methylation and demethylation pathways in cancer. Biochim Biophys Acta, 2011. 1815(1): p. 75-89.
54. Wang, L.-Y., et al., Histone Demethylases in Prostate Cancer, in Nuclear Signaling Pathways and Targeting Transcription in Cancer, Cancer Drug Discovery and Development, R.K. (ed.), Editor. 2013, Springer Science+Business Media , New York.
55. Badeaux, A.I. and Y. Shi, Emerging roles for chromatin as a signal integration and storage platform. Nat Rev Mol Cell Biol, 2013. 14(4): p. 211-24.
56. Chi, P., C.D. Allis, and G.G. Wang, Covalent histone modifications--miswritten, misinterpreted and mis-erased in human cancers. Nat Rev Cancer, 2010. 10(7): p. 457-69.
57. Rodriguez-Paredes, M. and M. Esteller, Cancer epigenetics reaches mainstream oncology. Nat Med, 2011. 17(3): p. 330-9.
58. Pedersen, M.T. and K. Helin, Histone demethylases in development and disease. Trends Cell Biol, 2010. 20(11): p. 662-71.
59. Mosammaparast, N. and Y. Shi, Reversal of histone methylation: biochemical and molecular mechanisms of histone demethylases. Annu Rev Biochem, 2010. 79: p. 155-79.
60. Zheng, Y.C., et al., Triazole-dithiocarbamate based selective lysine specific demethylase 1 (LSD1) inactivators inhibit gastric cancer cell growth, invasion, and migration. J Med Chem, 2013. 56(21): p. 8543-60.
61. Fang, R., et al., The histone demethylase lysine-specific demethylase-1-mediated epigenetic silence of KLF2 contributes to gastric cancer cell proliferation, migration, and invasion. Tumour Biol, 2017. 39(4): p. 1010428317698356.
62. Sun, X.D., et al., Identifying the novel inhibitors of lysine-specific demethylase 1 (LSD1) combining pharmacophore-based and structure-based virtual screening. J Biomol Struct Dyn, 2019. 37(16): p. 4200-4214.
63. Jia, G., et al., Capsaicin: A "hot" KDM1A/LSD1 inhibitor from peppers. Bioorg Chem, 2020. 103: p. 104161.
64. Zhao, E., et al., Inhibition of cell proliferation and induction of autophagy by KDM2B/FBXL10 knockdown in gastric cancer cells. Cell Signal, 2017. 36: p. 222-229.
65. Zeng, J., et al., The histone demethylase RBP2 Is overexpressed in gastric cancer and its inhibition triggers senescence of cancer cells. Gastroenterology, 2010. 138(3): p. 981-92.
66. Liang, X., et al., Histone demethylase RBP2 induced by Helicobactor Pylori CagA participates in the malignant transformation of gastric epithelial cells. Oncotarget, 2014. 5(14): p. 5798-807.
67. Galluzzi, L., et al., Molecular mechanisms of cisplatin resistance. Oncogene, 2012. 31(15): p. 1869-83.
68. Nakagawa, T., et al., JMJD2A sensitizes gastric cancer to chemotherapy by cooperating with CCDC8. Gastric Cancer, 2020. 23(3): p. 426-436.
69. Xu, W., et al., KDM5B demethylates H3K4 to recruit XRCC1 and promote chemoresistance. Int J Biol Sci, 2018. 14(9): p. 1122-1132.
70. Chu, C.H., et al., KDM4B as a target for prostate cancer: structural analysis and selective inhibition by a novel inhibitor. J Med Chem, 2014. 57(14): p. 5975-85.
71. Han, F., et al., JMJD2B is required for Helicobacter pylori-induced gastric carcinogenesis via regulating COX-2 expression. Oncotarget, 2016. 7(25): p. 38626-38637.
72. Wu, M.C., et al., KDM4B is a coactivator of c-Jun and involved in gastric carcinogenesis. Cell Death Dis, 2019. 10(2): p. 68.
73. Kuai, W.X., et al., Interleukin-8 associates with adhesion, migration, invasion and chemosensitivity of human gastric cancer cells. World J Gastroenterol, 2012. 18(9): p. 979-85.
74. Horton, J.R., et al., Enzymatic and structural insights for substrate specificity of a family of jumonji histone lysine demethylases. Nat Struct Mol Biol, 2010. 17(1): p. 38-43.
75. Laumonnier, F., et al., Mutations in PHF8 are associated with X linked mental retardation and cleft lip/cleft palate. J Med Genet, 2005. 42(10): p. 780-6.
76. Qi, H.H., et al., Histone H4K20/H3K9 demethylase PHF8 regulates zebrafish brain and craniofacial development. Nature, 2010. 466(7305): p. 503-7.
77. Kleine-Kohlbrecher, D., et al., A functional link between the histone demethylase PHF8 and the transcription factor ZNF711 in X-linked mental retardation. Mol Cell, 2010. 38(2): p. 165-78.
78. Abidi, F., et al., A novel mutation in the PHF8 gene is associated with X-linked mental retardation with cleft lip/cleft palate. Clin Genet, 2007. 72(1): p. 19-22.
79. Koivisto, A.M., et al., Screening of mutations in the PHF8 gene and identification of a novel mutation in a Finnish family with XLMR and cleft lip/cleft palate. Clin Genet, 2007. 72(2): p. 145-9.
80. Qiu, J., et al., The X-linked mental retardation gene PHF8 is a histone demethylase involved in neuronal differentiation. Cell Res, 2010. 20(8): p. 908-18.
81. Liu, W., et al., PHF8 mediates histone H4 lysine 20 demethylation events involved in cell cycle progression. Nature, 2010. 466(7305): p. 508-12.
82. Feng, W., et al., PHF8 activates transcription of rRNA genes through H3K4me3 binding and H3K9me1/2 demethylation. Nat Struct Mol Biol, 2010. 17(4): p. 445-50.
83. Lim, H.J., et al., The G2/M regulator histone demethylase PHF8 is targeted for degradation by the anaphase-promoting complex containing CDC20. Mol Cell Biol, 2013. 33(21): p. 4166-80.
84. Houston, S.I., et al., Catalytic function of the PR-Set7 histone H4 lysine 20 monomethyltransferase is essential for mitotic entry and genomic stability. J Biol Chem, 2008. 283(28): p. 19478-88.
85. Sun, L., et al., Cyclin E-CDK2 protein phosphorylates plant homeodomain finger protein 8 (PHF8) and regulates its function in the cell cycle. J Biol Chem, 2015. 290(7): p. 4075-85.
86. Feng, H., et al., CK2 kinase-mediated PHF8 phosphorylation controls TopBP1 stability to regulate DNA replication. Nucleic Acids Res, 2020.
87. Ma, Q., et al., The histone demethylase PHF8 promotes prostate cancer cell growth by activating the oncomiR miR-125b. Onco Targets Ther, 2015. 8: p. 1979-88.
88. Sun, X., et al., Oncogenic features of PHF8 histone demethylase in esophageal squamous cell carcinoma. PLoS One, 2013. 8(10): p. e77353.
89. Shen, Y., X. Pan, and H. Zhao, The histone demethylase PHF8 is an oncogenic protein in human non-small cell lung cancer. Biochem Biophys Res Commun, 2014. 451(1): p. 119-25.
90. Zhu, G., et al., Elevated expression of histone demethylase PHF8 associates with adverse prognosis in patients of laryngeal and hypopharyngeal squamous cell carcinoma. Epigenomics, 2015. 7(2): p. 143-53.
91. Fu, Y., et al., The histone demethylase PHF8 promotes adult acute lymphoblastic leukemia through interaction with the MEK/ERK signaling pathway. Biochem Biophys Res Commun, 2018. 496(3): p. 981-987.
92. Li, S., et al., Histone demethylase PHF8 promotes progression and metastasis of gastric cancer. Am J Cancer Res, 2017. 7(3): p. 448-461.
93. Bjorkman, M., et al., Systematic knockdown of epigenetic enzymes identifies a novel histone demethylase PHF8 overexpressed in prostate cancer with an impact on cell proliferation, migration and invasion. Oncogene, 2012. 31(29): p. 3444-56.
94. Yatim, A., et al., NOTCH1 nuclear interactome reveals key regulators of its transcriptional activity and oncogenic function. Mol Cell, 2012. 48(3): p. 445-58.
95. Asensio-Juan, E., C. Gallego, and M.A. Martinez-Balbas, The histone demethylase PHF8 is essential for cytoskeleton dynamics. Nucleic Acids Res, 2012. 40(19): p. 9429-40.
96. Takai, Y., et al., Studies on a cyclic nucleotide-independent protein kinase and its proenzyme in mammalian tissues. I. Purification and characterization of an active enzyme from bovine cerebellum. J Biol Chem, 1977. 252(21): p. 7603-9.
97. Inoue, M., et al., Studies on a cyclic nucleotide-independent protein kinase and its proenzyme in mammalian tissues. II. Proenzyme and its activation by calcium-dependent protease from rat brain. J Biol Chem, 1977. 252(21): p. 7610-6.
98. Nishizuka, Y., Intracellular signaling by hydrolysis of phospholipids and activation of protein kinase C. Science, 1992. 258(5082): p. 607-14.
99. Castagna, M., et al., Direct activation of calcium-activated, phospholipid-dependent protein kinase by tumor-promoting phorbol esters. J Biol Chem, 1982. 257(13): p. 7847-51.
100. Nishizuka, Y., Protein kinase C and lipid signaling for sustained cellular responses. FASEB J, 1995. 9(7): p. 484-96.
101. Hug, H. and T.F. Sarre, Protein kinase C isoenzymes: divergence in signal transduction? Biochem J, 1993. 291 ( Pt 2): p. 329-43.
102. Nishizuka, Y., The molecular heterogeneity of protein kinase C and its implications for cellular regulation. Nature, 1988. 334(6184): p. 661-5.
103. Isakov, N., Protein kinase C (PKC) isoforms in cancer, tumor promotion and tumor suppression. Semin Cancer Biol, 2018. 48: p. 36-52.
104. Rosse, C., et al., PKC and the control of localized signal dynamics. Nat Rev Mol Cell Biol, 2010. 11(2): p. 103-12.
105. Nishizuka, Y., The role of protein kinase C in cell surface signal transduction and tumour promotion. Nature, 1984. 308(5961): p. 693-8.
106. Ciaccio, M.F., et al., Systems analysis of EGF receptor signaling dynamics with microwestern arrays. Nat Methods, 2010. 7(2): p. 148-55.
107. Rekha, R.D., et al., Thioacetamide accelerates steatohepatitis, cirrhosis and HCC by expressing HCV core protein in transgenic zebrafish Danio rerio. Toxicology, 2008. 243(1-2): p. 11-22.
108. Letrado, P., et al., Zebrafish: Speeding Up the Cancer Drug Discovery Process. Cancer Res, 2018. 78(21): p. 6048-6058.
109. Dumitru, C.A., et al., Neutrophils Activate Tumoral CORTACTIN to Enhance Progression of Orohypopharynx Carcinoma. Front Immunol, 2013. 4: p. 33.
110. Fedchenko, N. and J. Reifenrath, Different approaches for interpretation and reporting of immunohistochemistry analysis results in the bone tissue - a review. Diagn Pathol, 2014. 9: p. 221.
111. Rhodes, D.R., et al., Oncomine 3.0: genes, pathways, and networks in a collection of 18,000 cancer gene expression profiles. Neoplasia, 2007. 9(2): p. 166-80.
112. Chen, X., et al., Variation in gene expression patterns in human gastric cancers. Mol Biol Cell, 2003. 14(8): p. 3208-15.
113. D'Errico, M., et al., Genome-wide expression profile of sporadic gastric cancers with microsatellite instability. Eur J Cancer, 2009. 45(3): p. 461-9.
114. Cui, J., et al., An integrated transcriptomic and computational analysis for biomarker identification in gastric cancer. Nucleic Acids Res, 2011. 39(4): p. 1197-207.
115. Cho, J.Y., et al., Gene expression signature-based prognostic risk score in gastric cancer. Clin Cancer Res, 2011. 17(7): p. 1850-7.
116. Szasz, A.M., et al., Cross-validation of survival associated biomarkers in gastric cancer using transcriptomic data of 1,065 patients. Oncotarget, 2016. 7(31): p. 49322-49333.
117. Motoyama, T., H. Hojo, and H. Watanabe, Comparison of seven cell lines derived from human gastric carcinomas. Acta Pathol Jpn, 1986. 36(1): p. 65-83.
118. Forbes, S.A., et al., COSMIC: High-Resolution Cancer Genetics Using the Catalogue of Somatic Mutations in Cancer. Curr Protoc Hum Genet, 2016. 91: p. 10 11 1-10 11 37.
119. Fortschegger, K. and R. Shiekhattar, Plant homeodomain fingers form a helping hand for transcription. Epigenetics, 2011. 6(1): p. 4-8.
120. Zhu, Z., et al., PHF8 is a histone H3K9me2 demethylase regulating rRNA synthesis. Cell Res, 2010. 20(7): p. 794-801.
121. Takai, Y., et al., Calcium-dependent activation of a multifunctional protein kinase by membrane phospholipids. J Biol Chem, 1979. 254(10): p. 3692-5.
122. Dillon, L.M. and T.W. Miller, Therapeutic targeting of cancers with loss of PTEN function. Curr Drug Targets, 2014. 15(1): p. 65-79.
123. Lee, M.S., et al., PI3K/AKT activation induces PTEN ubiquitination and destabilization accelerating tumourigenesis. Nat Commun, 2015. 6: p. 7769.
124. Tatin, F., et al., A signalling cascade involving PKC, Src and Cdc42 regulates podosome assembly in cultured endothelial cells in response to phorbol ester. J Cell Sci, 2006. 119(Pt 4): p. 769-81.
125. Lu, Y., et al., Src family protein-tyrosine kinases alter the function of PTEN to regulate phosphatidylinositol 3-kinase/AKT cascades. J Biol Chem, 2003. 278(41): p. 40057-66.
126. Fabbro, D., et al., PKC412--a protein kinase inhibitor with a broad therapeutic potential. Anticancer Drug Des, 2000. 15(1): p. 17-28.
127. Kasamon, Y.L., et al., FDA Approval Summary: Midostaurin for the Treatment of Advanced Systemic Mastocytosis. Oncologist, 2018.
128. Boschelli, D.H., et al., Optimization of 4-phenylamino-3-quinolinecarbonitriles as potent inhibitors of Src kinase activity. J Med Chem, 2001. 44(23): p. 3965-77.
129. Vultur, A., et al., SKI-606 (bosutinib), a novel Src kinase inhibitor, suppresses migration and invasion of human breast cancer cells. Mol Cancer Ther, 2008. 7(5): p. 1185-94.
130. Mechta-Grigoriou, F., D. Gerald, and M. Yaniv, The mammalian Jun proteins: redundancy and specificity. Oncogene, 2001. 20(19): p. 2378-89.
131. Ozanne, B.W., et al., Transcription factors control invasion: AP-1 the first among equals. Oncogene, 2007. 26(1): p. 1-10.
132. Peng, Y., et al., Direct regulation of FOXK1 by C-jun promotes proliferation, invasion and metastasis in gastric cancer cells. Cell Death Dis, 2016. 7(11): p. e2480.
133. Lin, K.Y., et al., Overexpression of protein kinase Calpha mRNA may be an independent prognostic marker for gastric carcinoma. J Surg Oncol, 2008. 97(6): p. 538-43.
134. Atten, M.J., et al., Resveratrol regulates cellular PKC alpha and delta to inhibit growth and induce apoptosis in gastric cancer cells. Invest New Drugs, 2005. 23(2): p. 111-9.
135. Huang, H., X.J. Yang, and R. Gao, Research Advances in the Mechanisms of Gastric Cancer Multidrug Resistance. Zhongguo Yi Xue Ke Xue Yuan Xue Bao, 2016. 38(6): p. 739-745.
136. Wu, Q., et al., Multi-drug resistance in cancer chemotherapeutics: mechanisms and lab approaches. Cancer Lett, 2014. 347(2): p. 159-66.
137. Han, Y., et al., Expression and function of classical protein kinase C isoenzymes in gastric cancer cell line and its drug-resistant sublines. World J Gastroenterol, 2002. 8(3): p. 441-5.
138. Shtil, A.A., et al., Differential effects of the MDR1 (multidrug resistance) gene-activating agents on protein kinase C: evidence for redundancy of mechanisms of acquired MDR in leukemia cells. Leuk Lymphoma, 2000. 40(1-2): p. 191-5.
139. Barreiro, O., et al., Endothelial tetraspanin microdomains regulate leukocyte firm adhesion during extravasation. Blood, 2005. 105(7): p. 2852-61.
140. Hubbard, A.K. and R. Rothlein, Intercellular adhesion molecule-1 (ICAM-1) expression and cell signaling cascades. Free Radic Biol Med, 2000. 28(9): p. 1379-86.
141. Maruo, Y., et al., ICAM-1 expression and the soluble ICAM-1 level for evaluating the metastatic potential of gastric cancer. Int J Cancer, 2002. 100(4): p. 486-90.
142. Bailey, M.H., et al., Comprehensive Characterization of Cancer Driver Genes and Mutations. Cell, 2018. 173(2): p. 371-385 e18.
143. Liaw, D., et al., Germline mutations of the PTEN gene in Cowden disease, an inherited breast and thyroid cancer syndrome. Nat Genet, 1997. 16(1): p. 64-7.
144. Marsh, D.J., et al., Germline mutations in PTEN are present in Bannayan-Zonana syndrome. Nat Genet, 1997. 16(4): p. 333-4.
145. Jia, F., et al., Discordance of Somatic Mutations Between Asian and Caucasian Patient Populations with Gastric Cancer. Mol Diagn Ther, 2017. 21(2): p. 179-185.
146. Yang, L., et al., PTEN encoding product: a marker for tumorigenesis and progression of gastric carcinoma. World J Gastroenterol, 2003. 9(1): p. 35-9.
147. Zhu, X., et al., Loss and reduced expression of PTEN correlate with advanced-stage gastric carcinoma. Exp Ther Med, 2013. 5(1): p. 57-64.
148. Chen, Z., et al., Crucial role of p53-dependent cellular senescence in suppression of Pten-deficient tumorigenesis. Nature, 2005. 436(7051): p. 725-30.
149. Chow, J.Y., et al., TGF-beta mediates PTEN suppression and cell motility through calcium-dependent PKC-alpha activation in pancreatic cancer cells. Am J Physiol Gastrointest Liver Physiol, 2008. 294(4): p. G899-905.
150. Yokouchi, M., et al., Src-catalyzed phosphorylation of c-Cbl leads to the interdependent ubiquitination of both proteins. J Biol Chem, 2001. 276(37): p. 35185-93.
151. Shao, C., et al., Regulation of PTEN degradation and NEDD4-1 E3 ligase activity by Numb. Cell Cycle, 2017. 16(10): p. 957-967.
152. Maddika, S., et al., WWP2 is an E3 ubiquitin ligase for PTEN. Nat Cell Biol, 2011. 13(6): p. 728-33.
153. Lee, J.T., et al., RFP-mediated ubiquitination of PTEN modulates its effect on AKT activation. Cell Res, 2013. 23(4): p. 552-64.
154. Hou, Y.C. and J.Y. Deng, Role of E3 ubiquitin ligases in gastric cancer. World J Gastroenterol, 2015. 21(3): p. 786-93.
155. Bang, Y.J., et al., Adjuvant capecitabine and oxaliplatin for gastric cancer after D2 gastrectomy (CLASSIC): a phase 3 open-label, randomised controlled trial. Lancet, 2012. 379(9813): p. 315-21.
156. Quadri, H.S., et al., Gastric Adenocarcinoma: A Multimodal Approach. Front Surg, 2017. 4: p. 42.
157. Huang, S.C., et al., HER2 testing in paired biopsy and excision specimens of gastric cancer: the reliability of the scoring system and the clinicopathological factors relevant to discordance. Gastric Cancer, 2016. 19(1): p. 176-82.
158. Huang, D., et al., [HER2 status in gastric adenocarcinoma of Chinese: a multicenter study of 40 842 patients]. Zhonghua Bing Li Xue Za Zhi, 2018. 47(11): p. 822-826.
159. Isfort, S. and T.H. Brummendorf, Bosutinib in chronic myeloid leukemia: patient selection and perspectives. J Blood Med, 2018. 9: p. 43-50.
160. Biomarkers Definitions Working, G., Biomarkers and surrogate endpoints: preferred definitions and conceptual framework. Clin Pharmacol Ther, 2001. 69(3): p. 89-95.
161. Waddell, T., et al., Gastric cancer: ESMO-ESSO-ESTRO clinical practice guidelines for diagnosis, treatment and follow-up. Eur J Surg Oncol, 2014. 40(5): p. 584-591.

 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *