|
1. Braun, T. and M. Gautel, Transcriptional mechanisms regulating skeletal muscle differentiation, growth and homeostasis. Nat Rev Mol Cell Biol, 2011. 12(6): p. 349-61. 2. Penn, B.H., et al., A MyoD-generated feed-forward circuit temporally patterns gene expression during skeletal muscle differentiation. Genes Dev, 2004. 18(19): p. 2348-53. 3. Mal, A., et al., A role for histone deacetylase HDAC1 in modulating the transcriptional activity of MyoD: inhibition of the myogenic program. 2001. 20(7): p. 1739-1753. 4. Neuhold, L.A. and B.J.C. Wold, HLH forced dimers: tethering MyoD to E47 generates a dominant positive myogenic factor insulated from negative regulation by Id. 1993. 74(6): p. 1033-1042. 5. Spicer, D.B., et al., Inhibition of myogenic bHLH and MEF2 transcription factors by the bHLH protein Twist. 1996. 272(5267): p. 1476-1480. 6. Wei, Q. and B.M.J.F.l. Paterson, Regulation of MyoD function in the dividing myoblast. 2001. 490(3): p. 171-178. 7. Halevy, O., et al., Correlation of terminal cell cycle arrest of skeletal muscle with induction of p21 by MyoD. 1995. 267(5200): p. 1018-1021. 8. Martelli, F., et al., MyoD induces retinoblastoma gene expression during myogenic. 1994. 9: p. 3579-3590. 9. Guo, C.S., et al., Regulation of MyoD activity and muscle cell differentiation by MDM2, pRb, and Sp1. J Biol Chem, 2003. 278(25): p. 22615-22. 10. Molkentin, J.D., et al., Cooperative activation of muscle gene expression by MEF2 and myogenic bHLH proteins. 1995. 83(7): p. 1125-1136. 11. Edmondson, D.G., et al., Analysis of the myogenin promoter reveals an indirect pathway for positive autoregulation mediated by the muscle-specific enhancer factor MEF-2. 1992. 12(9): p. 3665-3677. 12. Hsiao, S.P. and S.L. Chen, Myogenic regulatory factors regulate M-cadherin expression by targeting its proximal promoter elements. Biochem J, 2010. 428(2): p. 223-33. 13. Thompson, W.R., B. Nadal-Ginard, and V.J.J.o.B.C. Mahdavi, A MyoD1-independent muscle-specific enhancer controls the expression of the beta-myosin heavy chain gene in skeletal and cardiac muscle cells. 1991. 266(33): p. 22678-22688. 14. Weintraub, H., et al., MyoD binds cooperatively to two sites in a target enhancer sequence: occupancy of two sites is required for activation. 1990. 87(15): p. 5623-5627. 15. Konermann, A., et al., Autoregulation of insulin-like growth factor 2 and insulin-like growth factor-binding protein 6 in periodontal ligament cells in vitro. Annals of Anatomy - Anatomischer Anzeiger, 2013. 195(6): p. 527-532. 16. Halevy, O. and L.C. Cantley, Differential regulation of the phosphoinositide 3-kinase and MAP kinase pathways by hepatocyte growth factor vs. insulin-like growth factor-I in myogenic cells. Exp Cell Res, 2004. 297(1): p. 224-34. 17. Porras, A., et al., p42/p44 mitogen-activated protein kinases activation is required for the insulin-like growth factor-I/insulin induced proliferation, but inhibits differentiation, in rat fetal brown adipocytes. 1998. 12(6): p. 825-834. 18. Chakravarthy, M.V., et al., Insulin-like growth factor-I extends in vitro replicative life span of skeletal muscle satellite cells by enhancing G1/S cell cycle progression via the activation of phosphatidylinositol 3'-kinase/Akt signaling pathway. J Biol Chem, 2000. 275(46): p. 35942-52. 19. Rommel, C., et al., Mediation of IGF-1-induced skeletal myotube hypertrophy by PI (3) K/Akt/mTOR and PI (3) K/Akt/GSK3 pathways. 2001. 3(11): p. 1009. 20. Hara, K., et al., Amino acid sufficiency and mTOR regulate p70 S6 kinase and eIF-4E BP1 through a common effector mechanism. 1998. 273(23): p. 14484-14494. 21. Vyas, D.R., et al., GSK-3β negatively regulates skeletal myotube hypertrophy. 2002. 283(2): p. C545-C551. 22. Otto, A. and K. Patel, Signalling and the control of skeletal muscle size. Exp Cell Res, 2010. 316(18): p. 3059-66. 23. Rochat, A., et al., Insulin and wnt1 pathways cooperate to induce reserve cell activation in differentiation and myotube hypertrophy. Mol Biol Cell, 2004. 15(10): p. 4544-55. 24. Wilker, E.W., et al., A structural basis for 14-3-3sigma functional specificity. J Biol Chem, 2005. 280(19): p. 18891-8. 25. Celis, J.E., et al., Comprehensive two‐dimensional gel protein databases offer a global approach to the analysis of human cells: The transformed amnion cells (AMA) master database and its link to genome DNA sequence data. 1990. 11(12): p. 989-1071. 26. Fanger, G.R., et al., 14-3-3 proteins interact with specific MEK kinases. 1998. 273(6): p. 3476-3483. 27. Freed, E., et al., Binding of 14-3-3 proteins to the protein kinase Raf and effects on its activation. 1994. 265(5179): p. 1713-1716. 28. Garcia-Guzman, M., et al., Cell adhesion regulates the interaction between the docking protein p130Cas and the 14-3-3 proteins. 1999. 274(9): p. 5762-5768. 29. Leffers, H., et al., Molecular cloning and expression of the transformation sensitive epithelial marker stratifin: a member of a protein family that has been involved in the protein kinase C signalling pathway. 1993. 231(4): p. 982-998. 30. Tang, S.J., et al., Association of the TLX-2 homeodomain and 14-3-3η signaling proteins. 1998. 273(39): p. 25356-25363. 31. TOKER, A., et al., Protein kinase C inhibitor proteins: Purification from sheep brain and sequence similarity to lipocortins and 14‐3‐3 protein. 1990. 191(2): p. 421-429. 32. Morgan, A. and R.D.J.N. Burgoyne, Exol and Exo2 proteins stimulate calcium-dependent exocytosis in permeabilized adrenal chromaff in cells. 1992. 355(6363): p. 833. 33. Fu, H., J. Coburn, and R.J.J.P.o.t.N.A.o.S. Collier, The eukaryotic host factor that activates exoenzyme S of Pseudomonas aeruginosa is a member of the 14-3-3 protein family. 1993. 90(6): p. 2320-2324. 34. Campbell, J.K., et al., Activation of the 43 kDa inositol polyphosphate 5-phosphatase by 14-3-3ζ. 1997. 36(49): p. 15363-15370. 35. Gelperin, D., et al., 14-3-3 proteins: potential roles in vesicular transport and Ras signaling in Saccharomyces cerevisiae. 1995. 92(25): p. 11539-11543. 36. Kuwana, T., P.A. Peterson, and L.J.P.o.t.N.A.o.S. Karlsson, Exit of major histocompatibility complex class II–invariant chain p35 complexes from the endoplasmic reticulum is modulated by phosphorylation. 1998. 95(3): p. 1056-1061. 37. Bertram, P.G., et al., The 14-3-3 proteins positively regulate rapamycin-sensitive signaling. 1998. 8(23): p. 1259-S1. 38. Rosiak, J. and J.B. Zawilska, [14-3-3 proteins--a role in the regulation of melatonin biosynthesis]. (0032-5422 (Print)). 39. Hsu, S.Y., et al., Interference of BAD (Bcl-xL/Bcl-2-associated death promoter)-induced apoptosis in mammalian cells by 14-3-3 isoforms and P11. (0888-8809 (Print)). 40. Braselmann, S. and F.J.T.E.J. McCormick, Bcr and Raf form a complex in vivo via 14‐3‐3 proteins. 1995. 14(19): p. 4839-4848. 41. Fu, H., R.R. Subramanian, and S.C. Masters, 14-3-3 Proteins: Structure, Function, and Regulation. Annual Review of Pharmacology and Toxicology, 2000. 40(1): p. 617-647. 42. Wan, P.T.C., et al., Mechanism of Activation of the RAF-ERK Signaling Pathway by Oncogenic Mutations of B-RAF. Cell, 2004. 116(6): p. 855-867. 43. Wellbrock, C., M. Karasarides, and R. Marais, The RAF proteins take centre stage. Nature Reviews Molecular Cell Biology, 2004. 5: p. 875. 44. Porter, G.W., F.R. Khuri, and H. Fu, Dynamic 14-3-3/client protein interactions integrate survival and apoptotic pathways. Seminars in Cancer Biology, 2006. 16(3): p. 193-202. 45. Cai, S.-L., et al., Activity of TSC2 is inhibited by AKT-mediated phosphorylation and membrane partitioning. 2006. 173(2): p. 279-289. 46. DeYoung, M.P., et al., Hypoxia regulates TSC1/2-mTOR signaling and tumor suppression through REDD1-mediated 14-3-3 shuttling. Genes Dev, 2008. 22(2): p. 239-51. 47. Gwinn, D.M., et al., AMPK Phosphorylation of Raptor Mediates a Metabolic Checkpoint. Molecular Cell, 2008. 30(2): p. 214-226. 48. Wilker, E.W., et al., 14-3-3σ controls mitotic translation to facilitate cytokinesis. Nature, 2007. 446: p. 329. 49. Sabatini, D.D., et al., Mechanism of formation of post Golgi vesicles from TGN membranes: Arf-dependent coat assembly and PKC-regulated vesicle scission. Biocell : official journal of the Sociedades Latinoamericanas de Microscopia Electronica ... et. al, 1996. 20(3): p. 287-300. 50. Li, F.-Q., et al., Chibby cooperates with 14-3-3 to regulate β-catenin subcellular distribution and signaling activity. 2008. 181(7): p. 1141-1154. 51. Niemantsverdriet, M., et al., Cellular functions of 14-3-3ζ in apoptosis and cell adhesion emphasize its oncogenic character. Oncogene, 2007. 27: p. 1315. 52. McKinsey, T.A., C.L. Zhang, and E.N.J.P.o.t.N.A.o.S. Olson, Activation of the myocyte enhancer factor-2 transcription factor by calcium/calmodulin-dependent protein kinase-stimulated binding of 14-3-3 to histone deacetylase 5. 2000. 97(26): p. 14400-14405. 53. Strochlic, L., et al., 14-3-3 gamma associates with muscle specific kinase and regulates synaptic gene transcription at vertebrate neuromuscular synapse. (0027-8424 (Print)). 54. Choi, S.-J., S.-Y. Park, and T.-H.J.N.a.r. Han, 14-3-3τ associates with and activates the MEF2D transcription factor during muscle cell differentiation. 2001. 29(13): p. 2836-2842. 55. Yaffe, D. and O.R.A. Saxel, Serial passaging and differentiation of myogenic cells isolated from dystrophic mouse muscle. Nature, 1977. 270: p. 725. 56. Dowling, J.J., et al., Kindlin-2 is required for myocyte elongation and is essential for myogenesis. BMC Cell Biology, 2008. 9(1): p. 36. 57. Miyazaki, M., J.J. McCarthy, and K.A. Esser, IGF-1-induced phosphorylation and altered distribution of TSC1/TSC2 in C2C12 myotubes. The FEBS journal, 2010. 277(9): p. 2180-2191. |