帳號:guest(18.222.9.171)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):吳念澄
作者(外文):Wu, Nian-Cheng
論文名稱(中文):14-3-3 β、ε及γ異構體調節肌肉分化
論文名稱(外文):14-3-3 β, ε, and γ isoforms regulate myogenesis
指導教授(中文):陳令儀
指導教授(外文):Chen, Lin-Yi
口試委員(中文):陳冠維
張育蓉
口試委員(外文):Chen, Kuan-Wei
Chang, Yu-Jung
學位類別:碩士
校院名稱:國立清華大學
系所名稱:分子醫學研究所
學號:103080507
出版年(民國):107
畢業學年度:107
語文別:中文
論文頁數:32
中文關鍵詞:C2C12細胞株肌肉分化14-3-3異構體
外文關鍵詞:C2C12myogenesis14-3-3 isoform
相關次數:
  • 推薦推薦:0
  • 點閱點閱:24
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
14-3-3蛋白目前被證實參與許多生理功能,如細胞存活、細胞凋亡間的訊號平衡、細胞分化,及腫瘤生成。做為一個橋接蛋白,14-3-3也參與許多訊號傳遞,包含phosphoinositide(PI3K)/protein kinase B (PKB/Akt)、mitogen-activated protein kinase (MAPK)…等。14-3-3在許多組織均有表現,但是在肌肉中存在何種異構體(isoform)目前還沒有明確的研究結果。在接收到分化的訊號後,肌纖維母細胞(myoblast)會終止細胞週期並活化肌肉特化基因,而在肌肉分化的過程中,肌纖維母細胞會移動並與相鄰的細胞發生融合的現象,形成多核的肌小管(myotube)。C2C12細胞是一種用來研究肌肉分化非常好的模式材料,因為可以藉由在低血清的環境下,誘發它們形成肌小管。在這篇研究中,我們經由即時定量聚合酶連鎖反應(qPCR)發現肌肉細胞中存在四種異構體,beta、epsilon、gamma、theta且他們在肌肉分化過程的基因表現各有趨勢上的不同,其中14-3-3 beta、epsilon、gamma在分化後是有表現量上升的現象,theta則是下降。而在過量表現14-3-3 epsilon下,可以發現肌肉分化的指標- Myosin heavy chain(MyHC) 上升,並且過量表現beta、epsilon異構體也會促進肌小管形成。最後,14-3-3 epsilon與gamma的基因敲落(knockdown)也會使得肌小管的形成能力下降。因此我們認為14-3-3 beta、epsilon、gamma對於肌肉分化扮演正向調控的角色。
14-3-3 participates in regulating many cellular functions including signaling between cell survival and apoptosis, cell differentiation, and tumor progression. As an adaptor protein, 14-3-3 involved in many signaling pathways, such as phosphoinositide-3-kinase (PI3K)/protein kinase B (PKB/AKT) pathway and mitogen-activated protein kinase (MAPK) pathway. Although 14-3-3 is found in many tissues, the main isoform in muscle remains unknown. Myogenesis is the process that myoblasts exit cell cycle, activate muscle-related genes, and finally fuse with other myoblasts to form multi-nucleated myotubes. C2C12 cells are a well-established model system for myogenesis based on their ability to differentiate into myotubes in a low-serum condition. In this study, we determined the expression profiles of different isoforms of 14-3-3 using semi-quantitative real-time polymerase chain reaction (qPCR). Our results showed that 14-3-3 beta, epsilon, gamma, and theta expressed differently during muscle differentiation. Beta, epsilon, gamma are up-regulated, and theta is down-regulated. Overexpression of 14-3-3 epsilon up-regulated the myogenesis-determining gene --- myosin heavy chain (MyHC), and overexpression of 14-3-3 beta and 14-3-3 epsilon promotes myotube formation. Knockdown of 14-3-3 epsilon and gamma also limited the formation of myotube. These data suggest that 14-3-3 beta, epsilon, and gamma promote myogenesis.
中文摘要 I
英文摘要 II
致謝 III
目錄 VI
引言 1
肌肉分化 1
14-3-3 蛋白 3
實驗材料與方法 7
試劑 7
細胞培養 7
質體與轉染 8
半定量之即時定量聚合酶連鎖反應(qPCR) 8
西方點墨法 8
免疫螢光染色及fusion index 9
由RNA interference進行14-3-3異構體之基因敲落 9
統計分析 9
結果 10
14-3-3的各個異構體在肌肉分化過程中表現量有所差異 10
過量表現組織特定的14-3-3異構體對肌細胞分化的影響 11
抑制組織特定14-3-3異構體的基因表現影響肌細胞分化的情形 11
討論 14
圖 16
圖一、14-3-3的各個異構體在肌肉分化過程中基因表現量的變化 16
圖二、14-3-3異構體的總蛋白質含量在分化過程中沒有顯著差異 17
圖三、過量表現組織特定的14-3-3異構體影響肌肉分化的情形 18
圖四、過量表現組織特定的14-3-3異構體影響肌小管的形成能力 22
圖五、抑制特定14-3-3異構體的基因表現影響肌細胞分化的情形 26
表格 27
表1. qPCR及RT-PCR使用的引子序列 27
表2. 抗體的稀釋倍數及其應用 28
參考文獻 29
1. Braun, T. and M. Gautel, Transcriptional mechanisms regulating skeletal muscle differentiation, growth and homeostasis. Nat Rev Mol Cell Biol, 2011. 12(6): p. 349-61.
2. Penn, B.H., et al., A MyoD-generated feed-forward circuit temporally patterns gene expression during skeletal muscle differentiation. Genes Dev, 2004. 18(19): p. 2348-53.
3. Mal, A., et al., A role for histone deacetylase HDAC1 in modulating the transcriptional activity of MyoD: inhibition of the myogenic program. 2001. 20(7): p. 1739-1753.
4. Neuhold, L.A. and B.J.C. Wold, HLH forced dimers: tethering MyoD to E47 generates a dominant positive myogenic factor insulated from negative regulation by Id. 1993. 74(6): p. 1033-1042.
5. Spicer, D.B., et al., Inhibition of myogenic bHLH and MEF2 transcription factors by the bHLH protein Twist. 1996. 272(5267): p. 1476-1480.
6. Wei, Q. and B.M.J.F.l. Paterson, Regulation of MyoD function in the dividing myoblast. 2001. 490(3): p. 171-178.
7. Halevy, O., et al., Correlation of terminal cell cycle arrest of skeletal muscle with induction of p21 by MyoD. 1995. 267(5200): p. 1018-1021.
8. Martelli, F., et al., MyoD induces retinoblastoma gene expression during myogenic. 1994. 9: p. 3579-3590.
9. Guo, C.S., et al., Regulation of MyoD activity and muscle cell differentiation by MDM2, pRb, and Sp1. J Biol Chem, 2003. 278(25): p. 22615-22.
10. Molkentin, J.D., et al., Cooperative activation of muscle gene expression by MEF2 and myogenic bHLH proteins. 1995. 83(7): p. 1125-1136.
11. Edmondson, D.G., et al., Analysis of the myogenin promoter reveals an indirect pathway for positive autoregulation mediated by the muscle-specific enhancer factor MEF-2. 1992. 12(9): p. 3665-3677.
12. Hsiao, S.P. and S.L. Chen, Myogenic regulatory factors regulate M-cadherin expression by targeting its proximal promoter elements. Biochem J, 2010. 428(2): p. 223-33.
13. Thompson, W.R., B. Nadal-Ginard, and V.J.J.o.B.C. Mahdavi, A MyoD1-independent muscle-specific enhancer controls the expression of the beta-myosin heavy chain gene in skeletal and cardiac muscle cells. 1991. 266(33): p. 22678-22688.
14. Weintraub, H., et al., MyoD binds cooperatively to two sites in a target enhancer sequence: occupancy of two sites is required for activation. 1990. 87(15): p. 5623-5627.
15. Konermann, A., et al., Autoregulation of insulin-like growth factor 2 and insulin-like growth factor-binding protein 6 in periodontal ligament cells in vitro. Annals of Anatomy - Anatomischer Anzeiger, 2013. 195(6): p. 527-532.
16. Halevy, O. and L.C. Cantley, Differential regulation of the phosphoinositide 3-kinase and MAP kinase pathways by hepatocyte growth factor vs. insulin-like growth factor-I in myogenic cells. Exp Cell Res, 2004. 297(1): p. 224-34.
17. Porras, A., et al., p42/p44 mitogen-activated protein kinases activation is required for the insulin-like growth factor-I/insulin induced proliferation, but inhibits differentiation, in rat fetal brown adipocytes. 1998. 12(6): p. 825-834.
18. Chakravarthy, M.V., et al., Insulin-like growth factor-I extends in vitro replicative life span of skeletal muscle satellite cells by enhancing G1/S cell cycle progression via the activation of phosphatidylinositol 3'-kinase/Akt signaling pathway. J Biol Chem, 2000. 275(46): p. 35942-52.
19. Rommel, C., et al., Mediation of IGF-1-induced skeletal myotube hypertrophy by PI (3) K/Akt/mTOR and PI (3) K/Akt/GSK3 pathways. 2001. 3(11): p. 1009.
20. Hara, K., et al., Amino acid sufficiency and mTOR regulate p70 S6 kinase and eIF-4E BP1 through a common effector mechanism. 1998. 273(23): p. 14484-14494.
21. Vyas, D.R., et al., GSK-3β negatively regulates skeletal myotube hypertrophy. 2002. 283(2): p. C545-C551.
22. Otto, A. and K. Patel, Signalling and the control of skeletal muscle size. Exp Cell Res, 2010. 316(18): p. 3059-66.
23. Rochat, A., et al., Insulin and wnt1 pathways cooperate to induce reserve cell activation in differentiation and myotube hypertrophy. Mol Biol Cell, 2004. 15(10): p. 4544-55.
24. Wilker, E.W., et al., A structural basis for 14-3-3sigma functional specificity. J Biol Chem, 2005. 280(19): p. 18891-8.
25. Celis, J.E., et al., Comprehensive two‐dimensional gel protein databases offer a global approach to the analysis of human cells: The transformed amnion cells (AMA) master database and its link to genome DNA sequence data. 1990. 11(12): p. 989-1071.
26. Fanger, G.R., et al., 14-3-3 proteins interact with specific MEK kinases. 1998. 273(6): p. 3476-3483.
27. Freed, E., et al., Binding of 14-3-3 proteins to the protein kinase Raf and effects on its activation. 1994. 265(5179): p. 1713-1716.
28. Garcia-Guzman, M., et al., Cell adhesion regulates the interaction between the docking protein p130Cas and the 14-3-3 proteins. 1999. 274(9): p. 5762-5768.
29. Leffers, H., et al., Molecular cloning and expression of the transformation sensitive epithelial marker stratifin: a member of a protein family that has been involved in the protein kinase C signalling pathway. 1993. 231(4): p. 982-998.
30. Tang, S.J., et al., Association of the TLX-2 homeodomain and 14-3-3η signaling proteins. 1998. 273(39): p. 25356-25363.
31. TOKER, A., et al., Protein kinase C inhibitor proteins: Purification from sheep brain and sequence similarity to lipocortins and 14‐3‐3 protein. 1990. 191(2): p. 421-429.
32. Morgan, A. and R.D.J.N. Burgoyne, Exol and Exo2 proteins stimulate calcium-dependent exocytosis in permeabilized adrenal chromaff in cells. 1992. 355(6363): p. 833.
33. Fu, H., J. Coburn, and R.J.J.P.o.t.N.A.o.S. Collier, The eukaryotic host factor that activates exoenzyme S of Pseudomonas aeruginosa is a member of the 14-3-3 protein family. 1993. 90(6): p. 2320-2324.
34. Campbell, J.K., et al., Activation of the 43 kDa inositol polyphosphate 5-phosphatase by 14-3-3ζ. 1997. 36(49): p. 15363-15370.
35. Gelperin, D., et al., 14-3-3 proteins: potential roles in vesicular transport and Ras signaling in Saccharomyces cerevisiae. 1995. 92(25): p. 11539-11543.
36. Kuwana, T., P.A. Peterson, and L.J.P.o.t.N.A.o.S. Karlsson, Exit of major histocompatibility complex class II–invariant chain p35 complexes from the endoplasmic reticulum is modulated by phosphorylation. 1998. 95(3): p. 1056-1061.
37. Bertram, P.G., et al., The 14-3-3 proteins positively regulate rapamycin-sensitive signaling. 1998. 8(23): p. 1259-S1.
38. Rosiak, J. and J.B. Zawilska, [14-3-3 proteins--a role in the regulation of melatonin biosynthesis]. (0032-5422 (Print)).
39. Hsu, S.Y., et al., Interference of BAD (Bcl-xL/Bcl-2-associated death promoter)-induced apoptosis in mammalian cells by 14-3-3 isoforms and P11. (0888-8809 (Print)).
40. Braselmann, S. and F.J.T.E.J. McCormick, Bcr and Raf form a complex in vivo via 14‐3‐3 proteins. 1995. 14(19): p. 4839-4848.
41. Fu, H., R.R. Subramanian, and S.C. Masters, 14-3-3 Proteins: Structure, Function, and Regulation. Annual Review of Pharmacology and Toxicology, 2000. 40(1): p. 617-647.
42. Wan, P.T.C., et al., Mechanism of Activation of the RAF-ERK Signaling Pathway by Oncogenic Mutations of B-RAF. Cell, 2004. 116(6): p. 855-867.
43. Wellbrock, C., M. Karasarides, and R. Marais, The RAF proteins take centre stage. Nature Reviews Molecular Cell Biology, 2004. 5: p. 875.
44. Porter, G.W., F.R. Khuri, and H. Fu, Dynamic 14-3-3/client protein interactions integrate survival and apoptotic pathways. Seminars in Cancer Biology, 2006. 16(3): p. 193-202.
45. Cai, S.-L., et al., Activity of TSC2 is inhibited by AKT-mediated phosphorylation and membrane partitioning. 2006. 173(2): p. 279-289.
46. DeYoung, M.P., et al., Hypoxia regulates TSC1/2-mTOR signaling and tumor suppression through REDD1-mediated 14-3-3 shuttling. Genes Dev, 2008. 22(2): p. 239-51.
47. Gwinn, D.M., et al., AMPK Phosphorylation of Raptor Mediates a Metabolic Checkpoint. Molecular Cell, 2008. 30(2): p. 214-226.
48. Wilker, E.W., et al., 14-3-3σ controls mitotic translation to facilitate cytokinesis. Nature, 2007. 446: p. 329.
49. Sabatini, D.D., et al., Mechanism of formation of post Golgi vesicles from TGN membranes: Arf-dependent coat assembly and PKC-regulated vesicle scission. Biocell : official journal of the Sociedades Latinoamericanas de Microscopia Electronica ... et. al, 1996. 20(3): p. 287-300.
50. Li, F.-Q., et al., Chibby cooperates with 14-3-3 to regulate β-catenin subcellular distribution and signaling activity. 2008. 181(7): p. 1141-1154.
51. Niemantsverdriet, M., et al., Cellular functions of 14-3-3ζ in apoptosis and cell adhesion emphasize its oncogenic character. Oncogene, 2007. 27: p. 1315.
52. McKinsey, T.A., C.L. Zhang, and E.N.J.P.o.t.N.A.o.S. Olson, Activation of the myocyte enhancer factor-2 transcription factor by calcium/calmodulin-dependent protein kinase-stimulated binding of 14-3-3 to histone deacetylase 5. 2000. 97(26): p. 14400-14405.
53. Strochlic, L., et al., 14-3-3 gamma associates with muscle specific kinase and regulates synaptic gene transcription at vertebrate neuromuscular synapse. (0027-8424 (Print)).
54. Choi, S.-J., S.-Y. Park, and T.-H.J.N.a.r. Han, 14-3-3τ associates with and activates the MEF2D transcription factor during muscle cell differentiation. 2001. 29(13): p. 2836-2842.
55. Yaffe, D. and O.R.A. Saxel, Serial passaging and differentiation of myogenic cells isolated from dystrophic mouse muscle. Nature, 1977. 270: p. 725.
56. Dowling, J.J., et al., Kindlin-2 is required for myocyte elongation and is essential for myogenesis. BMC Cell Biology, 2008. 9(1): p. 36.
57. Miyazaki, M., J.J. McCarthy, and K.A. Esser, IGF-1-induced phosphorylation and altered distribution of TSC1/TSC2 in C2C12 myotubes. The FEBS journal, 2010. 277(9): p. 2180-2191.
(此全文未開放授權)
電子全文
中英文摘要
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *