帳號:guest(18.225.175.152)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):吳訓忠
作者(外文):Wu, Hsun-Chung
論文名稱(中文):量測量子壓縮態的平衡式零差偵測器
論文名稱(外文):Balanced Homodyne Detectors for Quantum Squeezed States
指導教授(中文):李瑞光
指導教授(外文):Lee, Ray-Kuang
口試委員(中文):賴暎杰
施宙聰
項維巍
褚志崧
口試委員(外文):Lai, Yin-Chieh
Shy, Jow-Tsong
Hsiang, Wei-Wei
Chuu, Chih-Sung
學位類別:碩士
校院名稱:國立清華大學
系所名稱:光電工程研究所
學號:103066703
出版年(民國):106
畢業學年度:105
語文別:英文
論文頁數:38
中文關鍵詞:光的壓縮態平衡式零差量子效率共模拒斥比
外文關鍵詞:Quantum Squeezed StateBalanced HomodyneyQuantum efficiencyCMRR
相關次數:
  • 推薦推薦:0
  • 點閱點閱:567
  • 評分評分:*****
  • 下載下載:0
  • 收藏收藏:0
平衡式零差偵測器是由兩個規格相同的光電二極體加上電流放大器及電壓放大器所組成的光子偵測裝置.當兩道頻率相同且強度相等的光照射在這兩個光電二極體時,由於它們在電路上的組態,所產生的光電流會互相抵消,電路裡的熱雜訊也會一同消失,最後只剩下散粒雜訊,這就是所謂的真空態.
評量平衡式零差偵測器的好壞,有兩個指標:第一個指標是光電二極體的量子效率,就是光轉換成電流的能力.另一個是共模拒斥比(CMRR),這是雜訊能被消除多少程度的指標.
這篇論文裡的內容,主要是借由量測兩種不同規格的光電二極體的量子效率與整體電路的CMRR值,再進一步地探討如何使這兩項指標能夠被實現最佳化的量測方式與實驗技術.這些最佳化的結果將有助於光壓縮態的偵測.
Balanced Homodyne Detector is a device which made of two identical photodiodes and Op.amplifiers.As two identical laser light (frequency and intensity) incident into the photodiodes, due to the circuit arrangement, the photocurrent from the two photodiodes would be canceled out.Even thermal noise also, and only shot noise (vacuum state) leaves.
Two indexes could evaluate the performance of Balanced Homodyne Detector: one is quantum efficiency of the photodiode, that indicates the ability of converting light energy into electrical current. The other one is CMRR (Common Mode Reject Ratio),that tells the efficiency of cancelling noise.
The main job of this thesis is to investigate the two indexes by comparing two different kind of photodiodes and circuits,and developing a electrical measuremental method for promoting the performance of the indexes.Based on the above, the measurement of the squeezed states of light may be achieved.
1. Introduction
1.1 The main goal of this thesis ...............................................2
1.2 The structure of this thesis ...............................................3
2. Theory background
2.1 What is the balanced homodyne detector ........................4
2.2 How does the BHD work ...................................................5
2.3 The concept of squeezed light .........................................9
3. Experimental setup
3.1 Electrical circuit and layout ...............................................15
3.2 The linear response of the photodiodes ...........................20
4. Summary and Future work
4.1 Quantum Efficiency ...........................................................23
4.2 CMRR ................................................................................26
4.3 Application ........................................................................29
4.3 Future work .......................................................................30
Appendix .................................................................................32 References...............................................................................36
[1] M. Mehmet, S. Ast, T. Eberle, S. Steinlechner, H. Vahlbruch, and R. Schnabel. Squeezed light at 1550nm with a quantum noise reduction of 12.3dB. Opt. Exp., 19:25763, 2011.

[2] X.Jin et al. Balanced homodyne detection with high common mode rejection ratio based on parameter compensation of two arbitrary photodiodes. Optics Express. Vol.23, No.18. 2015.

[3] M. Fox “Quantum Optics “ : An Introduction.2006.

[4] H.A. Bachor and T. C. Ralph “A Guide to Experiments in Quantum Optics”. Second, Revised and Enlarged Edition.2004

[5] P.Horowitz and W. Hill. “The art of electronics”. Third edition.2015.

[6] P.D. Drummond and Z. Ficek (eds.). “Quantum Squeezing”. 2004.

[7] D.F. Walls and Gerard J. Milburn. “Quantum Optics”. 2nd edition.2008

[8] G.G.Zheng,D.P.Dai et al.“Balanced Homodyne Detector Based on Two-Stage Amplification”. Laser & Optoelectronics Progress. 51, 2014.

[9] M.S. Stefszky. “Generation and Detection of Low-Frequency Squeezing for Gravitational- Wave Detection” PhD thesis. April 2012.

[10] B. P. Abbott et al. (LIGO Scientific Collaboration and Virgo Collaboration) Phys. Rev. Lett. 116, 241103 – Published 15 June 2016

[11] L.-A. Wu, H. J. Kimble, J. L. Hall, and H. Wu. Generation of squeezed states by parametric down conversion. Phys. Rev. Lett., 57:2520, 1986.

[12]Z. Y. Ou, S. F. Pereira, H. J. Kimble, and K. C. Peng. Realization of the einstein- podolsky- rosen paradox for continuous variables. Phys. Rev. Letts., 68:3663, 1992.

[13]E. S. Polzik, J. Carri, and H. J. Kimble. Atomic spectroscopy with squeezed light for sensitivity beyond the vacuum-state limit. Appl. Phys. B, 55:279, 1992.

[14]K. Schneider, R. Bruckmeier, H. Hansen, S. Schiller, and J. Mlynek. Bright squeezed-light generation by a continuous-wave semimonolithic parametric ampli- fier. Opt. Lett., 21:1396, 1996.

[15]K. Schneider, M. Lang, J. Mlynek, and S. Schiller. Generation of strongly squeezed continuous-wave light at 1064 nm. Opt. Ex., 2:59, 1998.

[16]P. K. Lam, T. C. Ralph, B. C. Buchler, D. E. McClelland, H.-A. Bachor, and J. Gao. Optimization and transfer of vacuum squeezing from an optical parametric oscillator. J. Opt. B, 1:469, 1999.

[17]W. P. Bowen, R. Schnabel, N. Treps, H-A. Bachor, and P. K. Lam. Recovery of continuous wave squeezing at low frequencies. J. Opt. B: Quantum Semiclass. Opt., 4:421, 2002.

[18]K. McKenzie, N. Grosse, W. P. Bowen, S. E. Whitcomb, M. B. Gray, D. E. Mc- Clelland, and P. K. Lam. Squeezing in the audio gravitational-wave detection band. Phys. Rev. Lett., 93:161105, 2004.

[19]S. Suzuki, H. Yonezawa, F. Kannari, M. Sasaki, and A. Furusawa. 7db quadrature squeezing at 860 nm with periodically poled KTiOPO4. Appl. Phys. Lett., 89:061116, 2006.

[20]K. Goda. Development of Techniques for Quantum-Enhanced Laser-Interferometric Gravitational-Wave Detectors. PhD thesis, Massachusetts Institute of Technology, Cambridge, 2007.

[21]Y. Takeno, M. Yukawa, H. Yonezawa, and A. Furusawa. Observation of -9 db quadra- ture squeezing with improvement of phase stability in homodyne measurement. Opt. Exp., 15:4321, 2007.

[22] H. Vahlbruch, S. Chelkowski M. Mehmet, B. Hage, A. Franzn, N. Lastzka, S. Goßler, K. Danzmann, and R. Schnabel. Observation of squeezed light with 10-dB quantum- noise reduction. Phsy. Rev. Lett., 100:033602, 2008.

[23] M. Mehmet, H. Vahlbruch, N. Lastzka, K. Danzmann, and R. Schnabel. Observation of squeezed states with strong photon-number oscillations. Phys. Rev. A, 81:013814, 2010.

[24] T. Eberle, S. Steinlechner, J. Bauchrowitz, V. H ̈ andchen, H. Vahlbruch, M. Mehmet, H. Mu
̈ ller-Ebhardt, and R. Schnabel. Quantum enhancement of the zero-area sagnac interferometer
topology for gravitational wave detection. Phys. Rev. Lett., 104:251102, 2010.

[25] S.S.Y. Chua, M.S. Stefszky, C.M. Mow-Lowry, B.C. Buchler, S. Dwyer, D.A. Shad- dock, P.K. Lam, and D.E. McClelland. Backscatter tolerant squeezed light source for advanced gravitational-wave detectors. Opt. Lett., 36:4680, 2011.

[26] A. Khalaidovski, H. Vahlbruch, N. Lastzka, C. Gr ̈ af, H. Lu ̈ ck, K. Danzmann, H. Grote, and R. Schnabel. Status of the GEO 600 squeezed-light source. arXiv:quant-ph/1112.0198v1, 2011.

[27] M. S. Stefszky, C. M. Mow-Lowry, S. S. Y. Chua, D. A. Shaddock, B. C. Buchler, H. Vahlbruch, A. Khalaidovski, R. Schnabel, P. K. Lam, and D. E. McClelland. Balanced homodyne detection of optical quantum states at audio-band frequenices and below. Class. Quantum Grav. (submitted), 2012.
(此全文未開放授權)
電子全文
中英文摘要
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *