帳號:guest(3.133.108.48)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):黃任廷
作者(外文):Huang, Jen-Ting
論文名稱(中文):單週期圓極化高次諧波產生
論文名稱(外文):Isolated, Circularly-Polarized, High Harmonics Generation
指導教授(中文):陳明彰
指導教授(外文):Chen, Ming-Chang
口試委員(中文):孔慶昌
楊尚達
口試委員(外文):A. H. Kung
Yang, Shang-Da
學位類別:碩士
校院名稱:國立清華大學
系所名稱:光電工程研究所
學號:103066702
出版年(民國):106
畢業學年度:105
語文別:英文
論文頁數:60
中文關鍵詞:圓極化極化量測儀高次諧波產生單週期埃秒脈衝
外文關鍵詞:circularly polarizedpolarimeterhigh harmonics generationisolated attosecond pulses
相關次數:
  • 推薦推薦:0
  • 點閱點閱:42
  • 評分評分:*****
  • 下載下載:36
  • 收藏收藏:0
隨著觀測的物體越小且越快速,對於使用於觀測的光源要求也更加嚴苛。目前為止,已經能運用高次諧波產生的線性偏振光源,進行材料結構、分子動態、激發探測實驗等等。但對於磁性材料、掌性化合物,相對於線極化光源,它們圓偏振的光源的反應更為靈敏。現今已有許多種方法能產生圓極化埃秒的脈衝,但到目前為止,各個方式所產生的脈衝還僅限於脈衝序列,相對於單發孤立脈衝,在激發探測實驗中會有較差的解析度。單發孤立的圓極化脈衝到目前為止僅只於理論計算,但在這篇論文中,我們成功產生世界上第一道單發孤立的圓極化脈衝,並驗證它的特性。
實驗中,我們重合兩道旋度相反的圓偏振固態白光雷射來產生高次諧波,並同時產生兩道旋性相反但旋度相同的圓偏振埃秒極紫外光,並藉由光譜儀量測到的超連續頻譜與場自相關干涉的結果做對照,驗證此光源波長是25〜40eV,時間上是孤立的單週期埃秒脈衝。此外,我們使用極紫外光的極化量測儀,它能同時分析光的旋性與旋度,證明我們產生的兩道光為+0.9與-0.93的左旋與右旋光。
我們進一步將此篇論文的技術延伸,藉由調整兩道固態白光雷射的旋度,產生任意旋度的孤立埃秒脈衝。
Along with the observation of smaller and faster objects, requirements of the light source used on observation are more demanding. So far, linearly-polarized high harmonics generation (HHG) has been used on many experiments such as resolving nanostructure of materials, molecules dynamics, pump-probe experiment and so on. However, for the magnetic materials and chiral compounds, they are very sensitive to circularly polarized light instead of linearly polarized one. Until now, there are few approaches to produce circularly-polarized attoseocnd (as) pulses, but all of them demonstrated so far are limited to as pulse trains, which limit the temporal resolution of the pump-probe experiments. Isolated circularly-polarized as pulses have been proposed in theory, but our team for the first time succeeded in producing isolated circularly-polarized as pulses and characterized its properties in details in this thesis.
In the experiment, we combined two counter-rotating circularly-polarized solid-state white light laser (MPContinuum / MPC) to produce HHG, which generated two counter-rotating polarized EUV beams with the same ellipticity simultaneously. By observing the supercontinuum spectrum, spanning from 25eV to 40eV, measured by EUV spectrometer and the trace of an E-field autocorrelation, indicating that those pulses are temporally isolated. Most importantly, we have built one EUV polarimeter which can unambiguously analyze the helicity and ellipticity of those two isolated as beams with ellipticity of +0.9 and -0.93 ( + : represents positive helicity, -:negative helicity). By further extending the non-collinear geometry for HHG, we are even able to convert the ellipticity of fundamentals to that of HHG, while keep the same conversion efficiency.
摘要 i
Abstract ii
Acknowledgements iii
List of Figures vi
Chapter 1. Introduction 1
1.1 High harmonics generation (HHG) 1
1.2 Motivation 4
1.3 Review of Circularly-Polarized High harmonics generation (CP-HHG) 5
Chapter 2. Theory 11
2.1 Non-collinear geometry (NCP-HHG) 11
2.1.1 Wave-mixing model of non-collinear geometry 12
2.1.2 Phase matching in NCP-HHG 16
2.2 NCP-HHG driven by single-cycle pulse 18
2.3 Polarization-Gating effect in NCP-HHG 19
Chapter 3. Experiment 26
3.1 Light source 27
3.1.1 Multiple-plates continuum(MPC) 27
3.1.2 PG-FROG and compressor 28
3.1.3 Non-collinear HHG 31
3.2 Spectrometer 35
3.2.1 Experimental set up 35
3.2.2 Linearly polarized continuous spectrum 38
3.2.3 Continuous spectrum of isolated, circularly-polarized pulses 39
3.2.4 Delay dependence of spectrum 40
3.2.5 Dispersion dependence of spectrum 41
3.3 Autocorrelator 42
3.3.1 Calibration of autocrrelator 43
3.3.2 Fourier transformation spectrum 44
3.4 Polarimeter 46
3.4.1 Experimental set up 46
3.4.2 Theory and analytical procedure 48
3.4.3 Measuring linearly-polarized attosecond pulses 51
3.4.4 Circularly-polarized attosecond pulses 52
Chapter 4. Conclusion and perspective 55
Reference 58

[1] P. A. Franken, A. E. Hill, C. W. Peters, and G. Weinreich, “Generation of Optical Harmonics,” Phys. Rev. Lett. 7, 118, 1961
[2] New, G. H. C.; Ward, J. F, “Optical Third-Harmonic Generation in Gases,” Phys. Rev. Lett. 19: 556–559, 1967
[3] J. Wildenauer, Journal of Applied Physics 62, 41, 1987.
[4] McPherson, A.; et al, "Studies of multiphoton production of vacuum-ultraviolet radiation in the rare gases", JOSA B. 4: 595, 1987.
[5] Ferray, M.; et al, "Multiple-harmonic conversion of 1064 nm radiation in rare gases". Journal of Physics B: Atomic, Molecular and Optical Physics, 1988.
[6] K. J. Schafer, B. Yang, L. F. DiMauro, and K. C. Kulander,” Above threshold ionization beyond the high harmonic cutoff,” Phys. Rev. Lett.70, 1599, 1993.
[7] P. B. Corkum, “Plasma perspective on strong field multiphoton ionization,” Phys.Rev.Lett.71, 1994.
[8] T. T. Luu, M. Garg, S. Y. Kruchinin, A. Moulet, M. T. Hassan, E. Goulielmakis, Extreme ultraviolet high-harmonic spectroscopy of solids. Nature 521, 498–502 (2015).
[9] Olga Smirnova, Yann Mairesse, Serguei Patchkovskii, Nirit Dudovich, David Villeneuve, Paul Corkum & Misha Yu. Ivanov, “High harmonic interferometry of multi-electron dynamics in molecules,” Nature 460, 972-977, 2009
[10] F. Willems, C. T. L. Smeenk, N. Zhavoronkov, O. Kornilov, I. Radu, M. Schmidbauer, M. Hanke, C. von Korff Schmising, M. J. J. Vrakking, and S. Eisebitt, “Probing ultrafast spin dynamics with high-harmonic magnetic circular dichroism spectroscopy, ” Phys. Rev. B 92, 220405, 2015.
[11] Siemens, M. E. et al. Quasi-ballistic thermal transport from nanoscale interfaces observed using ultrafast coherent soft X-ray beams. Nature Mater. 9, 26–30, 2010.
[12] Heyderman L. J. et al. Arrays of nanoscale magnetic dots: Fabrication by x-ray interference lithography and characterization. Appl. Phys. Lett. 85, 4989, 2004.
[13] Jianwei Miao, Tetsuya Ishikawa, Ian K. Robinson, Margaret M. Murnane,” Beyond crystallography: Diffractive imaging using coherent x-ray light sources,” Science 01 May 2015: Vol. 348, Issue 6234, pp. 530-535
[14] T.Popmintchev, M.-C.Chen, P.Arpin, M. M.Murnane, and H. C.Kapteyn, “The
attosecond nonlinear optics of bright coherent X-ray generation,” Nat.
Photonics, vol. 4, no. 12, pp. 822–832, 2010.
[15] J. Bahrdt, et al, “Circularly polarized synchrotron radiation from the crossed undulator at BESSY,” Review of Scientific Instruments 63, 339, 1922.
[16] P. R. Ribic, G. Margaritondo, Status and prospects of x-ray free-electron lasers (X-FELs): a simple presentation. Journal of Physics D-Applied Physics. 45, 2012.
[17] P. Dietrich, N. H. Burnett, M. Ivanov, and P. B. Corkum, Phys. Rev. A 50, R3585(R), 1994.
[18] Weihe, F. A. et al. Polarization of high-intensity high-harmonic generation. Phys. Rev. A 51, R3433–R3436 (1995).
[19] A. Ferré et al, “A table-top ultrashort light source in the extreme ultraviolet for circular dichroism experiments,” Nature Photonics 9, 93-98, 2015.
[20] Zhou, X. et al. Elliptically polarized high-order harmonic emission from molecules in linearly polarized laser fields. Phys. Rev. Lett. 102, 073902, 2009.
[21] B. Vodungbo et al, “Polarization control of high order harmonics in the EUV photon energy range,” Opt. Exp. 19 4346, 2011.
[22] Ofer Kfir et al, “Generation of bright phase-matched circularly- polarized extreme ultraviolet high harmonics,” Nature Photonics 9, 99-105, 2015.
[23] L Medišauskas et al, “Generating Isolated Elliptically Polarized Attosecond Pulses Using Bichromatic Counterrotating Circularly Polarized Laser Fields,” Phys Rev Lett 115 (15), 153001. 2015.
[24] Daniel D. Hickstein et al, ” Non-collinear generation of angularly isolated circularly polarized high harmonics,” Nature Photonics 9, 743-750, 2015.
[25] C. Stefan Lehmann et al, “Imaging photoelectron circular dichroism of chiral molecules by femtosecond multiphoton coincidence detection ,” The Journal of Chemical Physics 139, 234307, 2013.
[26] Jennifer L. Ellis et al, “Phase matching of noncollinear sum and difference frequency high harmonic generation above and below the critical ionization level,” Optics Express, Vol. 25, Issue 9, pp. 10126-10144, 2017.
[27] Popmintchev, T et al. “Phase matching of high harmonic generation in the soft and hard X-ray regions of the spectrum, ” Proceedings of the National Academy of Sciences of the United States of America, 106(26), 10516–10521, 2009.
[28] E. Constant et. al, “Optimizing high harmonic generation in absorbing gases: Model and experiment,” Phys. Rev. Lett. 82, 1668–1671, 1999.
[29] C. Hernández-García et al, “Schemes for generation of isolated attosecond pulses of pure circular polarization,” Phys. Rev. A 93, 043855, 2016.
[30] G. Sansone et al, “Isolated single-cycle attosecond pulses,” Science 314, 443–446, 2006.
[31] I.J Sola et al, “Controlling attosecond electron dynamics by phase-stabilized polarization gating, ” Nature Physics 2, 319-322, 2006.
[32] Giuseppe Sansone, Luca Poletto, Mauro Nisoli, “High-energy attosecond light sources,” Nature Photonics 5, 655-663, 2011.
[33] Michael Chini, Kun Zhao, Zenghu Chang, “The generation, characterization and applications of broadband isolated attosecond pulses,” Nature Photonics 8, 178-186, 2014.
[34] R. R. Alfano, ed., The Supercontinuum Laser Source (Springer-Verlag, 1989).
[35] Chih-Hsuan Lu et al, “Generation of intense supercontinuum in condensed media
,” Optica 1, 400 (2014).
[36] Daniel J. Kane, “Principal components generalized projections: a review [Invited] ,” J. Opt. Soc. Am. B, Vol. 25, No. 6, 2008.
[37] J.Gagnon, E. Goulielmakis, V.S. Yakovlev, “The accurate FROG characterization of attosecond pulses from streaking measurements,” Appl. Phys. B 92, 25–32, 2008.
[38] https://www.thorlabs.com/newgrouppage9.cfm?objectgroup_ID=2193
[39] Pei-Chi Huang et al., “EUV continuum from compressed multiple thin plate supercontinuum,” CLEO:QELS_Fundamental Science 2016.
[40] P. Huang, C. Lu, C. Hernández-García, R. Huang, P. Wu, D. D. Hickstein, D. A. Thrasher, J. Ellis, A. H. Kung, S. Yang, A. Jaron-Becker, A. Becker, H. Kapteyn, M. M. Murnane, C. Durfee, and M. Chen, "Isolated, Circularly Polarized, Attosecond Pulse Generation," in Conference on Lasers and Electro-Optics, paper JTh4A.7, 2016.
[41] P. Huang, J. Huang, P. Huang, C. Lu, C. Hernandez-Garcia, A. H. Kung, S. Yang, and M. Chen, "Polarization Control of Isolated Attosecond Pulses," in Conference on Lasers and Electro-Optics - European Quantum Electronics Conference, paper JTh5B.9, 2017.
[42] T. Koide et al., Elliptical-polarization analyses of synchrotron radiation in the 5–80-eV region with a reflection polarimeter. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment. 308, 635–644, 1991.
[43] https://en.wikipedia.org/wiki/Stokes_parameters
[44] Paul, P. M. et al, “Observation of a train of attosecond pulses from high harmonic generation,” Science 292, 1689–1692 (2001).
[45] Cong Chen et al, “Tomographic reconstruction of circularly polarized high-harmonic fields: 3D attosecond metrology,” Science Advances, Vol. 2, no. 2, e1501333, 2016.
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *