帳號:guest(3.17.81.228)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目
作者(中文):曾昶尊
作者(外文):Zeng, Ceng-Zun.
論文名稱(中文):氮化鎵紫外光檢測二極體與高速元件之研製
論文名稱(外文):Study of GaN UV pin Photodiodes and HEMTs
指導教授(中文):吳孟奇
指導教授(外文):Wu, Meng-Chyi
口試委員(中文):劉柏村
劉嘉哲
李峰旻
學位類別:碩士
校院名稱:國立清華大學
系所名稱:光電工程研究所
學號:103066524
出版年(民國):107
畢業學年度:106
語文別:中文
論文頁數:57
中文關鍵詞:氮化鎵紫外光檢測器高速元件鈍化抗反射層液態的高分子材料
外文關鍵詞:GaNUV PhotodiodesHEMTsPassivationanti reflectionSOG
相關次數:
  • 推薦推薦:0
  • 點閱點閱:253
  • 評分評分:*****
  • 下載下載:9
  • 收藏收藏:0
本實驗可分為兩大部分,第一部分為氮化鎵材料應用於光檢測器之研製,第二部分為氮化鎵材料應用於高電子遷移率電晶體之研製。在光檢測器的部分,使用兩種樣不同基質之樣本,先以乾蝕刻技術,定義出p-n界面,再用熱蒸鍍機鍍上Ti/Al、Ni/Au,經過快速熱退火,形成Ohmic contact完成p-i-n二極體,二極體完成後,利用鈍化技術抑制因磊片本身缺陷以及蝕刻轟擊所造成之漏電流,再設計抗反射層,增加有效光載子進入。鈍化技術分別採用ALD、SOG、PECVD成長薄膜,將側壁以及表面缺陷覆蓋,達到抑制漏電流之效果。經過鈍化技術處理後,當電壓操作在-5V時,可以將漏電流抑制在10-14A。抗反射層則是採用ALD、PECVD,透過薄膜厚度的調變,減少光源反射,經過抗反射層的設計,響應度可以來到10-2A/W。
第二部分為高電子遷移率電晶體之研製,使用兩種樣不同來源之樣本,比較兩樣本之電特性。先以乾蝕刻技術,定義出汲極、源極、閘極並打穿2DEG,再用電子槍蒸鍍機鍍上Ti/Al/Ti/Au,經過快速熱退火,形成Ohmic contact,接著使用熱蒸鍍機鍍上Ni/Au,形成一Schottky contact完成高電子遷移率電晶體,鈍化處理採用披覆性好、緻密度高的ALD做為鈍化薄膜,比較鈍化處理後之特性。經過鈍化處理後,除了降低漏電流外,飽和電流密度以及Gm值都有所提升,飽和電流從,200 mA/mm提升到310 mA/mm,Gm值從85ms/mm提升到107ms/mm。
This experiment can be divided into two major parts, The first part is the development of GaN materials used in photodetectors,The second part is the application of gallium nitride materials in the development of high electron mobility transistors. In the photodetector section, two different matrix samples are used, The dry-etching technique was used to define the p-n interface and then Ti/Al and Ni/Au were deposited on the thermal evaporator, After rapid thermal annealing, an Ohmic contact is formed to complete the p-i-n diode. After the diodes are completed, the passivation technology is used to suppress the leakage current caused by the defects of the wafer itself and the etching bombardment, The antireflection layer is designed again to increase the entrance of effective photocarriers. The passivation technology adopts ALD, SOG, and PECVD growth films, respectively, to cover sidewalls and surface defects to achieve the effect of suppressing leakage current, Passivation technology, operating at -5V, the leakage current can be suppressed at 10-14A. The anti-reflection layer is ALD, PECVD, through the film thickness modulation, reduce the light source reflection, through the anti-reflection layer design, the responsivity can come to 10-2A/W.

The second part is the development of high electron mobility transistors, Using two different sources of samples, compare the electrical characteristics of the two samples. The dry etching technique was used to define the drain, source and gate electrodes and punch through the 2DEG. The electron gun deposition machine was used to plate Ti/Al/Ti/Au, After rapid thermal annealing, an Ohmic contact is formed, and then Ni/Au is plated on a thermal evaporator to form a Schottky contact to complete the high electron mobility transistor, The passivation process adopts ALD with high coverage and high density as passivation film, Compare the properties after passivation. After passivation, in addition to reducing the leakage current, the saturation current density and the Gm value have been improved, The saturation current is increased from 200 mA/mm to 310 mA/mm, and the Gm value is increased from 85 ms/mm to 107 ms/mm.
摘要 ii
Abstract iv
致謝 vi
目錄 vii
圖目錄 ix
表目錄 xi
第一章 緒論 1
第二章 光電材料理論分析 2
2.1 半導體光檢測元件 2
2.1.1 光導體 3
2.1.2 受光二極體 5
2.1.3 P-I-N受光二極體 6
2.2 電晶體 8
2.2.1蕭特基接觸-閘極 8
2.2.2歐姆接觸-汲極與源極 11
第三章 實驗方法與步驟 13
3.1 實驗步驟 13
3.1.2紫外光檢測器(UV Photo detector ,UV PD) 13
3.1.3高電子遷移率電晶體(High electron mobility transistor ,HEMT) 14
3.2實驗流程 14
3.2.1 紫外光偵測器(UV Photo detector ,UV PD) 14
3.2.2高電子遷移率電晶體(High electron mobility transistor ,HEMT) 19
3.3實驗儀器介紹 23
第四章 實驗結果與討論 25
4.1液態的高分子材料(Spin-on glass ,SOG)薄膜成長特性探討 25
4.2紫外光偵測器經過鈍化處理後光電特性探討 30
4.2.1 A28磊片之光偵測器二層式鈍化處理 31
4.2.2 A28磊片之光偵測器三層式鈍化處理 37
4.3紫外光偵測器設計抗反射層光特性探討 39
4.3.1抗反射層設計 40
4.4高電子遷移率電晶體電特性探討 43
4.4.1 Id-Vd特性比較 43
4.4.2 Id-Vg特性比較 45
4.4.3持自曲線比較 46
4.5鈍化處理之高電子遷移率電晶體電特性探討 48
4.5.1 Id-Vd特性比較 49
4.5.2 Id-Vg特性比較 50
4.5.3持自曲線比較 51
4.5.4 崩潰電壓 53
第五章 結論 55
參考文獻 57

[1]X. A. Cao, H. Lu, S. F. LeBoeuf, C. Cowen, S. D. Arthur, and W. Wang, “Growth and characterization of GaN PiN rectifiers on free-standing GaN,” Appl. Phys. Lett., 87, 053503 (2005).
[2]孫慶成,光電概論,三版,台北縣,全華圖書,民98。
[3]石正楓,「GaN 異質結構場效電晶體之研究」,國立交通大學電子研究所-碩士論文,2003。
[4]Hong Xiao,半導體製程技術導論,羅正忠、張鼎張等譯,二版,台北市,台灣培生教育出版,民91。
[5]BEN G.STREETMAN,SANJAY BANERJEE,半導體元件solid state
electronic devices,第五章、第六章,吳孟奇等譯,初版,台北市,台灣東華,民90。
[6]M. D’Hondt, I. Moerman, P. van Daele, and P. Demeester, “Influence of buffer layer and processing on the dark cuirrent of 2.5 pm-wavelength 2%-mismatched InGaAs photodetectors,” IEE Proc. J, vol. 144, no. 5, pp. 277–282, 1997.
[7]J. Harari, F. Journet, O. Rabii, G. H. Jin, J. P. Vilcot, and D. Decoster, “Modeling of waveguide PIN photodetectors under very high optical power,” IEEE Trans. Microwave Theory Tech., vol. 43, no. 9, pp. 2304–2310, Sep. 1995.
[8]Y.C.Chou, “Degradation of AlGaN/GaN HEMTs under elvated
temperature lifetesting",Northrop Grumman Space Technology,May
2004.
[9]E. Muñoz, “(Al,In,Ga)N-based photodetectors. Some materials issues,”
Phys. Stat. Sol. B, vol. 244, no. 8, pp. 2859–2877, Jun. 2007.
[10]S. J. Chang, S. M. Wang, P. C. Chang, C. H. Kuo, S. J. Young, T. P. Chen,S. L.Wu, and B. R. Huang, “GaN Schottky barrier photodetectors,” IEEE Sensors J., vol. 10, no. 10, pp. 1609–1614, Oct. 2010.
[11]E. Muñoz, E. Monroy, J. L. Pau, F. Calle, F. Omnès, and P. Gibart,
“III nitrides and UV detection,” J. Phys. Condens. Matter, vol. 13, pp.
7115–7137, 2001.
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *